
Appl. Math. Inf. Sci.9, No. 2, 973-980 (2015) 973

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090248

A Weighted-Path-Following Interior-Point Algorithm for
Second-Order Cone Optimization

Jingyong Tang1,∗, Li Dong1, Liang Fang2 and Jinchuan Zhou3

1 College of Mathematics and Information Science,Xinyang Normal University, Xinyang 464000, P. R. China
2 College of Mathematics and System Science, Taishan University, Tai’an 271021, P. R. China
3 Department of Mathematics, Shandong University of Technology, Zibo 255049, P. R. China

Received: 19 Jun. 2014, Revised: 17 Sep. 2014, Accepted: 19 Sep. 2014
Published online: 1 Mar. 2015

Abstract: We present a weighted-path-following interior-point algorithm for solving second-order cone optimization. This algorithm
starts from an initial point which is not on the central path.It generates iterates that simultaneously get closer to optimality and closer
to centrality. At each iteration, we use only full Nesterov-Todd step; no line searches are required. We derive the complexity bound of

the algorithm with small-update method, namely,O
(√

NlogN
ε

)

, whereN denotes the number of second order cones in the problem

formulation andε the desired accuracy. This bound is the currently best knowniteration bound for second-order cone optimization.
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1 Introduction

The second-order cone (SOC) inRn, also called the
Lorentz cone or the ice-cream cone, is defined as

L :=

{

(x1,x2, ...,xn) ∈ Rn : x2
1 ≥

n

∑
j=2

x2
j , x1 ≥ 0

}

, (1)

wheren ≥ 2 is some natural number. Second-order cone
optimization (SOCO) is convex optimization problem in
which a linear function is minimized over the intersection
of an affine linear manifold with the Cartesian product of
second-order cones. In this paper we consider SOCO in
standard format

(P) min
{

cTx : Ax= b, x∈ K
}

,

whereA ∈ Rm×n
,c ∈ Rn and b ∈ Rm, andK ⊂ Rn is the

Cartesian product of second-order cones, i.e.,K = L1 ×
·· ·×LN, with Li ⊂ Rni for eachi, i = 1,2, ...,N.

The dual problem of(P) is given by

(D) max
{

bTy : ATy+ s= c, s∈ K
}

.

Without loss of generality, throughout the paper, we
assume that rows of the matrixA are linearly independent.

Hence, if the pair(y,s) is dual feasible theny is uniquely
determined bys. Therefore, we will feel free to say thats
is dual feasible, without mentioningy.

The study of SOCO is vast important because it
covers linear optimization, convex quadratic optimization,
quadratically constraint convex quadratic optimization as
well as other problems [1]. In the last few years, the
SOCO problem has received considerable attention from
researchers for its wide range of applications in many
fields, such as engineering, optimal control and design,
machine learning, robust optimization and combinatorial
optimization and so on. We refer the interested readers to
the survey paper [9] and the references therein.

Many researchers have worked on interior-point
methods (IPMs) for solving SOCO (e.g., [2,11,13,15]).
Notice that the IPMs in those papers required the initial
point and iteration points to be on, or close to, the central
path. However, practical implementations often don’t use
perfectly centered starting points. Therefore, it is worth
analyzing the case when the starting point is not on the
central path. Recently, Jansen et al. [7] presented a class
of primal-dual target-following interior-point methods for
linear optimization. This class starts from an initial
non-central point and generates iterates that
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simultaneously get closer to optimality and closer to
centrality. Darvay [4,5] investigated the
weighted-path-following interior-point method, a
particular case of target-following methods, for linear
optimization. These methods were also studied by Ding et
al. [3] for linear complementarity problems, by Jin et al.
[8] for convex quadratic optimization and by Roos et al.
[14] for linear optimization.

Motivated by their work, in this paper we propose a
weighted-path-following interior-point algorithm for
SOCO. We adopt the basic analysis used in [4,5] to the
SOCO case. The currently best known iteration bound for
the algorithm with small-update method, namely,

O
(√

NlogN
ε

)

, is obtained. To compare with the

path-following (primal-dual) interior-point methods, our
method has the following advantages:

(i) it can start from any strictly feasible initial point,
and works for optimality and centrality at the same time.

(ii) it uses only full Nesterov-Todd step and no any line
searches are required at each iteration. While some path-
following (primal-dual) interior point methods (e.g., [2,11,
13,15]) need do some line searches to find a suitable step
size which keeps the iterations be feasible and be on, or
close to, the central path.

The paper is organized as follows. In Section 2, we
recall some useful results on second-order cones and their
associated Jordan algebra. In Sections 3, we present the
new search directions for SOCO. In Section 4, we
propose the weighted-path-following interior-point
algorithm. In Section 5, we analyze the algorithm and
derive the currently best known iteration bound with
small-update method. The conclusions are given in
Section 6.

Some notations used throughout the paper are as
follows. Rn,Rn

+ andRn
++ denote the set of vectors withn

components, the set of nonnegative vectors and the set of
positive vectors, respectively. We use “; ” for adjoining
vectors in a column. For instance, for column vectorsx,y
and z we have(x; y; z) := (xT, yT, zT)T. As usual,I
denotes the identity matrix with suitable dimension.‖ · ‖
denotes the 2-norm of the vectorx and the index setJ is
J = {1,2, ...,N}. Finally, for any x,y ∈ Rn, we write
x �K y (respectively,x ≻K y) if x− y ∈ K (respectively,
x− y∈ intK, where intK denotes the interior ofK).

2 Algebraic properties of second-order cones

In this section we briefly recall some algebraic properties
of the SOC L as defined by (1) and its associated
Euclidean Jordan algebra. For any vectorsx,s∈ Rn, their
Jordan product associated with the SOCL is defined by

x◦ s := (xTs; x1s2:n+ s1x2:n),

wherex2:n := (x2; ...;xn) ands2:n := (s2; ...;sn). (Rn,◦) is
an Euclidean Jordan algebra with the vector

e := (1;0;...;0) as the identity element. Obviously,
eT(x ◦ s) = xTs. In the sequel, we denote the vector
(x2; ...;xn) shortly asx2:n. So x = (x1;x2:n). Given an
elementx∈ Rn, define the symmetric matrix

L(x) :=

[

x1 xT
2:n

x2:n x1I

]

∈ Rn×n
,

whereI represents the(n− 1)× (n− 1) identity matrix.
Notice thatx◦ s= L(x)s for anyx,s∈ Rn.

The so-calledspectral decompositionof a vectorx ∈
Rn is given by

x= λmin(x)u
(1)+λmax(x)u

(2)
, (2)

whereλmin(x),λmax(x) andu(1),u(2) are the spectral values
and the associated spectral vectors ofx given by

λmin(x) := x1−‖x2:n‖, λmax(x) := x1+ ‖x2:n‖,

u(i) =















1
2

(

1;(−1)i x2:n
‖x2:n‖

)

, x2:n 6= 0,

1
2

(

1;(−1)iυ
)

, x2:n = 0,
i = 1,2,

with υ ∈ Rn−1 being any vector satisfying‖υ‖= 1.
Using (2), for eachx∈ Rn we define the following [1]:
• square root:x

1
2 = (λmin(x))

1
2 u(1) + (λmax(x))

1
2 u(2),

for anyx∈ L;
• inverse:x−1 = (λmin(x))−1u(1)+(λmax(x))−1u(2), for

anyx∈ intL;
• square:x2 = (λmin(x))2u(1)+(λmax(x))2u(2), for any

x∈ Rn.
Indeed, one hasx2 = x ◦ x = (‖x‖2;2x1x2:n), and

(x
1
2 )2 = x. If x−1 is defined, thenx◦ x−1 = e, and we call

x be invertible.
Lemma 2.1. Let x,s∈ Rn, one has
(i) λmin(x) + λmin(s) ≤ λmin(x + s) ≤ λmax(x + s) ≤
λmax(x)+λmax(s);
(ii) λmin(x2) = λmin(x)2, λmax(x2) = λmax(x)2;
(iii) If x is invertible, thenλmin(x−1) = λmax(x)−1, and
λmax(x−1) = λmin(x)−1.

The trace and the determinant ofx∈ Rn are

Tr(x) := λmin(x)+λmax(x) = 2x1,

det(x) := λmin(x)λmax(x) = x2
1−‖x2:n‖2

.

Lemma 2.2.[2] For all x,s, t ∈ L, one has

Tr((x◦ s)◦ t) = Tr(x◦ (s◦ t)).

The natural inner product is given by

〈x,s〉 := Tr(x◦ s) = 2xTs, x,s∈ Rn
.

Hence, the norm induced by this inner product, which is
denoted as‖ · ‖F , satisfies

‖x‖F =
√

〈x◦ x〉=
√

Tr(x◦ x)
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=
√

λmin(x)2+λmax(x)2 =
√

2‖x‖. (3)

It is obvious that

λmin(x)≤ ‖x‖F , and λmax(x)≤ ‖x‖F . (4)

Using Lemma 2.2, one can easily verify that

‖(x◦ s)◦ t)‖F = ‖(x◦ (s◦ t))‖F, ∀x,s, t ∈ L. (5)

Lemma 2.3. [16] For any x,s∈ Rn, one has
(i) ‖x2‖F ≤ ‖x‖2

F ; equality holds if and only if x1 = ‖x2:n‖;
(ii) Tr

[

(x◦ s)2
]

≤ Tr(x2 ◦ s2);
(iii) ‖x◦ s‖F ≤ λmax(x)‖s‖F ≤ ‖x‖F‖s‖F .

Lemma 2.4. Let s∈ Rn and x∈ intL. If λmin(x) > ‖s‖F ,

then x− s≻L 0.
Proof.From (4), it follows that

λmin(−s)2 ≤ ‖− s‖2
F = ‖s‖2

F ,

then
−‖s‖F ≤ λmin(−s)≤ ‖s‖F .

Thus, using Lemma 2.1 (i), we have

λmin(x− s)≥ λmin(x)+λmin(−s)≥ λmin(x)−‖s‖F > 0,

which implies thatx− s≻L 0. This proves the lemma.
Lemma 2.5. Let ρ ∈ L, for any v∈ L, one has

‖ρ − v‖F ≤ ‖ρ ◦ρ − v◦ v‖F

λmin(ρ)+λmin(v)
.

Proof.From Lemma 2.1, Lemma 2.3 (iii) and (5), we have

‖ρ − v‖F = ‖((ρ + v)−1◦ (ρ + v))◦ (ρ − v)‖F

= ‖(ρ + v)−1◦ ((ρ + v)◦ (ρ − v))‖F

= ‖(ρ + v)−1◦ (ρ ◦ρ − v◦ v)‖F

≤ λmax((ρ + v)−1)‖ρ ◦ρ − v◦ v‖F

=
‖ρ ◦ρ − v◦ v‖F

λmin(ρ + v)

≤ ‖ρ ◦ρ − v◦ v‖F

λmin(ρ)+λmin(v)
.

The proof is completed.
Now we proceed by adapting the above definitions to

the general caseK = L1 × ·· · × LN andN > 1. First we
partition vectorsx,s∈ Rn according to the dimensions of
the successive conesLi , so x := (x1; ...;xN) and
s := (s1; ...;sN), and we define the algebra(Rn

,◦) as a
direct product of Jordan algebras:

x◦ s := (x1 ◦ s1; ...;xN ◦ sN).

If ei ∈ Li is the unit element in the Jordan algebra for the
ith cone, thene := (e1; ...;eN) is the unit element in
(Rn,◦). SinceL(x) := diag(L(x1), ...,L(xN)), it is easy to
verify that [1]

λmin(x) = λmin(L(x)) = min
{

λmin(x
i), i ∈ J

}

,

λmax(x) = λmax(L(x)) = max
{

λmax(x
i), i ∈ J

}

.

Furthermore,

Tr(x) =
N

∑
i=1

Tr(xi) =
N

∑
i=1

[

λmin(x
i)+λmax(x

i)
]

,

‖x‖2
F =

N

∑
i=1

‖xi‖2
F =

N

∑
i=1

(

λmin(x
i)2+λmax(x

i)2)
,

det(x) =
N

∏
i=1

det(xi) =
N

∏
i=1

λmin(x
i)λmax(x

i).

3 The new search directions for SOCO

Throughout the paper, we assume that(P) and(D) satisfy
the interior-point condition (IPC), i.e., there exists
(x0,y0,s0) such thatAx0 = b, x0 ∈ intK, ATy0 + s0 = c,
s0 ∈ intK. In fact, by using the self-dual embedding
technique (e.g., [10]), we may (and will) assume that
x0 = s0 = e.

It is well known that finding an optimal solution of(P)
and(D) is equivalent to solving the following system:

Ax= b, x∈ K,

ATy+ s= c, s∈ K, (6)

L(x)s= 0.

The basic idea of IPMs is to replace the third equation in
system (6), the so-calledcomplementarity conditionfor
(P) and (D), by the parameterized equationL(x)s= µe,
with µ > 0. Thus we consider the system

Ax= b, x∈ K,

ATy+ s= c, s∈ K, (7)

L(x)s= µe.

For eachµ > 0, the parameterized system (7) has a
unique solution (x(µ),y(µ),s(µ)). We call x(µ) the
µ-center of(P) and(y(µ),s(µ)) theµ-center of(D). The
set of µ-center (withµ running through all positive real
numbers) gives a homotopy path, which is called
the central pathof (P) and(D). If µ → 0, then the limit
of the central path exists and since the limit points satisfy
the complementarity conditionL(x)s = 0, it naturally
yields optimal solution for(P) and(D).

The weighted-path-following approach starts from the
observation that system (7) can be generalized by
replacing the vectorµe with an arbitrary vectorκ ∈ intK.
Thus we obtain the following system

Ax= b, x∈ K,

ATy+ s= c, s∈ K, (8)

L(x)s= κ .

c© 2015 NSP
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Since the IPC holds andA has full rank, system (8) has a
unique solution. Hence we can apply Newton’s method
for system (8) to develop a weighted-path-following
algorithm.

Suppose that we haveAx= b andATy+ s= c for a
triple (x,y,s) such thatx∈ intK ands∈ intK, hencex and
s are strictly feasible. By linearizing system (8) we obtain
the following system for the search directions:

A∆x= 0,

AT∆y+∆s= 0, (9)

L(x)∆s+L(s)∆x= κ −L(x)s.

This system has a unique solution if and only if the matrix
AL(s)−1L(x)AT is nonsingular. Unfortunately, this might
not be the case, even ifA has full rank. This is due to the
fact thatx ands do not operator commute in general (i.e.
L(x)L(s) 6= L(s)L(x)). However, the system can be solved
by using some scaling schemes. In this paper we take the
NT-scaling scheme which results in the well-known NT-
direction. Below, we only briefly outline the NT-scaling
scheme. The readers who are interested in this may find
the detail description in [15].

For any xi
,si ∈ intLi and i ∈ J, we denote the

NT-scaling matrixWi as:

ωi =

(

(si
1)

2−‖si
2:n‖2

(xi
1)

2−‖xi
2:n‖2

)
1
4

,

s̄i = (s̄i
1, s̄

i
2:n) = ω−1

i (si
1,s

i
2:n), x̄i = (x̄i

1, x̄
i
2:n) = ωi(x

i
1,x

i
2:n),

ζ i = (ζ i
1,ζ

i
2:n) = (x̄i

1+ s̄i
1, s̄

i
2:n− x̄i

2:n),

αi =
ζ i

1

γ(ζ i)
, βi =

ζ i
2:n

γ(ζ i)
, γ(ζ i) =

√

(ζ i
1)

2− (ζ i
2:n)

Tζ i
2:n,

Wi = ωi

[

αi β T
i

βi I +
βiβ T

i
1+αi

]

,

whereI represents theni ×ni identity matrix.
For the above choices one has (see, Proposition 7.6. in

[15])
Wixi = (Wi)−1si

, i ∈ J.

We define
W := diag(W1

, ...,WN).

Then
v := (v1; ...;vN) =Wx (=W−1s). (10)

Let us further denote

A := AW−1
, dx :=W∆x, ds :=W−1∆s. (11)

Applying (10) and (11), system (9) can be rewritten as
follows:

Adx = 0,

A
T∆y+ds= 0, (12)

L(W−1v)Wds+L(Wv)W−1dx = κ −L(W−1v)Wv.

Since this system is equivalent to system (9), it may not
have a unique solution. To overcome this difficulty, in the
same way as Bai et al. did in [2], we replace the third
equation in system (12) by

L(v)ds+L(v)dx = κ −L(v)v,

which, after multiplying of both sides from the left with
L(v)−1, becomes

ds+dx = L(v)−1κ − v. (13)

Thus the system defining the scaled search directions
becomes

Adx = 0,

A
T∆y+ds= 0, (14)

ds+dx = L(v)−1κ − v.

Since the matrix̄ATĀ is positive definite, this system has a
unique solution.

In this paper, in order to avoid calculating the inverse
matrix of L(v) in system (14), motivated by [4,5], we
replace the right hand side in the last equation in system
(14) by 2(κ − v). Thus we will use the following system
to define our new search direction:

Adx = 0,

A
T∆y+ds= 0, (15)

ds+dx = 2(κ − v).

Since system (15) has the same matrix of coefficients as
system (14), also system (15) has a unique solution

By transforming back to thex− and s−space,
respectively, using (11), we obtain search directions∆x
and∆s in the original spaces, with

∆x=W−1dx, ∆s=Wds. (16)

By taking a full NT-step, we construct a new triple
(x+,y+,s+) according to

x+ = x+∆x, y+ = y+∆y, s+ = s+∆s.

4 The weighted-path-following interior-point
algorithm

We define
pv := 2(κ − v) = dx+ds. (17)

Sinceκ ∈ intK, we haveλmin(κ)> 0. Now for any vector
v∈ intK, we define the following proximity measure

σ(v;κ) := σ(x,s;κ) :=
‖pv‖F

2λmin(κ)
=

‖κ − v‖F

λmin(κ)
. (18)
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We introduce another measure

σc(κ) :=
λmax(κ)
λmin(κ)

, (19)

where
λmax(κ) = max

{

λmax(κ i), i ∈ J
}

,

λmin(κ) = min
{

λmin(κ i), i ∈ J
}

.

It is obvious thatσc(κ) ≥ 1. Equality holds if and only if
λmax(κ) = λmin(κ), i.e, κ = ηe, whereη > 0 is a positive
constant, which implies thatκ is centered. Thusσc(κ) can
be used to measure the distance ofκ to the central path.

Furthermore, let us introduce the notation

qv := dx−ds. (20)

From the first two equations of the system (15), we obtain
that dx and ds are orthogonal, that isdT

x ds = dT
s dx = 0.

Thus, we get ‖pv‖F = ‖qv‖F . Consequently, the
proximity measure can be written in the following form

σ(v;κ) :=
‖qv‖F

2λmin(κ)
. (21)

Hence, we have

dx =
pv+qv

2
, ds =

pv−qv

2
, (22)

dx◦ds=
pv◦ pv−qv◦qv

4
. (23)

We now give the weighted-path-following interior-point
algorithm for SOCO as follows.

Algorithm 4.1.(The weighted-path-following interior-
point algorithm for SOCO)

Step 1: Let (x0,y0,s0) be the strictly feasible interior
point, and let κ0 = W0x0 = (W0)−1s0. Choosing an
accuracy parameterε > 0, and a fixed update parameter
θ ∈ (0,1). Setx := x0,y := y0,s := s0,κ := κ0.

Step 2: If xTs< ε, then stop. Otherwise, perform the
following steps.

Step 3: Calculateκ := (1−θ )κ .
Step 4: Solve the system (15) and via (16) to obtain

(∆x,∆y,∆s).
Step 5: Update(x,y,s) := (x,y,s) + (∆x,∆y,∆s) and

go to Step 2.
In the next section we will prove that this algorithm is

well defined, and we will also give an upper bound for the
number of iterations performed by the algorithm.

5 Analysis of the algorithm

5.1 Feasibility of the full NT-step

In this subsection, we find a condition that guarantees
feasibility of the iterates after a full NT-step. As before,

let x,s∈ intK, and letW be the NT-scaling matrix. Using
(10) and (11), we obtain that

x+ = x+∆x=W−1(v+dx), (24)

s+ = s+∆s=W(v+ds). (25)

SinceW and its inverseW−1 are automorphisms ofK, x+
ands+ belong to intK if and only ifv+dx andv+ds belong
to intK.

Let 0≤ α ≤ 1, we define

vx(α) = v+αdx and vs(α) = v+αds.

Lemma 5.1. Let σ(v;κ) < 1. Then the fullNT-step is
strictly feasible, hence x+ ∈ intK and s+ ∈ intK.
Proof.From (22) and (23), we have

vx(α)◦vs(α) = (v+αdx)◦ (v+αds)

= v◦v+αv◦ (dx +ds)+α2dx ◦ds

= v◦v+αv◦ pv +α2 pv◦ pv−qv ◦qv

4

= (1−α)v◦v+α(v◦v+v◦ pv)+α2 pv◦ pv−qv ◦qv

4
.

Moreover, (17) yieldsv+ pv
2 = κ , and thusv◦v+v◦ pv =

κ ◦κ − pv◦pv
4 . Consequently

vx(α)◦vs(α)= (1−α)v◦v+α
(

κ ◦κ−(1−α)
pv ◦ pv

4
−α

qv ◦qv

4

)

.

(26)
Since 0≤ α ≤ 1, usingσ(v;κ)< 1, we have

‖(1−α)
pv ◦ pv

4
+α

qv◦qv

4
‖F ≤ (1−α)

‖pv ◦ pv‖F

4
+α

‖qv ◦qv‖F

4

≤ (1−α)
‖pv‖2

F

4
+α

‖qv‖2
F

4
= σ(v;κ)2λmin(κ)2

< λmin(κ)2 = λmin(κ ◦κ).

Thus, it follows from Lemma 2.4 that

κ ◦κ − (1−α)
pv◦ pv

4
−α

qv◦qv

4
≻K 0.

Since the set of the second-order cones is cone, we can
conclude that

(1−α)v◦v+

(

κ ◦κ − (1−α)
pv◦ pv

4
−α

qv◦qv

4

)

≻K 0.

Thus, we havedet(vx(α) ◦ vs(α)) > 0, which, together
with Lemma 2.3 in [2], implies that for eachα ∈ [0,1],

det(vx(α))det(vs(α)) ≥ det(vx(α)◦ vs(α)) > 0.

Therefore, by Lemma 6.1 in [16] we getvx(1) = v+dx ≻K
0 andvs(1) = v+ds≻K 0. This completes the proof.

The following lemma gives an upper bound for the
duality gap obtained after a full NT-step.
Lemma 5.2. Let σ(x,s;κ)< 1. Then

(x+)
Ts+ = ‖κ‖2− ‖qv‖2

4
,

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


978 J. Tang et. al. : A Weighted-Path-Following Interior-PointAlgorithm...

and hence(x+)Ts+ ≤ ‖κ‖2.

Proof.Due to (24) and (25), we may write

(x+)
Ts+ =

(

W−1(v+dx)
)T(

W(v+ds)
)

=(v+dx)
T(v+ds).

From (26) withα = 1, we get

(v+dx)◦ (v+ds) = κ ◦κ − qv◦qv

4
.

Thus,

xT
+s+ = eT((v+dx)◦ (v+ds))

= eT(κ ◦κ)− eT(qv◦qv)

4

= ‖κ‖2− ‖qv‖2

4
.

This completes the proof.

5.2 Quadratic convergence

In this subsection, we prove that the same condition,
namely σ(x,s;κ) < 1, is sufficient for the quadratic
convergence of the Newton process when taking full
NT-steps.
Lemma 5.3. Let σ := σ(x,s;κ) < 1. Then

σ(x+,s+;κ)≤ σ2

1+
√

1−σ2
.

Thus σ(x+,s+;κ) < σ2, which shows the quadratic
convergence of the NT-steps.
Proof.Takingα = 1 in (26), we have

v+ ◦ v+ = κ ◦κ − qv◦qv

4
, (27)

then it follows from (21) that

λmin(v+)
2 = λmin(v+ ◦ v+)

= λmin(κ ◦κ − qv◦qv

4
)

≥ λmin(κ)2− ‖qv‖2
F

4
= λmin(κ)2(1−σ2).

Thus
λmin(v+)≥ λmin(κ)

√

1−σ2. (28)

From (27) and (28), also using Lemma 2.5, one has

σ(x+,s+;κ) =
‖κ − v+‖F

λmin(κ)

≤ ‖κ ◦κ − v+ ◦ v+‖F

λmin(κ)(λmin(κ)+λmin(v+))

≤ ‖qv◦qv‖F

(2λmin(κ))2(1+
√

1−σ2)

≤ 1

1+
√

1−σ2

( ‖qv‖F

2λmin(κ)

)2

=
σ2

1+
√

1−σ2
.

Consequently, we haveσ(x+,s+;κ)< σ2. This completes
the proof.

5.3 Iteration bound

Lemma 5.4. Letσ(x,s;κ)< 1, andκ+ = (1−θ )κ , where
0< θ < 1. Then

σ(x+,s+;κ+)≤
θ

1−θ
√

2Nσc(κ)+
1

1−θ
σ(x+,s+;κ).

Furthermore, ifσ(x,s;κ) ≤ 1
2, θ = 1

5
√

2Nσc(κ)
and N≥ 2,

thenσ(x+,s+;κ+)≤ 1
2.

Proof.With triangle inequality, we have

σ(x+,s+;κ+) =
‖κ+− v+‖F

λmin(κ+)

≤ ‖κ+−κ‖F

λmin(κ+)
+

‖κ − v+‖F

λmin(κ+)

=
θ

1−θ
‖κ‖F

λmin(κ)
+

1
1−θ

‖κ − v+‖F

λmin(κ)

=
θ

1−θ
‖κ‖F

λmin(κ)
+

1
1−θ

σ(x+,s+;κ).

Since

‖κ‖F =

√

N

∑
i=1

(

λmin(κ i)2+λmax(κ i)2

)

≤
√

2
N

∑
i=1

λmax(κ i)2 ≤
√

2Nλmax(κ),

by (19) we have

σ(x+,s+;κ+)≤
θ

1−θ
√

2Nσc(κ)+
1

1−θ
σ(x+,s+;κ).

Thus the first part of the lemma is proved. Now, let
σ(x,s;κ) ≤ 1

2, θ = 1
5
√

2Nσc(κ)
and N ≥ 2. Since

σc(κ) ≥ 1, we haveθ = 1
5
√

2Nσc(κ)
≤ 1

10. Furthermore, if

σ(x,s;κ) ≤ 1
2, then from Lemma 5.3 we deduce that

σ(x+,s+;κ) ≤ 1
4. Thus, the above relations yield

σ(x+,s+;κ+)≤ 1
2. The proof is completed.

Remark 5.5. According to Algorithm 4.1, at the start of
the algorithm we choose a strictly feasible pair(x0,s0)
such thatσ(x0,s0;κ0) < 1

2. Note thatσc(κ) = σc(κ0) for
all iterates produced by the algorithm. Thus, from Lemma
5.1 and Lemma 5.4 we know that, forθ = 1

5
√

2Nσc(κ)
, the

conditions x ∈ intK,s ∈ intK and σ(x,s;κ) ≤ 1
2 are

maintained throughout the algorithm. Hence the
algorithm is well defined.

In the next lemma, we give an upper bound for the
total number of iterations performed by Algorithm 4.1.
Lemma 5.6. Assume that x0 and s0 are strictly feasible

c© 2015 NSP
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and κ0 = W0x0 = (W0)−1s0. Moreover, let xk and sk be
the vectors obtained after k iterations. Then the inequality

(xk)Tsk ≤ ε is satisfied for k≥
⌈

1
2θ log(x0)Ts0

ε

⌉

.

Proof. After k iterations, we getκ = (1− θ )kκ0. From
Lemma 5.2 we have

(xk)Tsk ≤ ‖κ‖2 = (1−θ )2k‖κ0‖2 = (1−θ )2k(x0)Ts0
.

Thus the inequality(xk)Tsk ≤ ε holds if

(1−θ )2k(x0)Ts0 ≤ ε.

Taking logarithms, we obtain that

2klog(1−θ )+ log((x0)Ts0)≤ logε.

Using the inequality−log(1−θ )≥ θ , we deduce that the
above relation holds if

2kθ ≥ log((x0)Ts0)− logε = log
(x0)Ts0

ε
.

This proves the lemma.
Theorem 5.7. Suppose that x0 and s0 are strictly feasible
and κ0 = W0x0 = (W0)−1s0

. If θ = 1
5
√

2Nσc(κ0)
, then

Algorithm4.1 requires at most

⌈

5
√

2
2

σc(κ0)
√

Nlog
(x0)Ts0

ε

⌉

iterations. The output is a primal-dual pair(x,s)
satisfying xTs≤ ε.
Remark 5.8. Theorem 5.7 shows that the best iteration
bound is obtained by following the central path. Indeed,
we haveσc(κ0) = 1 in this case, and we get the well

known iteration bound, namely

⌈

5
√

2
2

√
Nlog(x0)Ts0

ε

⌉

. If

the starting point is not perfectly centered, then
σc(κ0)> 1 and thus the iteration bound is worse.
Corollary 5.9. If one takes x0 = s0 = e, then the iteration
bound becomes O

(√
NlogN

ε
)

, which is the currently best
known iteration bound for the algorithm with
small-update method.

Conclusions

We have developed a weighted-path-following algorithm
for SOCO with full NT-step and derived the currently best
known iteration bound for the algorithm with
small-update method. Our analysis is a relatively simple
and straightforward extension of analogous results for
linear optimization.

Some interesting topics remain for further research.
Firstly, the search direction used in this paper is based on
the NT-symmetrization scheme. It may be possible to
design similar algorithms using other symmetrization

schemes and to obtain polynomial-time iteration bounds.
Secondly, the extension to symmetric cone optimization
deserves to be investigated. In addition, it is well-known
that large-update methods are much more efficient than
small-update methods in practice which have a worst case
iteration bound. Jansen et al. [6] proposed a long-step
target-following method for linear optimization. It is an
interesting question whether we can extend their method
for solving SOCO by using Jordan algebra techniques.
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