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Abstract: We present a weighted-path-following interior-point algom for solving second-order cone optimization. Thiscaithm
starts from an initial point which is not on the central patlyenerates iterates that simultaneously get closer iafity and closer
to centrality. At each iteration, we use only full NestefBydd step; no line searches are required. We derive the esstypbound of

the algorithm with small-update method, nam@)(\/ﬁlog%), whereN denotes the number of second order cones in the problem

formulation ande the desired accuracy. This bound is the currently best kritavation bound for second-order cone optimization.
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1 Introduction Hence, if the paily,s) is dual feasible thew is uniquely

determined bys. Therefore, we will feel free to say that
The second-order cone (SOC) R, also called the s dual feasible, without mentioning

Lorentz cone or the ice-cream cone, is defined as . . .
The study of SOCO is vast important because it

_ N2 covers linear optimization, convex quadratic optimizatio
L= {(XLXZ’ %) € RUIX > ;XJ” X1 > O}’ (1) quadratically constraint convex quadratic optimizatisn a
I= well as other problems [1]. In the last few years, the
wheren > 2 is some natural number. Second-order coneSQCO problem has received considerable attention from
optimization (SOCO) is convex optimization problem in 'eSearchers for its wide range of applications in many
which a linear function is minimized over the intersection fi€lds, such as engineering, optimal control and design,
of an affine linear manifold with the Cartesian product of machine learning, robust optimization and combinatorial

second-order cones. In this paper we consider SOCO iPPtimization and so on. We refer the interested readers to
standard format the survey paped] and the references therein.

T Many researchers have worked on interior-point
(P) mln{c x:Ax=D, x€ K}’ methods (IPMs) for solving SOCO (e.g2,11,13,15]).
whereA € R™" ¢ ¢ R" andb € R™ andK c R" is the No_tice that the_IPMs_in those papers required the initial
Cartesian prodL’lct of second-order cones, Ke= L x point and iteration points to be on, or'close to, the central
- LN with LI c RV for eachi, i = 1.2.....N path. However, practical implementations often don’t use
The7dual problem ofP) is given b’y T perfectly centered starting points. Therefore, it is worth
analyzing the case when the starting point is not on the
(D) max{bTy:ATy+s: c, seK}. central path. Recently, Jansen et d]. fresented a class
of primal-dual target-following interior-point methodasrf
Without loss of generality, throughout the paper, welinear optimization. This class starts from an initial
assume that rows of the matixare linearly independent. non-central point and generates iterates that

* Corresponding author e-majingyongtang@163.com

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090248

974 NS 2 J. Tang et. al. : A Weighted-Path-Following Interior-Pokgorithm...

simultaneously get closer to optimality and closer toe := (1;0;...;0) as the identity element. Obviously,
centrality. Darvay  4,5] investigated  the €e'(xos) = x's. In the sequel, we denote the vector
weighted-path-following interior-point  method, a (Xg;...;%n) shortly asxo;. S0 X = (X1;Xn). Given an
particular case of target-following methods, for linear element € R, define the symmetric matrix
optimization. These methods were also studied by Ding et T
al. [3] for linear complementarity problems, by Jin et al. L(x) == [ X1 X2:n:| € RN
[8] for convex quadratic optimization and by Roos et al. X2 Xl
[14] for linear optimization.

Motivated by their work, in this paper we propose a : - o
weighted-path-following interior-point algorithm for Notice thatxo s= L(x)s for anyx,seR_..
SOCO. We adopt the basic analysis used4ss][to the ) .Tht.a so-calledspectral decompositionf a vectorx €
SOCO case. The currently best known iteration bound forR is given by
the algorithm with small-update method, namely, % = Amin(OUD + Apax()u@, (2)

O(VNlogY ), is obtained. To compare with the
; . . . . hereA. . A du®®_ y@ th tral val
path-following (primal-dual) interior-point methods, ou  We€réAmin(X), Amax(x) andu'™, u'“ are the spectral values
method has the following advantages: and the associated spectral vectors given by
(i) it can start from any strictly feasible initial point, A (%) = X1 — |1%6- A (X) = X Yo
and works for optimality and centrality at the same time. min(X) =X = [Xznll, Amax(x) :=1 + Xzl

wherel represents thén— 1) x (n— 1) identity matrix.

(ii) it uses only full Nesterov-Todd step and no any line 1( . .
searches are required at each iteration. While some path- i 2 (1’(_1) W)v Xon 7 0, )
following (primal-dual) interior point methods (e.g2, 11, ut=y . _ =12,
13,15]) need do some line searches to find a suitable step Vi (1;(—1)'U) ,  Xen=0,
size which keeps the iterations be feasible and be on, or
close to, the central path. with u € R"~! being any vector satisfyingu || = 1.

The paper is organized as follows. In Section 2, we  Using (2), for eactx € R" we define the following [1]:
recall some useful results on second-order cones and their o square rootxz — ()\min(x))%uﬂ) + ()\max(x))%u(z),
associated Jordan algebra. In Sections 3, we present thgr anyx e L;
new search directions for SOCO. In Section 4, we einversex = (Anin(X))"2u® + (Amax(x)) ~1u@, for
propose the weighted-path-following interior-point anyx  intL;
algorithm. In Section 5, we analyze the algorithm and 2_ () 2(,(1) 2,(2)
derive the currently best known iteration bound with Xerqsquarex (Amin (3 )U + (Amax(x) U, for any
small-update method. The conclusions are given in Indeed, one has® = xox = (||x]|%2xXn), and
Section 6. '

Some notations used throughout the paper are a
follows. R",R] andR" , denote the set of vectors with 21 L ”" h
components, the set of nonnegative vectors and the set em)\ma = ?\txse ,)\one as A
positive vectors, respectively. We use “;” for adjoining )\') min(x))\ + m_in(S) < Amin(X +8) < Amax(X +5) <
vectors in a column. For instaTnce+ forTc<T)Iumn vectars (i;‘;a;\(x_) &Z)mix()'\s)'_ (92, Aman(0®) = Amax(¥)2;

. . Ly min — /imin ) max — /imax 1
andz we have(x: v; 2) i= (. ¥ . 2 ) - A ustall i T i invertible, themmn(x 3) = AmeX) %, and
y matrix with suitable dimensign||

. . A (x—l) = Ami (x)—l.
denotes the 2-norm of the vectwrand the index sel is max min .
J = {1,2,...N}. Finally, for any x,y € R, we write The trace and the determinantof R" are

X =k Y (respectivelyx >~k y) if x—y € K (respectively, Tr (%) := Amin(X) + Amax(X) = 2X4,
x—Yy € intK, where inK denotes the interior df).

éx%)z = x. If x"1is defined, thexox ! = e, and we call
X be invertible.

det(X) 1= Amin(X) Amax(X) = X4 — || X2:n]|%.
. . Lemma 2.2.[2] For all x,s,t € L, one has
2 Algebraic properties of second-order cones
Tr((xos)ot) =Tr(xo (sot)).
In this section we briefly recall some algebraic properties
of the SOCL as defined by (1) and its associated
Euclidean Jordan algebra. For any vectaise R", their
Jordan product associated with the SDG defined by

The natural inner product is given by
(x,8) :=Tr(xos) =2x"s, x,seR".

xos:= (X's, X1Sn + S1Xan), Hence, the norm induced by this inner product, which is

denoted a§ - ||r, satisfies
wherexo, i = (X2;...;%n) andsp, := (S;...;S). (R, 0) is
an Euclidean Jordan algebra with the vector IX[F = v/ (xoXx) = \/Tr (xox)
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= Amin(X)2 + Amax(¥2 = VZ|X.  (3)
Itis obvious that
Amin(X) < [[X[|F, and Amax(X) < [[X[|F- (4)
Using Lemma 2.2, one can easily verify that
[[(xos)ot)||r =||(xo(sot))||r, VX,steL. (5

Lemma 2.3.[16] For any xse€ R", one has

() 1¥?|lr < |IX/|2; equality holds if and only if x= ||Xz:n|;
(i) Tr[(x09)?] < Tr(x*os?);

(i) [1xoS|F < Amax(X)[SllF < (X[ £ ISl

Lemma 2.4. Let s€ R" and xe intL. If Apin(X) > [|S]|k,
then x—s> 0.

Proof. From (4), it follows that

2 2 2
Amin(—8)" < [| = s[[& = [IsllF,

then
—|Islle < Amin(—s) < [Is]|¢-

Thus, using Lemma 2.1 (i), we have
/\min(X— 5) > )\min(x) +)\min(—3) > )\min(x) - HSHF >0,

which implies thak — s 0. This proves the lemma.
Lemma 2.5. Letp € L, for any ve L, one has

_ lpop—vov

—V
Hp HF B )\min(p)—F/\min(V)

Proof.From Lemma 2.1, Lemma 2.3 (iii) and (5), we have

lp—=ViiE = [[((p+V) o (p+V)) o (P—V)|IF
= [(p+Vv) o ((p+V)o(p—V))llF
= [(p+Vv) o (pop—vov)|r
< Amad(p+V) Hlpop—vov|e
_ llpop—vovr

)\min(P—FV)

< llpop—vovie
o )\min(p)+)\min(v)

The proof is completed.

Amax(X) = Amax(L(X)) = max{ Amax(X ), i € J}.
Furthermore,

P

Tr(x) = iTr X) =S [Amin(X) + Amax(¥)],
N N ) .
X[ = ;Hx‘ﬂ% -3 (Amin(X)? + Amax(X)?),

det(x) = _ﬁdet(xi) = _ﬁ)\min(xi))\max(xi).

3 The new search directions for SOCO

Throughout the paper, we assume tfRtand(D) satisfy
the interior-point condition (IPC), i.e., there exists
(x0,y0,s”) such thatAxX’ = b, x0 ¢ intK, ATy? - & = c,
L € intK. In fact, by using the self-dual embedding
techr;i)que (e.g.,10), we may (and will) assume that

=s'=e

Itis well known that finding an optimal solution ¢P)
and(D) is equivalent to solving the following system:

Ax=Dh, xeK,

Aly+s=c, seK, (6)
L(x)s=0.

The basic idea of IPMs is to replace the third equation in

system (6), the so-callecomplementarity conditiofor
(P) and (D), by the parameterized equatit(x)s = pe,
with y > 0. Thus we consider the system

Ax=Dh, xeK,
Alyt+s=c, seK, (7)
L(x)s= ue.

For eachu > 0, the parameterized system (7) has a

unique solution (x(u),y(u),s(u)). We call x(u) the
u-center of(P) and(y(u),s(u)) the u-center of(D). The
set of u-center (withu running through all positive real

Now we proceed by adapting the above definitions tonumbers) gives a homotopy path, which is called

the general cas = L x --- x LN andN > 1. First we

partition vectorsc;s € R" according to the dimensions of ¢ the central path exists and since the limit points satisfy

the successive conet' , so x := (x};..;xN) and
s:= (s4..;9V), and we define the algebr@®",0) as a
direct product of Jordan algebras:

xos:= (xtosh;..;xNogV).

If € e L' is the unit element in the Jordan algebra for the

ith cone, thene := (e*;...;€") is the unit element in
(R",0). SinceL(x) := diaglL(x}),...,L(xN)), it is easy to
verify that [1]

Amin(X) = Amin(L(X)) = Min{ Amin(X), i € 3},

the central pattof (P) and (D). If u — 0, then the limit

the complementarity conditioh(x)s = 0, it naturally
yields optimal solution fofP) and(D).

The weighted-path-following approach starts from the
observation that system (7) can be generalized by

replacing the vectope with an arbitrary vectok € intK.
Thus we obtain the following system

Ax=Db, xeK,
Alyt+s=c, seK, (8)
L(x)s=K.
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Since the IPC holds anél has full rank, system (8) hasa LW V)Wds+ L(WVWW ldy = k — L(W V)W
unigue solution. Hence we can apply Newton's method
for system (8) to develop a weighted-path-following
algorithm.

Suppose that we havéx = b andATy+s= c for a
triple (x,y,s) such thai € intK ands € intK, hencex and
s are strictly feasible. By linearizing system (8) we obtain _
the following system for the search directions: L(V)ds+L(vV)dk =K —L(V)v

Since this system is equivalent to system (9), it may not
have a unique solution. To overcome this difficulty, in the
same way as Bai et al. did ir2]; we replace the third
equation in system (12) by

which, after multiplying of both sides from the left with

AAX=0, L(v)~%, becomes

ATAy +As=0, (9)
L(X)As+L(s)Ax =Kk —L(x)s.

This system has a unique solution if and only if the matrix
AL(s)"IL(x)AT is nonsingular. Unfortunately, this might

ds+dy=L(v) 1k —v. (13)

Thus the system defining the scaled search directions
becomes

not be the case, evenAf has full rank. This is due to the Adc=0,

fact thatx ands do not operator commute in general (i.e. AT _

L(x)L(s) # L(s)L(x)). However, the system can be solved A Ay+ds=0, (14
by using some scaling schemes. In this paper we take the ds+dy=L(v) 1k —v.

NT-scaling scheme which results in the well-known NT-
direction. Below, we only briefly outline the NT-scaling
scheme. The readers who are interested in this may fin
the detail description inlf5].

For any x,s € intl' and i € J, we denote the
NT-scaling matrixV' as:

Since the matribAT A is positive definite, this system has a
Hnique solution.

In this paper, in order to avoid calculating the inverse
matrix of L(v) in system (14), motivated by4[5], we
replace the right hand side in the last equation in system
(14) by 2k —v). Thus we will use the following system

- . 1 to define our new search direction:
o= (BNl -
(X)? = [} )12 ) Adk =0,
) L o . . o =T
S = (§7§:n) = (471(§175|2:n)7 X = ()zrlv)zrz:n) = m(xllvxlz:n)v A dy+ ds= 0, (15)
Zi = (Z:I_a(én) = ()25.+§?§2n_)252n)7 dS+dX:2(K_V)'

Since system (15) has the same matrix of coefficients as

Z;{_ Zé:n i iV2 i \T7i i i
ai=—1_ B =-—2n, = —(Zi . system (14), also system (15) has a unique solution
Y4 . (") (&) \/(Zl) () G2 By transforming back to thex— and s—space,
a BT respectively, using (11), we obtain search directidns
W = ' lp.ﬁ_T andAsin the original spaces, with
B+ Tre

w1 _
wherel represents the; x n; identity matrix. Ax=W""d,, As=Wd; (16)

For the above choices one has (see, Proposition 7.6. i

[15) By taking a full NT-step, we construct a new triple

Wix = (W), ied (X+,Y+,S:+) according to
We define X. =X+ AX, Vi =y+Ay, s, =s+As
W = diagW?,...,wN).

Then . ) ) . . . ) .
Ve (M) Wik (=W ls). (10) 4Th¢we|ghted path-following interior-point
algorithm
Let us further denote
_ . ) We define
A:=AW"", dy:=WAX, ds:=W -As. (11) Py = 2(K — V) = dy + ds. (17)
Applying (10) and (11), system (9) can be rewritten asSincek € intK, we haveAmin(k) > 0. Now for any vector
follows: v € intK, we define the following proximity measure
Ah=0 Ievle k-]
PvilF K—V]IF
A Ay+ds=0, (12) o(V;K) = 0(X.SK): oK)~ (k) (18)
(@© 2015 NSP
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We introduce another measure let x,s € intK, and letW be the NT-scaling matrix. Using
(10) and (11), we obtain that
Oc(K) = Amax(K) (19 1
Amin(K)” X =X+ Ax=W L+ ), (24)
where _ st =s+As=W(v+ds). (25)
Amax(K) = max{Amax(K'), 1€ J}, SinceW and its invers&V/—! are automorphisms df, x
Amin(K) = min{/\min(Ki), icdl. %n%s&.belong to inK if and only if v+ dx andv+ds belong
It is obvious thato.(k) > 1. Equality holds if and only if Let0< a <1, we define
Amax(K) = Amin(K), i.e, K = ne, wheren > 0 is a positive
constant, which implies that is centered. Thug;(k) can Vi(a)=v+ade and vi(a)=v+ads.

be used to measure the distance& b the central path.

Furthermore, let us introduce the notation Lemma 5.1. Let a(v,k) < 1. Then the fullNT-step is

strictly feasible, hencexe intK and s, € intK.
Proof.From (22) and (23), we have

Oy := dy — ds. (20)
V(a)ov¥(a) = (v+ady) o (v+ ads)
From the first two equations of the system (15), we obtain = Vov+avo (dy +ds) + a2dyods
that dy and ds are orthogonal, that ig]ds = dldx = 0. 5 Py Py — Gy o Gy
Thus, we get||pv[r = [lav[lr. Consequently, the = Voviavepy ot
roximity measure can be written in the following form _
P Y g = (l—G)VOV—O—G(VoV—I—VOp\,)—FdZw.
o(V;K) = ZLEL”(FK) (21) Moreovez, (17) yieldy+ B = k, and thusrov+vo p, =
min K ok — B2 Consequently
Hence, we have
(a)ovi(a) :(1—G)VOV+G<KOK—(1—G) pvzpv—aqVZQV)
dy = pmthv’ ds = pv;CIv7 (22) (26)
Since 0< a < 1, usingo(v; k) < 1, we have
PvopPv—Qveq
dxods:+. (23) H(l_a)mzmwww < (1_a)“pv°4pv”F +a”Qv04QVHF
We now give the weighted-path-following interior-point <1 | pv]|2 llav||2
algorithm for SOCO as follows. <(-a) 4 9y
Algorithm 4.1.(The weighted-path-following interior- = (V;K)2Amin(K)?
point algorithm for SOCO) < Amin(K)2 = Ain(K oK)
Step 1: Let (xo,yo,sog be the strictly feasible interior _ min min '
point, and letk® = WO = (W91, Choosing an Thus, it follows from Lemma 2.4 that
accuracy parameter > 0, and a fixed update parameter Pvo Py voq
0 € (0,1). Setx:=x0,y:=y0,5:= L Kk := kO, Kok—(1-a) 7 d V4 ~ = 0.
Step 2: If x"s < ¢, then stop. Otherwise, perform the
following steps. Since the set of the second-order cones is cone, we can
Step 3: Calculatex = (1—0)K. conclude that
Step 4: Solve the system (15) and via (16) to obtain Bvo P Qoq
(Ax,Ay,As). (1—a)vov+ (KOK—(l—a) —a- ") =« 0.
Step 5: Update(x,y,s) := (X,V,S) + (Ax,Ay,As) and 4 4
go to Step 2. Thus, we havedet(v*(a) ov¥(a)) > 0, which, together

In the next section we will prove that this algorithm is
well defined, and we will also give an upper bound for the

number of iterations performed by the algorithm. det(V(a))det(v®(a)) > det(V'(a) ov¥(a)) > 0.

with Lemma 2.3 in 2], implies that for eaclw € [0,1],

Therefore, by Lemma 6.1 irLf] we getv*(1) = v+dy =
5 Analysis of the algorithm 0 andv®(1) = v+ds -k 0. This completes the proof.
The following lemma gives an upper bound for the
duality gap obtained after a full NT-step.

5.1 Feasibility of the full NT-step Lemma5.2. Leta(x s ) < 1. Then

In this subsection, we find a condition that guarantees T > [lowl?
feasibility of the iterates after a full NT-step. As before, (x4) sy =||K[|*— NV
(@© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

978 NS

J. Tang et. al. : A Weighted-Path-Following Interior-Pokgorithm...

and hencéx, )"s, < ||k|%
Proof. Due to (24) and (25), we may write

(x)Tsp = (W (v+de) T (W(V+ds)) = (V)T (v+ds).
From (26) witha = 1, we get

(V+dy)o(V+ds) =Kok — w
Thus,
xls; = €' ((v+dy)o (V+ds))
T
_ T _ e (o)
=e' (KoK) —
ez lavl?
= [le)2 -

This completes the proof.

Consequently, we hava(x. , s, ; k) < 0. This completes
the proof.

5.3 lIteration bound

Lemma5.4. Leto(x s k) <1, andky = (1— 6)k, where
0< 6 <1 Then

0 1
O(Xt,84;K4) < m\/ZNoC(K)Jr mU(X+,S+,K).
Furthermore, ifo(x,s;k) < 1, 6 =

theno(x,s+;Ky) < 3.
Proof. With triangle inequality, we have

1
NCTAC) and N> 2,

[K+ — Vil
O(X4,S4;Ky) =
. ( 4+, St +) /\min(K+)
5.2 Quadratic convergence ke —Kle  |K—vi|e
In this subsection, we prove that the same condition, ~ Amin(K+) Amin(K+)
namely o(x,s;k) < 1, is sufficient for the quadratic A e 1 k—Vvyi|F
convergence of the Newton process when taking full C1-0Amin(K)  1-0 Amin(k)
NT-steps.
Lemmab.3.Leto ;= 0(x,s,K) < 1. Then _ 9 ke + L O(X¢,S1;K)
~ ' > ' 1-60Amn(k)  1—0 V70N
2
(0) .
o(Xy,80K) < ——r . Since
C8eiK) < T o2
. . N
Thus o(x;,S+;K) < 02, which shows the quadratic k|lg = Z(Amin(Ki)z‘F)\maX(Ki)Z)
convergence of the NT-steps. i&
Proof. Takinga = 1 in (26), we have
N
VioVy =KoK— qv:_qva (27) <4/2 ZAmax(Ki)z <v ZN)\maX(K)a
\/ i=
then it fozllows from (21) that by (19) we have
Amin(V4)* = Amin(V4 oVy)
_ Qv o Qv i 6 1 _
= Amin(KoK — ) O(X,84;Ky) < ——=V2N0e(K) + ——=0(Xs,S+; K).
4 1-6 1-6
2
> )\min(K)z—% Thus the firslt part of the1 lemma is proved. Now, let
ox,sk) < 5, 8 = ——— and N > 2. Since
_ )\min(K)Z(l_o—z)' ( >) 2 haved _5\/malc(:<) 1 h i
Thus oc(K) > 1, we havef = aNowx) S 10° Furthermore, i
Amin(V) > Amin(K)V/1— 2. (28) o(x,sK) < % then from Lemma 5.3 we deduce that
From (27) and (28), also using Lemma 2.5, one has 0(x;,84;k) < 3. Thus, the above relations yield
K — Vil O(X4,S4;Ky4) < % The proof is completed.
O(X4,S4,K) = )\7(’0 Remark 5.5. According to Algorithm 4.1, at the start of
min the algorithm we choose a strictly feasible paif,s”)
<« KoKk —viovi|F such thaio (x°, %; k%) < 1. Note thatae(k) = 0¢(k?) for
= Amin(K) (Amin(K) 4 Amin(V4.)) all iterates produced by the algorithm. Thus, from Lemma
_ l|av o al|F 5.1 and Lemma 5.4 we know that, fér= <, the
T (2Amin(K))?2(1++/1—0?) conditions x € intK,s € intK and g(xs k) < 1 are
1 ol 2 maintained throughout the algorithm. Hence the
< 2( MIF > algorithm is well defined.
1+V1— 02\ 2Amin(K) In the next lemma, we give an upper bound for the
o? total number of iterations performed by Algorithm 4.1.
T 1ivVi_o? Lemma 5.6. Assume that%and ¢ are strictly feasible
(@© 2015 NSP
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and k% = Wo0 = (WP)~1<’. Moreover, let %X and &« be  schemes and to obtain polynomial-time iteration bounds.
the vectors obtained after k iterations. Then the inequalit Secondly, the extension to symmetric cone optimization
(xk)Té‘ < ¢is satisfied for k> {%Iog“o) L deserves to be investigated. In addition, it is well-known

e | that large-update methods are much more efficient than

Proof. After k iterations, we gek = (1— 6)kk°. From  Small-update methods in practice which have a worst case

Lemma 5.2 we have iteration bound. Jansen et al. [6] proposed a long-step
target-following method for linear optimization. It is an

(Xk)Tsk <|k|IP=1- 9)2'<HK0||2 =(1— e)ZK(XO)TSO, interesting question whether we can extend their method

for solving SOCO by using Jordan algebra techniques.
Thus the inequalityx¥)Ts¢ < £ holds if
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2klog(1— 8) +log((x°)Ts%) < loge.

Using the inequality-log(1— 6) > 6, we deduce that the
above relation holds if

This proves the lemma.
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