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Abstract: To improve the fault diagnosis accuracy for power transformers, this paper presents a kernel based extreme learning machine
(KELM) with particle swarm optimization (PSO). The parameters of KELM are optimized by using PSO, and then the optimized
KELM is implemented for fault classification of power transformers. To verify its effectiveness, the proposed method was tested on
nine benchmark classification data sets compared with KELM optimized by Grid algorithm. Fault diagnosis of power transformers
based on KELM with PSO were compared with the other two ELMs, back-propagation neural network (BPNN) and support vector
machines (SVM) on dissolved gas analysis (DGA) samples. Experimental results show that the proposed method is more stable, could
achieve better generalization performance, and runs at much faster learning speed.
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1 Introduction

Power transformers are considered as highly essential
equipment of electric power transmission systems and
often the most expensive devices in a substation. Failures
of large power transformers can cause operational
problems to the transmission system [1].

Dissolved gas analysis (DGA) is one of the most
widely used tools to diagnose the condition of
oil-immersed transformers in service. The ratios of
certain dissolved gases in the insulating oil can be used
for qualitative determination of fault types. Several
criteria have been established to interpret results from
laboratory analysis of dissolved gases, such as IEC
60599 [2] and IEEE Std C57.104-2008 [3]. However,
analysis of these gases generated in mineral-oil-filled
transformers is often complicated for fault interpretation,
which is dependent on equipment variables.

With the development of artificial intelligence,
various intelligent methods have been applied to improve
the DGA reliability for oil-immersed transformers. Based
on DGA technique, an expert system was proposed for
transformer fault diagnosis and corresponding
maintenance actions, and the test results showed it was

effective [4]. By using fuzzy information approach, K.
Tomsovicet al. [5] developed a framework that combined
several transformer diagnostic methods to provide the
“best” conclusion. Based on artificial neural network
(ANN), Zhang et al. presented a two-step method for fault
detection in oil-filled transformer, and the proposed
approach achieved good diagnostic accuracy [6].
Wei-Song Lin et al. proposed a novel fault diagnosis
method for power transformer based on Cerebellar Model
Articulation controller (CMAC), and the new scheme was
shown with high accuracy [7]. Yann-Chang Huang et al.
presented a fault detection approach of oil-immersed
power transformers based on genetic algorithm tuned
wavelet networks (GAWNs) demonstrating remarkable
diagnosis accuracy [8]. Weigen Chen et al. studied the
efficiency of wavelet networks (WNs) for transformer
fault detection using gases-in-oil samples, and the
diagnostic accuracy and efficiency were proved better
than these derived from BPNN [9]. A fault classifier for
power transformer was proposed by Zhenget al.based on
multi-class least square support vector machines
(LS-SVM) [10]. Xiong Haoet al. developed an artificial
immune algorithm for transformer fault detection [11].
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These novel diagnosis methods overcome the drawbacks
of IEC method and improve the diagnosis accuracy.

However, conventional learning methods on neural
networks such as back-propagation (BP) and SVM
methods apparently face some drawbacks: (1) slow
learning speed, (2) trivial human tuned parameters, and
(3) trivial learning variants for different applications [12].
Extreme learning machine (ELM) is an emerging learning
technique proposed for generalized single-hidden layer
feed forward networks (SLFNs) [13]. ELM overcomes
some major constraints faced by conventional learning
methods and computational intelligence techniques.
Similar to SVM, kernels can be applied in ELM as
well [14,15]. Kernel based ELM (KELM) can be
implemented in a single learning step, so it runs fast.
Similar to other kernel based methods, the parameters of
KELM are usually assigned empirically or obtained by
trials [15]. Obviously, it is very time-consuming and the
performance achieved with the chosen parameters is
suboptimal.

Therefore, KELM with particle swarm optimization
(PSO) is proposed for fault diagnosis of power
transformers in this paper. This paper is organized as
follows. Section 2 reviews original ELM, equality
constrained-optimization-based ELM and KELM. Section
3 introduces the parameters selection for KELM. In
Section 4, the proposed KELM with PSO are described in
detail. Section 5 discusses the comparison results of the
proposed method with other approaches. Conclusions are
finally drawn in Section 6.

2 Kernel based ELM (KELM)

2.1 Original ELM

Extreme Learning Machine (ELM) was originally
developed for the single-hidden layer feedforward
networks (SLFNs) and then extended to the “generalized”
SLFNs. The hidden layer in ELM need not be tuned.
ELM randomly chooses the input weights and the hidden
neurons’ biases and analytically determines the output
weights of SLFNs. Input weights are the weights of the
connections between input neurons and hidden neurons
and output weights are the weights of the connections
between hidden neurons and output neurons.

The output function of ELM for generalized SLFNs
(take one output node case as an example) is

fL (xxx) =
L

∑
i=1

βihi (xxx) = hhh(xxx)βββ (1)

where βββ = [β1, · · · ,βL]
T is the vector of the output

weights between the hidden layer ofL nodes and the
output node, andhhh(xxx) = [h1 (xxx) , · · · ,hL (xxx)] is the output
(row) vector of the hidden layer with respect to the input
xxx. hhh(xxx) actually maps the data from thed-dimensional

input space to theL-dimensional hidden-layer feature
space (ELM feature space)H, and thus,hhh(xxx) is indeed a
feature mapping.

Given a set of training data{(xxxi , ttt i)|xxxi ∈ Rd, ttt i ∈
Rm

, i = 1, . . . , N }. Different from traditional learning
algorithms, ELM tends to reach not only the smallest
training error but also the smallest norm of output weights

Minimize: ‖HHHβββ −TTT‖2 and‖βββ‖ (2)

whereHHH is the hidden-layer output matrix

HHH =







hhh(xxx1)
...

hhh(xxxN)






=







h1 (xxx1) · · · hL (xxx1)
...

. ..
...

h1 (xxxN) · · · hL (xxxN)






, (3)

andTTT is the expected output matrix

TTT =







tttT
1
...

tttT
N






=







t11 · · · t1m
...

. . .
...

tN1 · · · tNm






. (4)

The minimal norm least square method was used in the
original implementation of ELM

βββ = HHH†TTT (5)

where HHH† is the Moore–Penrose generalized inverseof
matrixHHH.

The orthogonal projection method can be used to
calculate the Moore–Penrose generalized inverse ofHHH in
two cases: whenHHHTHHH is nonsingular andHHH† =
(HHHTHHH)−1HHHT, or whenHHHHHHT is nonsingular andHHH† = HHHT

(HHHHHHT)−1.

2.2 Equality constrained-optimization-based
ELM

According to the ridge regression theory, one can add a
positive value to the diagonal ofHHHTHHH or HHHHHHT; the
resultant solution is more stable and tends to have better
generalization performance.

For multiclass classifier with multi-outputs, classifiers
with m-class havem output nodes. If the original class
label is p, the expected output vector of them output

nodes isttt i = [0, · · · ,0,
p
1,0, · · ·0]T. In this case, only the

pth element ofttt i = [ti1, · · · , tim]T is one, while the rest of
the elements are set to zero. For the
constrained-optimization-based ELM with multi-output
node, the classification problem can be formulated as

Minimize: LPELM =
1
2
‖βββ‖2+

C
2

N

∑
i=1

‖ξξξ i‖
2

Subject to:hhh(xxxi)βββ = tttT
i − ξξξ T

i i = 1, · · · ,N (6)
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whereξξξ i = [ξi1, · · · ,ξim]
T is the training error vector of the

m output nodes with respect to the training samplexxxi ,C is
the cost parameter.

Based on the Karush–Kuhn–Tucker (KKT) theorem,
to train ELM is equivalent to solving the following dual
optimization problem:

LDELM =
1
2
‖βββ‖2+

C
2

N

∑
i=1

‖ξξξ i‖
2

−
N

∑
i=1

m

∑
j=1

αi, j(hhh(xxxi)βββ j − ti, j + ξi, j) (7)

We can have the KKT corresponding optimality conditions
as follows:

∂LDELM

∂βββ j
= 0→ βββ j =

N

∑
i=1

αi, jhhh(xxxi)
T → βββ = HHHTααα (8)

∂LDELM

∂ξξξ i
= 0→ ααα i =Cξξξ i , i = 1, · · · ,N (9)

∂LDELM

∂ααα i
= 0→ hhh(xxxi)βββ − tttT

i + ξξξ T
i = 0, i = 1, · · · ,N

(10)

By substituting (8) and (9) into (10), the aforementioned
equations can be equivalently written as

(

III
CCC
+HHHHHHT

)

ααα = TTT (11)

From (8) and (11), we have

βββ = HHHT
(

III
C
+HHHHHHT

)−1

TTT (12)

The output function of ELM classifier is

fff (xxx) = hhh(xxx)βββ = hhh(xxx)HHHT
(

III
C
+HHHHHHT

)−1

TTT (13)

2.3 Kernel based ELM (KELM)

If a feature mappingh(xxx) is unknown to users, one can
apply Mercer’s conditions on ELM. We can define a kernel
matrix for ELM as follows:

ΩΩΩELM = HHHHHHT : ΩELMi, j = h(xxxi)h(xxx j) = K (xxxi ,xxx j) (14)

Then, the output function of ELM classifier (13) can be
written compactly as

fff (xxx) = hhh(xxx)HHHT
(

III
C
+HHHHHHT

)

TTT

=







K(xxx,xxx1)
...

K (xxx,xxxN)







(

III
C
+ΩΩΩELM

)−1

TTT (15)

After ELM was trained, the given testing samplexxx was
taken as the input of the classifier. The index of the output
node with the highest output value is considered as the
predicted class label of the given testing sample. Letfi(xxx)
denote the output function of theith output node, the
predicted class label of samplexxx is

label(xxx) = arg max
i∈{1,··· ,m}

fi (xxx) (16)

3 User-specified parameters

In this study, the popular Gaussian kernel functionK (uuu,
vvv) = exp(−γ||uuu− vvv||2) is used as the kernel function in
KELM. In order to achieve good generalization
performance, the cost parameterC and kernel parameterγ
of KELM need to be chosen appropriately. Similar to
SVM and LS-SVM, the values ofC and γ are assigned
empirically or obtained by trying a wide range ofC andγ.
As suggested in [15], 50 different values ofC and 50
different values ofγ are used for each data set, resulting
in a total of 2500 pairs of (C,γ). The 50 different values
of C andγ are{2−24, 2−23, . . . , 224, 225}. This parameters
optimization method is called Grid algorithm.

Similar to SVM and LS-SVM, the generalization
performance of KELM with Gaussian kernel are sensitive
to the combination of (C,γ) as well. The best
generalization performance of ELM with Gaussian kernel
is usually achieved in a very narrow range of such
combinations. Thus, the best combination of (C,γ) of
KELM with Gaussian kernel needs to be chosen for each
data set.

Take Diabetes data set for example, the performance
sensitivity of KELM with Gaussian kernel on the
user-specified parameters (C,γ) is shown in Fig.1. The
simulations were carried out in MATLAB 7.0.1
environment running in Core 2 Duo 1.8GHZ CPU with
2GB RAM. Diabetes data set is from the University of
California, Irvine (UCI) machine learning repository,
concluding 2 classes and 768 instances. In this case, 576
instances were selected randomly from Diabetes data set
as training data and the rest 192 instances were taken as
testing data. As mentioned above, 50 different values ofC
and 50 different values ofγ were used in this simulation.
It can be seen from Fig.1 that the performance of KELM
with Gaussian kernel on Diabetes data set is sensitive to
the user-specified parameters (C,γ) and the highest
testing accuracy is obtained in a very narrow range of the
combination of (C,γ). The time used for searching the
best combination of these two parameters is 732.04
seconds; one of the best combinations of (C,γ) is (20, 21)
and the corresponding testing accuracy is 83.85%.

4 Optimal KELM with PSO

From practical point of view, it may be time consuming
and tedious for users to choose appropriate kernel
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Fig. 1: Performances of KELM with Gaussian kernel on Diabetes
data set.

parameters (C,γ) by using the method mentioned in
Section 3. What is more, the discrete values ofC and γ
might result in suboptimal testing accuracy although a
wide range ofC and γ have been tried (which will be
discussed later in Section 5.1). In order to reduce time
costs and achieve optimal generalization performance, the
parameters in KELM with Gaussian kernel were
optimized by using particle swarm optimization (PSO) in
this paper.

4.1 Particle swarm optimization

Particle swarm optimization (PSO) is a population-based
stochastic optimization technique developed by Eberhart
and Kennedy [16]. PSO simulates the social behavior of
organisms, such as birds in a flock or fishes in a school,
and can be described as an automatically evolving system.

PSO works by initializing a flock of birds randomly
over the searching space, where every bird is called as a
“particle”. These particles fly with a certain velocity and
find the global best position after several iterations.
During each iteration, each particle adjusts its velocity
vector according to its momentum and the influence of its
best position (Pb) as well as the best position of its
neighbors (Pg), and then a new position that the particle is
to fly is obtained. Supposing the dimension of searching
space isD, the total number of particles is n, the position
of the ith particle can be expressed as vector
XXXi = (xi1,xi2, . . . ,xiD); the best position of theith particle
searching until now is denoted asPPPib = (pi1, pi2, . . . , piD),
and the best position of all particles searching until now is
denoted as vectorPPPg = (pg1, pg2, . . . , pgD); the velocity
of the ith particle is represented as vectorVVV i = (vi1,vi2,
. . . , viD). Then the original PSO is described as

vid(t +1) = ωvid(t)+ c1r1[pid(t)− xid(t)]

+ c2r2[pgd(t)− xid(t)] (17)

xid(t +1) = xid(t)+ vid(t +1)

i = 1,2, . . . ,n, d = 1,2, . . . ,D (18)

Wherec1,c2 are the acceleration constants with positive
values;r1 andr2 are random number between 0 and 1. In
addition to thec1 andc2 parameters, the implementation
of the original algorithm also requires to place a limit on
the velocity (vmax). The inertia weightω is used to
balance the capabilities of global exploration and local
exploration, which has a high value at the beginning and
gradually lower later on. The following equation is used
to determineω

ω = ωmin+(ωmax−ωmin)(t −1)(Te−1) (19)

Whereωmax is the initial inertia weight,ωmin is the final
inertia weight,t is the current iteration andTe is the epoch
parameter when inertial weight at final value.

4.2 Parameters selection of KELM using PSO

In PSO for parameters optimization, the dimension of
searching space isD = 2 corresponding to the two
parameters (C,γ) of KELM with Gaussian kernel, and the
position of each particle represents the parameter values
of (C,γ) in Gaussian kernel. The aim of PSO for
parameters optimization is to obtain the best
generalization performance of KELM; therefore the
testing accuracy can be taken as the fitness function of
PSO.

The specific steps of PSO for KELM parameters
optimization are described as follows.
Step1: Data preprocessing. All the attributes (except

expected targets) of the classification dataset are
normalized into the range [−1, 1] and then the
classification dataset is randomly divided into
training and testing data in proportion.

Step2: Initialize the swarm size, maximum of iterations
and velocities. Generate randomly an initial
velocity for each particle.

Step3: Evaluate each particle’s fitness value according to
the testing accuracy of KELM and set the best
position from the particle with the maximal fitness
in the swarm.

Step4: Update the velocity and position for each candidate
particle by means of (17), (18) and (19) in each
iteration.

Step5: Check the termination criterion. If the maximum
number of iterations is not yet reached, return to
Step 3. Otherwise go to the next step.

Step6: Output the best combination of (C,γ) of KELM
corresponding to the maximal fitness value.

The flowchart of this procedure is illustrated in Fig.2.

5 Experiment results and discussion

In this section, all simulations on each data sets are
carried out in MATLAB 7.6 environment running in Core
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Fig. 2: Computational procedure of PSO for optimizing KELM.

2 Duo 1.8GHZ CPU with 2GB RAM. For KELM with
PSO in all experiments, the range of cost parameterC and
kernel parameterγ were also [2−24, 225] as mentioned in
Section 3; population size was set to 24; maximum
number of iterations (epochs) to train was set to 1000;
acceleration constantsc1 and c2 were set to 2; max
particle velocityvmax was set to 210; initial inertia weight
ωmax was set to 0.9 and final inertia weightωmin was set
to 0.4; epoch parameterTe when inertial weight is at final
value was set to 750. The training and testing data of all
datasets are fixed for all trials of simulations.

5.1 Performance comparison on benchmark
classification data sets

For comparison with Grid algorithm, KELM with PSO
was also tested on Diabetes data set. The training and
testing data were the same as Grid algorithm mentioned
in Section 3. The fitness curve of PSO for KELM
parameters optimization is shown in Fig.3.
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Fig. 3: Fitness curve of PSO for KELM parameters optimization.

It can be found from Fig.3 that the best fitness is
obtained after 10 iterations. The best testing accuracy was

84.38% and the corresponding parameters (C,γ) were
(21.913, 20.8986). The best testing accuracy of KELM with
Gaussian kernel optimized by PSO is higher than that
derived by Grid algorithm mentioned in Section 3. The
time consumed by PSO for KELM parameters
optimization is 270.31 seconds, far less than 732.04
seconds spent by Grid algorithm. Compared with Grid
algorithm, KELM with PSO achieves better
generalization performance.

To verify the performance of KELM with PSO,
simulations are also conducted on other eight benchmark
classification datasets from the University of California,
Irvine (UCI) machine learning repository. Specifications
of the nine classification data sets (including Diabetes
data set) are shown in Table1.

Table 1: Specifications of classification datasets.

Datasets #classes #attributes #instances #train #test

Diabetes 2 8 768 576 192
Balance 3 4 625 376 249
Glass 7 9 214 139 75
Iris 3 4 150 102 48
Wine 3 13 178 121 57
Liver 2 6 345 231 114
Vowel 11 10 990 528 462
Waveform 3 21 5000 3002 1998
Breast-can 2 30 569 301 268

The corresponding performance of KELM optimized
by Grid algorithm and PSO on the nine classification
problems is listed in Table2, including the time
consumed, parametersC and γ, and the best testing
accuracy.

It can be found from Table2 that the computational
time of PSO is far less than that of Grid algorithm and
the best testing accuracies obtained by PSO is even higher
than that derived by Grid algorithm.

Finally, KELM with PSO achieves better performance
and is less time-consuming compared with Grid algorithm.

5.2 Fault diagnosis of power transformers

In this study, 387 dissolved gas analysis (DGA) samples
from real-world fault transformers are chose as
experimental data. These samples were divided into two
parts: 235 samples were taken as training data randomly
and the rest 152 samples as testing data.

There are five gas concentrations in each instance
corresponding to five dissolved gases: Hydrogen (H2),
ethylene (C2H4), methane (CH4), ethane (C2H6), and
acetylene (C2H2), which are the byproducts caused by
internal faults in power transformers. The attributes of
each instance are normalized as{H2/T, CH4/T, C2H6/T,
C2H4/T, C2H2/T}, where T represents the total gas. The
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Table 2: Performance comparison of KELM optimized by different algorithms.

Datasets
Grid algorithm PSO

time (s) C γ Testing accuracy (%) time (s) C γ Testing accuracy (%)

Diabetes 732.05 20 21 83.85 270.31 21.913 20.8986 84.38
Balance-scale 297.19 221 214 91.97 118.02 220.63 213.02 91.97
Glass 105.53 213 2−3 73.33 62.469 216.57 2−1.556 74.67
Iris 65.75 2−24 2−20 100 21.297 217.72 2−11.78 100
Wine 103.5 213 2−5 100 46.641 212.03 2−5.635 100
Liver 132.81 217 29 75.44 45.828 213.62 26.672 75.44
Vowel 766.94 24 20 96.97 525.98 218.8 2−0.3934 97.19
Waveform 31123 2−1 29 86.49 7454.3 2−2.764 29.305 86.54
Breast-can 541.52 210 216 97.01 209.72 219.77 225 97.01

Table 3: Performance comparisons of different ELMs on DGA data set.

Algorithms parameters values
CPU time (s) Accuracy (%)

Training Testing Training Testing± Dev.

original ELM L 95 0.0625 0.0313 91.91 74.51± 1.74
KELM (C,γ) (26.4301, 2−4.3483) 0.0097 0.0049 94.04 81.58± 0
ELM with Sigmoid additive node (C,L) (224, 700) 0.5156 0.0313 92.34 76.04± 0.89

six types of detectable faults in IEC Publication 60599 by
using DGA are discharges of low energy (D1), discharges
of high energy (D2), partial discharges (PD), thermal
faults below 300◦C (T1), thermal faults above 300◦C
(T2), and thermal faults above 700◦C (T3).

The fitness curve of PSO for KELM parameters
optimization is shown in Fig.4.
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Fig. 4: Fitness curve of KELM with PSO on DGA data set.

It can be found from Fig.4 that the best fitness is
obtained after 9 iterations. The best testing accuracy was
81.58% and the corresponding parameters (C,γ) were
(26.4301, 2−4.3483). The computational time was 88.078
seconds. In comparison, the best testing accuracy
obtained by Grid algorithm was 80.92%, (C,γ) = (25,
2−5), and the computational time was 182.33 seconds.

The performance of KELM with PSO on DGA data
set is compared with original ELM and ELM with
Sigmoid additive node. The parameters (C,γ) of KELM
were set to (26.4301, 2−4.3483) determined by using PSO.

In original ELM, the number of hidden nodesL was
chosen as 95 through trials withL ranging from 10 to
1000; the hidden nodes used the sigmoid type of
activation function. In ELM with Sigmoid additive node,
the cost parameterC and the numberL of hidden nodes
were set as (C,L) = (224, 700), optimized by using Grid
algorithm withC ranging{2−24, 2−23, . . . , 224, 225} and
L ranging from 10 to 1000. Testing accuracies of the three
different ELMs on DGA data set with 50 trials are shown
in Fig. 5. The performance comparisons of the three
methods are listed in Table3.
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Fig. 5: Testing accuracies of different ELMs on DGA data set.

From Fig.5, it can be seen that the testing accuracies
of original ELM and ELM with Sigmoid additive node
are changing in each trial, while the testing accuracy of
KELM are constant in all trial and higher than the other
two ELMs.

From Table3, it can be found that KELM requires less
training and testing time than the other two ELMs while
with the highest training and testing accuracies.
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Table 4: Performance comparisons of different methods on DGA data set.

Algorithms parameters values
CPU time (s) Accuracy (%)

Training Testing Training± Dev. Testing± Dev.

BPNN L 28 3.0219 0.0281 78.13±2.34 69.84±2.66
KELM (C,γ) (26.4301, 2−4.3483) 0.0097 0.0049 94.04±0 81.58±0
SVM (C,γ) (23, 26) 0.0286 0.0057 91.91±0 79.61±0

In summary, from the above experimental results, it
can be concluded that the KELM with PSO achieves
better and more stable generalization performance in fault
classification for power transformers.

5.3 Comparison with other fault diagnosis
approaches for power transformers

Moreover, the performance of the KELM is compared
with other widely used diagnosis methods for power
transformers, such as back-propagation neural network
(BPNN) and support vector machines (SVM).

The training and testing samples from DGA data set
were the same as Section 5.2 mentioned above. The
BPNN used was of single-hidden-layer, provided in the
neural networks tools box of MATLAB; the transfer
function was tangent sigmoid; the number of hidden layer
nodes was chosen by trials. For SVM, the parameters
(C,γ) were selected by using Grid algorithm. The
performance comparisons are listed in Table4.

From Table4, it can be seen that the training time of
KELM on DGA data set is far less than BPNN and SVM,
and the training and testing accuracies are the highest.
Obviously, the fault diagnosis approach based on KELM
is stable and achieves better generalization performance
than that based on BPNN and SVM.

6 Conclusions

In this paper, KELM with PSO has been presented for
fault diagnosis of power transformers. The parameters of
KELM are optimized by using PSO to improve the
performance of KELM. Experimental results show that:
(1) Compared with Grid algorithm on nine benchmark

classification data sets, KELM optimized by PSO
achieves better performance and is less
time-consuming.

(2) Compared with original ELM and ELM with
Sigmoid additive node, KELM with PSO achieves
better and more stable generalization performance in
fault classification for power transformers.

(3) Compared with BPNN and SVM on DGA data set,
KELM with PSO is able to obtain better diagnosis
accuracy and runs faster.
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