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Abstract: To improve the fault diagnosis accuracy for power transtmsnthis paper presents a kernel based extreme learnirigmaac
(KELM) with particle swarm optimization (PSO). The paraevstof KELM are optimized by using PSO, and then the optimized
KELM is implemented for fault classification of power traoshers. To verify its effectiveness, the proposed methosl tested on
nine benchmark classification data sets compared with KEpkhized by Grid algorithm. Fault diagnosis of power tramsiers
based on KELM with PSO were compared with the other two ELMgkkpropagation neural network (BPNN) and support vector
machines (SVM) on dissolved gas analysis (DGA) samplesefixgntal results show that the proposed method is mor&estiuld
achieve better generalization performance, and runs al iaster learning speed.
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1 Introduction effective |]. By using fuzzy information approach, K.
Tomsovicet al.[5] developed a framework that combined
everal transformer diagnostic methods to provide the

Power transformers are considered as highly essenti ; : o
%Aest conclusion. Based on artificial neural network

equipment of electric power transmission systems an
often the most expensive devices in a substation. Failure
of large power transformers can cause operationa
problems to the transmission systeth [

Dissolved gas analysis (DGA) is one of the most
widely used tools to diagnose the condition of

oil-immersed transformers in service. The ratios of hown with high accuracy7]. Yann-Chang Huang et al
certain dissolved gases in the insulating oil can be used 9 Y. 9 9 X

for qualitative determination of fault types. Several presented a fault detection approach of oil-immersed

criteria have been established to interpret results fromPOWer transformers based on genetic glgonthm tuned
laboratory analysis of dissolved gases, such as IECi/vavelet networks (GAWNSs) demonstrating remarkable

60555 P] and IEEE St Co7.104-200] Homever, ~ Je0n0%s acctraogl iegen Chen ot e st e
analysis of these gases generated in mineral-oil-fille y

transformers is often complicated for fault interpretatio dailgltngs?gcgggurg?n%ngazgfc-ilgagn vsvzrrgplefc;vea(ljn%eg]eer
which is dependent on equipment variables. 9 y Y P

With the develobment of artificial intelliqence than these derived from BPNMNJ[ A fault classifier for
it . Velop neial |1 '9 ' power transformer was proposed by Zhetgl. based on
various intelligent methods have been applied to improv

the DGA reliability for oil-immersed transformers. Basedli( ult-class least square support vector machines

on DGA techniaue. an expert svstem was pronosed fo LS-SVM) [10]. Xiong Haoet al. developed an atrtificial
Ique, an expert Sy was prop . “Immune algorithm for transformer fault detectiohl].
transformer  fault diagnosis and corresponding

maintenance actions, and the test results showed it was

NN), Zhang et al. presented a two-step method for fault

etection in oil-filled transformer, and the proposed
approach achieved good diagnostic accurad)]. [
Wei-Song Lin et al. proposed a novel fault diagnosis
method for power transformer based on Cerebellar Model
Articulation controller (CMAC), and the new scheme was
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These novel diagnosis methods overcome the drawbackisput space to thd.-dimensional hidden-layer feature

of IEC method and improve the diagnosis accuracy. space (ELM feature space), and thush(x) is indeed a
However, conventional learning methods on neuralfeature mapping.

networks such as back-propagation (BP) and SVM  Given a set of training datd(x;, ti)|x € RY, t; €

methods apparently face some drawbacks: (1) slowR™i = 1, ..., N }. Different from traditional learning

learning speed, (2) trivial human tuned parameters, andlgorithms, ELM tends to reach not only the smallest

(3) trivial learning variants for different applicationsZ). training error but also the smallest norm of output weights

Extreme learning machine (ELM) is an emerging learning

technique proposed for generalized single-hidden layer Minimize: |[HB —T||* and ||| (2)

feed forward networks (SLFNs)LB. ELM overcomes

some major constraints faced by conventional learningvhereH is the hidden-layer output matrix

methods and computational intelligence techniques.

Similar to SVM, kernels can be applied in ELM as h(x1) hy (X1) -+ he (%)
well [14,15. Kernel based ELM (KELM) can be H= : = Do : , @
implemented in a single learning step, so it runs fast. h().(N) hy (.XN) h, (.XN)

Similar to other kernel based methods, the parameters of
KELM are usually assigned empirically or obtained by andT

X ; 0 . . is the expected output matrix
trials [15]. Obviously, it is very time-consuming and the P P

performance achieved with the chosen parameters is T

. t; 111 tim
suboptimal. _ _ _

Therefore, KELM with particle swarm optimization T=1:t]=]:" ] (4)
(PSO) is proposed for fault diagnosis of power t) tng - tNm

transformers in this paper. This paper is organized as

follows. Section 2 reviews original ELM, equality The minimal norm least square method was used in the
constrained-optimization-based ELM and KELM. Section original implementation of ELM

3 introduces the parameters selection for KELM. In

Section 4, the proposed KELM with PSO are described in B=H'T (5)
detail. Section 5 discusses the comparison results of the _ _ _

proposed method with other approaches. Conclusions aréhere H™ is the Moore—Penrose generalized inversé

finally drawn in Section 6. matrixH. o
The orthogonal projection method can be used to

calculate the Moore—Penrose generalized inverdd of

two cases: whenH'H is nonsingular andH' =
2 Kernel based ELM (KELM) (HTH)"*HT, or whenHHT is nonsingular anti™ = HT
(HHT)-L,

2.1 Original ELM

Extreme Learning Machine (ELM) was originally . . o
developed for the single-hidden layer feedforwardz'2 Equality constrained-optimization-based
networks (SLFNs) and then extended to the “generalized’ELM

SLFNs. The hidden layer in ELM need not be tuned.

ELM randomly chooses the input weights and the hiddenAccording to the ridge regression theory, one can add a
neurons’ biases and analytically determines the outpupositive value to the diagonal dfiTH or HHT; the
weights of SLFNs. Input weights are the weights of the resultant solution is more stable and tends to have better
connections between input neurons and hidden neurongeneralization performance.

and output weights are the weights of the connections For multiclass classifier with multi-outputs, classifiers

between hidden neurons and output neurons. with m-class havem output nodes. If the original class
The output function of ELM for generalized SLFNs label is p, the expected output vector of the output
(take one output node case as an example) is nodes ist; = [0, ,0, i 0,---0]". In this case, only the
L pth element oft; = [ti1,--- ,tim]' IS one, while the rest of
i (X) = e (X) = h(x 1 the elements are set to zero. For the
L) i;ﬁl (%) ol @ constrained-optimization-based ELM with multi-output

node, the classification problem can be formulated as
where B = [, ,BL]T is the vector of the output

; : N
weights between the hidden layer bf nodes and the IS _1.72,C 12

output node, andh(x) = [hy (x),---,h (X)] is the output Minimize: Le,,, = 2 IBII"+ 2 i;”‘f'”

(row) vector of the hidden layer with respect to the input . T T .

x. h(X) actually maps the data from thibdimensional Subjecttoh(x)B=t; =& i=1--,N (6)
@© 2015 NSP
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where&; = &1, ,Eim]T is the training error vector of the After ELM was trained, the given testing samplevas

m output nodes with respect to the training sampl€ is taken as the input of the classifier. The index of the output

the cost parameter. node with the highest output value is considered as the
Based on the Karush—Kuhn-Tucker (KKT) theorem, predicted class label of the given testing sample.fi(ed)

to train ELM is equivalent to solving the following dual denote the output function of thigh output node, the

optimization problem: predicted class label of samptas
1., CN ) label(x) =arg max f;(x) (16)
Logiw = EHB” +§I;HE|H 1€{L, m}

_ ig aij(h0)B;—tij+&;) (7 3 User-specified parameters
i=1j=1

In this study, the popular Gaussian kernel functioiu,
We can have the KKT corresponding optimality conditions v) = exp(~y||u— V||°) is used as the kernel function in
as follows: KELM. In order to achieve good generalization
N performance, the cost parame@zand kernel parameter
OLpgy —0 B, = Zai,jh(Xi)T—>3 —HTa (8 ©Of KELM need to be chosen appropriately. Similar to

9B; & SVM and LS-SVM, the values o andy are assigned
alp empirically or obtained by trying a wide range©findy.
TELM =0—a;j=C¢&, i=1,--,N (9)  As suggested in1[p], 50 different values ofc and 50
oL i different values ofy are used for each data set, resulting
DElm _ @ _tT 5T _ C1 in a total of 2500 pairs of(, y). The 50 different values
oa; 0—h(x)B—ti +& =0, i=1--N of Candyare{2-24 2723 ... 24 225 This parameters

(10) optimization method is called Grid algorithm.
o ) ] Similar to SVM and LS-SVM, the generalization
By substituting (8) and (9) into (10), the aforementioned performance of KELM with Gaussian kernel are sensitive

equations can be equivalently written as to the combination of §y) as well. The best
| generalization performance of ELM with Gaussian kernel
(_+HHT> a=T (11) is usually achieved in a very narrow range of such
c combinations. Thus, the best combination &f ) of

KELM with Gaussian kernel needs to be chosen for each
data set.
| -1 Take Diabetes data set for example, the performance
B=HT (— + HHT> T (12)  sensitivity of KELM with Gaussian kernel on the
c user-specified parameter§,{) is shown in Fig.1. The
simulations were carried out in MATLAB 7.0.1
environment running in Core 2 Duo 1.8GHZ CPU with
| -1 2GB RAM. Diabetes data set is from the University of
f(X)=h(x)B=h(x)HT <6 + HHT) T (13) cCalifornia, Irvine (UCI) machine learning repository,
concluding 2 classes and 768 instances. In this case, 576
instances were selected randomly from Diabetes data set
as training data and the rest 192 instances were taken as
2.3 Kernel based ELM (KELM) testing data. As mentioned above, 50 different valugs of
and 50 different values af were used in this simulation.
IIt can be seen from Fidl. that the performance of KELM
with Gaussian kernel on Diabetes data set is sensitive to
the user-specified parameter€,y) and the highest
Qeiv=HHT: Qe j = h(x)h(x) = K (x, ;) (14) testing accuracy is obtained in a very narrow range of the
' combination of C,y). The time used for searching the
Then, the output function of ELM classifier (13) can be best combination of these two parameters is 732.04
written compactly as seconds; one of the best combinations@fy) is (2, 21)
and the corresponding testing accuracy is 83.85%.

From (8) and (11), we have

The output function of ELM classifier is

If a feature mappind(x) is unknown to users, one can
apply Mercer’s conditions on ELM. We can define a kerne
matrix for ELM as follows:

f(x) =h(x)HT (IE + HHT) T

K (X, X1) . 4 Optimal KELM with PSO
) I —
= : (6 +-QELM> T (15  From practical point of view, it may be time consuming
K (X, Xn) and tedious for users to choose appropriate kernel
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Fig. 1. Performances of KELM with Gaussian kernel on Diabete
data set.

S

parameters ¢, y) by using the method mentioned in
Section 3. What is more, the discrete valuesCodnd y

Xid (t+1) = Xig (t) + Vig (t+ 1)
i—12..n d=12..D (18

Wherecs,c, are the acceleration constants with positive
values;r, andr, are random number between 0 and 1. In
addition to thec; andc, parameters, the implementation
of the original algorithm also requires to place a limit on
the velocity ¢max). The inertia weightw is used to
balance the capabilities of global exploration and local
exploration, which has a high value at the beginning and
gradually lower later on. The following equation is used
to determinew

W = Whin+ (Wmax— Wmin) (t—1)(Te—1)  (19)

Where wmnax is the initial inertia weightgomin is the final
inertia weightt is the current iteration ant is the epoch
parameter when inertial weight at final value.

4.2 Parameters selection of KELM using PSO

In PSO for parameters optimization, the dimension of

might result in suboptimal testing accuracy although aS€@rching space i® = 2 corresponding to the two

wide range ofC and y have been tried (which will b
discussed later in Section 5.1). In order to reduce tim

costs and achieve optimal generalization performance, th8' (C,¥) in Gaussian kernel.

parameters in KELM with Gaussian kernel were
optimized by using particle swarm optimization (PSO) in
this paper.

4.1 Particle swarm optimization

Particle swarm optimization (PSO) is a population-based
stochastic optimization technique developed by Eberhart

and Kennedy 16]. PSO simulates the social behavior of
organisms, such as birds in a flock or fishes in a school

and can be described as an automatically evolving systent.

PSO works by initializing a flock of birds randomly
over the searching space, where every bird is called as
“particle”. These particles fly with a certain velocity and
find the global best position after several iterations.
During each iteration, each particle adjusts its velocity

vector according to its momentum and the influence of its

best position ) as well as the best position of its
neighbors By), and then a new position that the particle is
to fly is obtained. Supposing the dimension of searchin
space iD, the total number of particles is n, the position
of the ith particle can be expressed as vector
Xi = (X1, %2, - --,Xp); the best position of thih particle
searching until now is denoted Bg = (pi1, Pi2,---, Pip)s
and the best position of all particles searching until now is
denoted as vectdPy = (pg1, Pg2, - - -, Pgp); the velocity

of the ith particle is represented as vecWr= (Vvi1, Viz,
...,Vip). Then the original PSO is described as

Vid (t+1) = wvig (t) + car1[pid (t) — Xid ()]

+ C2r2[Pga(t) — Xia(t)] (17)

e Pparametersq,y) of KELM with Gaussian kernel, and the
doosition of each particle represents the parameter values

The aim of PSO for
parameters optimization is to obtain the best
generalization performance of KELM; therefore the
testing accuracy can be taken as the fitness function of
PSO.

The specific steps of PSO for KELM parameters
optimization are described as follows.

Stepl: Data preprocessing. All the attributes (except
expected targets) of the classification dataset are
normalized into the range-{1, 1] and then the
classification dataset is randomly divided into
training and testing data in proportion.

tep2: Initialize the swarm size, maximum of iterations
and velocities. Generate randomly an initial
velocity for each patrticle.

gtep3: Evaluate each patrticle’s fitness value according to

the testing accuracy of KELM and set the best
position from the particle with the maximal fitness
in the swarm.

Step4: Update the velocity and position for each candidate

particle by means of (17), (18) and (19) in each
iteration.

S

gStep5: Check the termination criterion. If the maximum

number of iterations is not yet reached, return to
Step 3. Otherwise go to the next step.

Step6: Output the best combination &, () of KELM
corresponding to the maximal fitness value.

The flowchart of this procedure is illustrated in F&y.

5 Experiment results and discussion

In this section, all simulations on each data sets are
carried out in MATLAB 7.6 environment running in Core

(@© 2015 NSP
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Parameter
initialization Training and 84.38% and the corresponding paramete@sy) were
v testing samples (21913 208988 The best testing accuracy of KELM with
Initialize Gaussian kernel optimized by PSO is higher than that
population derived by Grid algorithm mentioned in Section 3. The
e B Attt 1 time consumed by PSO for KELM parameters
Updatethe | | Vv 2 optimization is 270.31 seconds, far less than 732.04
velocities MLM 2. seconds spent by Grid algorithm. Compared with Grid
and positions | | 8! algorithm, KELM with PSO achieves better
I v £l generalization performance.
| | Testing accuracy | Z-! To verify the performance of KELM with PSO,
! ° ! simulations are also conducted on other eight benchmark
””””””” classification datasets from the University of California,

Y
bUPdate.ﬂ?e Irvine (UCI) machine learning repository. Specifications
st position of the nine classification data sets (including Diabetes
data set) are shown in Takle

Fig. 2: Computational procedure of PSO for optimizing KELM. Table 1: Specifications of classification datasets.

2 Duo 1.8GHZ CPU with 2GB RAM. For KELM with Datasets #classes #attributes #instances #train #test

PSO in all experiments, the range of cost paran@tand Diabetes 2 8 768 576 192
kernel parametey were also [22%, 225 as mentioned in ~ Balance 3 4 625 376 249
Section 3; population size was set to 24; maximum Glass 7 9 214 139 75
number of iterations (epochs) to train was set to 1000; 'S 3 4 150 102 48
acceleration constants; and ¢, were set to 2; max Wine 3 13 178 121 57
particle velocityvmax Was set to 2; initial inertia weight ~ -Ve' 2 6 345 231 114
Wmax Was set to 0.9 and final inertia weigtit,in was set Vowel 1 10 990 528 462
to 0.4; epoch parametd@g when inertial weight is at final Waveform 3 21 5000 30021998
' Breast-can 2 30 569 301 268

value was set to 750. The training and testing data of all
datasets are fixed for all trials of simulations.

The corresponding performance of KELM optimized

5.1 Performance comparison on benchmark by Grid algorithm and PSO on the nine classification
SR problems is listed in Table2, including the time
classification data sets consumed, paramete@ and y, and the best testing

For comparison with Grid algorithm, KELM with PSO accuracy. .

was also tested on Diabetes data set. The training an It Cfgsbg foufnd lfromtr'll'ablf_htr:atftrée_goeruy?glonal d

testing data were the same as Grid algorithm mentione jme o ) IS Tar less than hat o %rid aigorithm an

in Section 3. The fithess curve of PSO for KELM tﬂe bfhstttilst|ng§1ck:)cu(r3apéesl obt%;ned by PSO is even higher
PR . an that derived by Grid algorithm.

parameters optimization is shown in F&j. Finally, KELM with PSO achieves better performance

and is less time-consuming compared with Grid algorithm.
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5.2 Fault diagnosis of power transformers

084 prommmee In this study, 387 dissolved gas analysis (DGA) samples

from real-world fault transformers are chose as
experimental data. These samples were divided into two
0.835 f----mf-mm Ao oo — parts: 235 samples were taken as training data randomly
and the rest 152 samples as testing data.

There are five gas concentrations in each instance

10 20 corresponding to five dissolved gases: Hydrogen)(H

Epoch ethylene (GHj), methane (Chl), ethane (GHg), and
acetylene (gH,), which are the byproducts caused by
internal faults in power transformers. The attributes of

It can be found from Fig3 that the best fitness is each instance are normalized @32/T, CH4/T, C2H6/T,
obtained after 10 iterations. The best testing accuracy wa€2H4/T, C2H2/T}, where T represents the total gas. The

Fitness
. 72 [

it et 3

(=]

L S
—_

o F

Fig. 3: Fitness curve of PSO for KELM parameters optimization.
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Table 2: Performance comparison of KELM optimized by different aitfons.

Grid algorithm PSO
Datasets - - - -
time () C y Testing accuracy (%) times) C y Testing accuracy (%)

Diabetes 73205 9 2t 83.85 270.31 21913 08986 84.38
Balance-scale 297.19 2% 214 91.97 118.02 220863 21302 91.97
Glass 10553 B 23 73.33 62.469 21657  p—1556 74.67

Iris 65.75 224 220 100 21.297 21772 1178 100
Wine 1035 33 2°° 100 46.641 21203 p—5635 100

Liver 132.81 37 29 75.44 45.828 21362 26.672 75.44
Vowel 766.94 2 20 96.97 525.98 2188  »-03934 97.19
Waveform 31123 21 29 86.49 7454.3 22764 29305 86.54
Breast-can 54152 18 216 97.01 209.72 21977 225 97.01
Table 3: Performance comparisons of different ELMs on DGA data set.
Algorithms parameters values CPU time (S)_ - .Accuracy ,(%)
Training Testing Training Testing: Dev.

original ELM L 95 0.0625 0.0313  91.91 74511.74
KELM (C,y) (264301 p-43483) 00097 0.0049  94.04 81.580
ELM with Sigmoid additive node ~ @,L) (224, 700) 0.5156 0.0313  92.34 76:040.89

six types of detectable faults in IEC Publication 60599 by In original ELM, the number of hidden nodds was
using DGA are discharges of low energy (D1), dischargeschosen as 95 through trials with ranging from 10 to

of high energy (D2), partial discharges (PD), thermal 1000; the hidden nodes used the sigmoid type of
faults below 300C (T1), thermal faults above 300 activation function. In ELM with Sigmoid additive node,

(T2), and thermal faults above 70D (T3). the cost parametéZ and the numbek of hidden nodes
The fitness curve of PSO for KELM parameters were set asQ,L) = (224, 700), optimized by using Grid
optimization is shown in Figd. algorithm withC ranging{2-24, 2723, ..., 24, 2?5} and

L ranging from 10 to 1000. Testing accuracies of the three

T T different ELMs on DGA data set with 50 trials are shown
0.82 A oo - P ;
> 3 in Fig. 5. The performance comparisons of the three
081 e e | methods are listed in Tab®&
1 1
2 08 S A mmmeen -
9 i i
= | . ]
e e e A 3
0.78 ERREEEEEEES Tommmooooo- . 5
| | 2
077 | 4 pm-mmm-mm- 1 g
0 10 20 30 40 = _
EpOCh 0.65 } _'—:():?I:Ial ELM u
—6— ELM with Sigmoid additive node
Fig. 4: Fitness curve of KELM with PSO on DGA data set. 0 05 30 35 30 35 40 45 50
Test Number

It can be found from Fig4 that the best fithess is
obtained after 9 iterations. The best testing accuracy WasFig. 5: Testing accuracies of different ELMs on DGA data set.
81.58% and the corresponding parametesy) were
(264301 2-43483 The computational time was 88.078  From Fig.5, it can be seen that the testing accuracies
seconds. In comparison, the best testing accuracyf original ELM and ELM with Sigmoid additive node
obtained by Grid algorithm was 80.92%C,{) = (25, are changing in each trial, while the testing accuracy of
275), and the computational time was 182.33 seconds. KELM are constant in all trial and higher than the other

The performance of KELM with PSO on DGA data two ELMs.
set is compared with original ELM and ELM with From Table3, it can be found that KELM requires less
Sigmoid additive node. The paramete@s ) of KELM training and testing time than the other two ELMs while
were set to (24301 2743483 determined by using PSO. with the highest training and testing accuracies.

(@© 2015 NSP
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Table 4: Performance comparisons of different methods on DGA ddta se

. CPU time (s) Accuracy (%)
Algorithms  parameters values — - — -
Training Testing Trainingt Dev.  Testingt Dev.
BPNN L 28 3.0219 0.0281 78.1.34 69.84-2.66
KELM [(oR) (264301 243483 00097  0.0049 94.G40 81.58+0
SVM (oXY) (23, 25) 0.0286  0.0057 91.940 79.610

In summary, from the above experimental results, it Acknowledgement
can be concluded that the KELM with PSO achieves
better and more stable generalization performance in faulThe project was supported by the Fundamental Research
classification for power transformers. Funds for the Central Universities (N0.13MS69), North
China Electric Power University, China.

5.3 Comparison with other fault diagnosis

approaches for power transformers References

. [1] W. H. Tang, and Q. H. Wu, Springer-Verlag, London, 2011.
Moreover, the performance of the KELM is compared [2] IEC Publication 60599, 2007.

with other widely used diagnosis methods for power [3]IEEE Std C57.104-2008, 20009.
transformers, such as back-propagation neural network[4] C. F Lin, J. M. Ling, and C. L. Huang, IEEE Transactions
(BPNN) and support vector machines (SVM). on Power Deliveng, 231-238, 1993.

The training and testing samples from DGA data set [5] K. Tomsovic, and M. Tapper, T. Ingvarsson, IEEE
were the same as Section 5.2 mentioned above. The Transactions on Power Syste®)s1638-1646 (1993).
BPNN used was Of Slngle_h|dden_|ayer’ prov|ded in the [6] Y. Zhang, X. D|ng, and Y. L|U, |IEEE Transactions on Power
neural networks tools box of MATLAB; the transfer Delivery 11, 1836-1841 (1996). ,
function was tangent sigmoid; the number of hidden layer [71Wei-Song Lin, Chin-Pao Hung, and Mang-Hui Wang,
nodes was chosen by trials. For SVM, the parameters Proceedings of International Symposium on Neural
(C,y) were selected by using Grid algorithm. The __ Networksl, 986-991 (2002). . .
performance comparisons are listed in Table [8] \{gn?égl;alnzgaTugggé IEEE Transactions on Power Delivery

From Table4, it can be seen that the training time of . ( )

X [9] Weigen Chen, Chong Pan, Yuxin Yun, and Yilu Liu, IEEE
KELM on DGA data set is far less than BPNN and SVM, Transactions on Power DeliveB, 187-194 (2009).

and the training and testing accuracies are the highestio; 4, B. zheng, R. J. Liao, S. Grzybowski, and L. J. Yang,

Obviously, the fault diagnosis approach based on KELM" " gjectric Power Applications, 691-696 (2011).

iS Stable and aChieVES better generalization performancﬂ_l] X. Hao’ and S. Cai_Xin’ |IEEE Transactions on Power

than that based on BPNN and SVM. Delivery 22, 930-935 (2007).

[12] G. -B. Huang, Q. -Y. Zhu, and C. -K. Siew, Neurocomputing
70, 489-501 (2006).

[13] G. -B. Huang, Q. -Y. Zhu, and C. -K. Siew, Proceedings
of the International Joint Conference on Neural Networks
(IJCNN2004)2, 985-990 (2004).

In this paper, KELM with PSO has been presented for[14] G. -B. Huang, and C. -K. Siew, International Journal of

fault diagnosis of power transformers. The parameters of  Information Technologyl1, 16-24 (2005).

KELM are optimized by using PSO to improve the [15] G. -B. Huang, H. Zhou, X. Ding, and R. Zhang, IEEE

performance of KELM. Experimental results show that: Transactions on Systems, Man, and Cybernetics - Part B:

(1) Compared with Grid algorithm on nine benchmark  Cybemetics#2, 513-529 (2012).
classification data sets, KELM optimized by PSO [16] Clerc, M., Kennedy, J., IEEE Trans. Evolut. Compfijt58-
achieves Dbetter performance and is less 73 (2002).
time-consuming.

(2) Compared with original ELM and ELM with
Sigmoid additive node, KELM with PSO achieves
better and more stable generalization performance in
fault classification for power transformers.

(3) Compared with BPNN and SVM on DGA data set,
KELM with PSO is able to obtain better diagnosis
accuracy and runs faster.

6 Conclusions
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