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Abstract: An efficient and secure real-field public key cryptosystetd@Pbased on sparse recovery is proposed. The security of the
proposed cryptosystem depends on the following facts: Brvthe measurement matrix is known, the decryption alguoritBross
Low-dimensional Pursuit, can efficiently solve the spaes®very problem, where the sparse vector has a relativglygrioportion of
nonzeros; 2. without the measurement matrix, it is NP-haudirectly solve the sparse recovery problem. The propo$&d!iB novel.
First, unlike the traditional PKCs that are defined in finiedds, the proposed PKC is defined in the real field. Seconéeupbpular
cryptosystems based on number-theoretic problems, tip@ged cryptosystem is based on the sparse recovery problem.

Keywords: Sparse recovery, error correction, permuted block didgoadrix, cross low-dimensional pursuit

1 Introduction significant importance. It arrives in many areas such as
compressed sensing,p], decoding real code$], sparse

The security of public key cryptosystems (PKCs) is fePresentation 7, and data stream computingl{.
usually based on difficulty of mathematical problems. In SIVing the problem involves finding the original vector
widely used PKCs, e.g., RSAJand ECC (elliptic curve from an underqletermmed system. Smcg there exist
cryptography) 2,3], most of the involved problems are numerous solut|o_ns_ to thg underdetermmgd system,
number-theoretic ones, such as factoring integers ang€neral recovery is impossible. Fortunately, it has been
finding discrete logarithms. However, quantum computerd’roved that when the v%ctor :5 S“ﬁ'ﬁ'e”ﬂy spalrse and tne
can break the RSA, ECC PKCs, since they can efficiently'€asurement m_aglrlx gs how-clo erent co urpn;, g €
factor integers and extract discrete logarithms. Another €COVETY IS poSSI € ar? t edogy way 'Sa to find the
PKC, McEliece ], which is based on coding theory (the SParsest solution to the underdetermined systefn [
error correction problem), is believed to be more SeCLIreD|rectly searching for the sparsest solution is known as an

against quantum attacks. Therefore, the McEliece and th P-hard pk;oblelm. dH'owever, reb(,ien.t stud;}es hﬁve shown
related Niederreiter PKCs5] has been extensively [hatitcan be solvedin reasonable time when the vector is

studied highly sparse. A lot of numerical methods are available
' such as Greedy algorithm$1,12,1314,15,16,17], e.g.,

The classic error correction is defined over the finite : :
field. In recent years, a new error correction problem thatOrthogonaI Matching Pursuit (OMP)L£ 15, {3-norm

arises in the real-field has attracted a lot of attentigln [ minimization algorithms 18,19,20,21], which 'so'lve. a
By solving a sparse recovery problerd,6,8,9], the Basis Pursuit (BP) probleni§], nonconvex optimization

errors can be corrected. Motived by the McEliece PKC"’ll‘-:]omhrnS P2.23, and so on. Compared to the _dlrect
and the sparse recovery problem, we propose a nov earch, these methods can only recover vectors with much

PKC defined over the real-field based on sparse recover EWEr Nonzeros in the sparse vector, especially when the

Massive research results in sparse recovery make | onzeros are with the same absolute value. Therefore,

become possible for developing efficient and secure‘t’)"he: dtr]{ﬁ prmpo\it'?”i‘)f QI(I)RIZPe-rr?SréjS higher than a certain
real-field PKCs. ouna, the recoveryis s ard.
The sparse recovery problem, to recover a sparse In our previous work, a special sparse recovery

vector from incomplete linear measurements, is ofalgorithm named Cross Low-dimensional Pursuit (CLP)
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has been propose@4]. Unlike other algorithms, CLP low-coherent, the sparsest solution to EL).€qualse [7].
depends on a specific measurement matrix, the Permutebhat is to solve the following optimization problem:

Block Diagonal (PBD) matrix24]. Without knowing the

PBD matrix, CLP is unavailable for recovering sparse (Po) : min||z|[o subjectto Dz=s, (2)
vectors. Compared to other algorithms, CLP can recover

vectors with much more nonzeros. In another word, thewhere thefo-norm counts the nonzero elements of the
bound of the proportion of nonzeros for successfulvector. This optimization problem is well-known as an
recovery of CLP is much higher than those of other NP-hard problem. Directly solving such a problem in
algorithms. The two properties of specific matrix high dimensions is computationally intractable.
dependence and high nonzero proportion bound provide &herefore, many efficient numerical algorithms, which
new resource for developing PKCs. solve the problem in indirect ways, are proposed to find

In the proposed PKC, the PBD matrix serves as thesparse solutions. These algorithms require stricter
secret key and the CLP algorithm works as the decryptiorconditions than the direct way includes a highly spatse
algorithm. A sparse vector, whose nonzero proportion is  An alternative to Eq.4) is:
between the bound of other algorithms and that of the
CLP algorithm, is generated randomly during encryption (Pp) : min|[z||§ subjectto Dz=s, 3)
and destroyed afterwards. To decrypt the ciphertext, a
sparse recovery problem has to be solved to recover thehere 0< p < 1. Whenp = 1, Eq. @) is convex and can
destroyed sparse vector. The CLP algorithm can recover ibe recast as a Linear Program (LP). The corresponding
fast with the secret key; while without the secret key, it is algorithms are called’;-min algorithms 18,19,20,21].
NP-hard to recover it since CLP is unavailable and otheWhen p < 1, Eq. @) is nonconvex, and it can be
algorithms cannot recover it because of the highapproximated by an Iteratively Reweighted Least Squares
proportion of nonzeros. During both encryption and (IRLS) algorithm, e.g.,22,23].
decryption, no large number calculation is involved and  The greedy algorithms find sparse solutions in a
only regular matrix calculation is needed. Therefore, thedifferent way: the coordinates and altitudes of nonzeros of
cryptosystem is efficient. eare determined step by stepl[12,13,14,15,16,17).

The remainder of the paper is organized as follows. These three families of algorithms do not rely on
Section 2 introduces the basic knowledge of sparsespecific matrices §). There is another family of
recovery and error correction based on it. Then, Se@&ion algorithms that are based on sparse matrices in order to
presents the proposed sparse recovery-based PKC as weltcelerate the solving procedure, e.g., Sequential Sparse
as the parameter setting and parameter sets, complexitflatching Pursuit (SSMP)2B]. In [24], we proposed a
and security analysis. Finally, Sectighconcludes the new algorithm, CLP, which is also based on a specific
paper. matrix, PBD, for recovering sparse vectors from

incomplete measurements. It has been reported4ih [
that CLP has higher sparse recovery ability and efficiency

2 Sparse recovery and real-field error than other algorithms.
correction

In this section, we briefly introduce the basic knowledge2-2 Real-field Error correction

of parse recovery and its application of error correction.

The core mathematical problem of the proposedThe sparse recovery can be used for error correcthn [
cryptosystem is sparse recovery, and the main idea of th€onsider transmitting a messagec RX by encoding it
proposed cryptosystem is motivated by error correctiorwith a full rank matrix F € RN*K(K = N — M). For
based on sparse recovery. simplification, the columns ofF are assumed to be
orthonormal. Furthermore, a small fraction of entries of
the codeword are corrupted over the transmitting channel
since there is impulsive noise in the channel. Thus, the

2.1 Sparse recover ,
P y corrupted output can be written as:

Assume that a sparse vecterc RN is measured by a y=Fx+e, (4)

matrixD € RM*N (M < N): _
wheree € RN is a sparse error vector. The final object is to

s=De, (1) exactly recovex with knowledge of the corrupted output
y and coding matri¥.
obtainingM linear measurements The original sparse In order to reconstruct fromy andF, one can firstly

vector e needs to be recovered from these incompleteconstruct a matrixD € RM*N such that DF = 0.
linear measurements. It has been proven that when  Obviously,D is a matrix whose rows span the null space
sufficiently sparse and the columns ob are of F'. The matrixD can also be viewed as a parity-check
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matrix. Then one can applp to the corrupted output matrices that are block diagonal,
and obtain, wW; € RM>xN - —  diagwy, - ,wy),
<— D W, e RMN O — diagw, - ,w), where
=by Mi+---+M. =M and wy,---,w. € R™" and L
= De. (5) different random permutation matrices, namely

p1,---,pL € RN*N. We construct a PBD matrix
D € RM*N as follows:

Wip:1

Note that reconstructing is a sufficient condition for
reconstructing, since

x=FT(y—e). (6)

Therefore, the decoding problem is reduced to the

problem of reconstructing a sparse vecwifrom an

underdetermined system of Ed)(Since Eq. 9) is the

same as Eq.l, it can be reconstructed by solving a 3.2 Encryption and decryption

sparse recovery problem, where the parity-check matrix

and sparse error vector in decoding correspond to théor a plaintexi € R¥, the encryption includes two stages

measurement matrix and sparse vector in sparse recoverysing the public keyH, p). Firstly, code thex with H,

respectively. obtaining Hx. Secondly, generate a randoenwith p
proportion nonzero elements and each with the same
absolute value; codex with e, obtaining the ciphertext

3 Proposed PKC (= Hx + €); destroy e. Mathematically speaking, the
encryption is the same as described in E, &lthoughe

The main idea of the proposed PKC is choosing a specifidere is generated artificially. _ _

sparse recovery algorithm, which depends on a special The core decryption problem is the decoding of error
measurement matrix and has high recovery ability. Thuscorrection via sparse recovery. To decrypt the ciphertext
the specific measurement matrix can serve as the secrdi first computey’ = Q1. Then, the secret ke can be
key. And the sparse recovery algorithm can serve as th@pplied to thg/: s= Dy’ = DFSx+De'. We can obtails =
decryption algorithm. Since the recovery ability of the D€, similar to Eq. §), sinceDF = 0. The sparse recovery
decryption algorithm is higher than other sparse recoven@lgorithm, CLP, is used to recover tThe sparse error vector
algorithms, we can choose a proper parameter of th&- Thenx’ = Sxis comlputed ag'=F'(y'—¢€). Finally x
nonzero proportion such that the sparse vector can b decryptedasx =S~ X' _ _

recovered by the decryption algorithm but can not be  Although the core decryption problem is an error

recovered by the other algorithms. In this way, the PKC isporrection probl_em, they are different. The difference is:
secure without knowing the secret key. in error correction, the easier can be recovered, the

better; in the cryptosysteme should be easy to be
recovered with the secret key and hard to be recovered
without it. This point make them totally different in
designing the frameworks, in which the decoding
gdecryption) algorithm is of significant importance. In

The secret and public keys are generated in the simila . :
way to those of the McEliece PKC. We construct a Sparseerror correction, any powerful sparse recovery algorithm

structured matrix, the PBD matrix, which is proposed in Is suitable for decoding. While in the cryptosystem, the

[24] for generating the secret key. First, we generate Sparse recovery algorithm should be the only one that can

. decrypt the ciphertext, and the secret key should be
PBD matrix D € RM*N, Then, we generate a random I .
dense nonsingular matri§ € RKX% and a random ne€cessary for the u_t|I|za§|on o_f the algorithm.
ermutation matrixQ € RNXN. The secret key is then The CLP algorithm is suitable for the cryptosystem
generatedCD Q.9) ’ y since it satisfies the two requirements. With the secret

The public ey consists of two parts: a coding matrix key, the ciphertext can be easily decrypted since CLP has

H and a parameteo that stands for the broportion of linear complexity. The CLP algorithm is based on the
P ep th oo prop PBD matrix. Here we introduce it briefly. Refer t@4
nonzeros ine. The coding matrixH is constructed as

follows. First, generate a matrix, whose columns span for the details.

the nuII' S ac’e%D There are se\;eral ways to constr[l;ct In order to simplify the presentation, suppose the PBD
satisfyin pDF—OI e the OR decgm osition  that matrix is generated from two block diagonal matrices
produceg orth;nérmégll”columns Finally tEe public key (L = 2). The recovery procedure corresponding to a PBD
H ¢ RNK is generated asi — QFS. The public key matrix generated from more block diagonal matrices is

. . . similar. CLP solves the sparse recovery problem of Eq.
(eﬂ&f)gptliznt[jasrésr?med through public channels to the (2), in whichs = De. For the PBD matrix,

Here we give the brief generation of the PBD matrix; De— (Wip1)e|  [Wi(p1ie)| 8
refer to 4] for the details. Suppose that we haie &= (Wsap2)e| — [Wa(p2e) =S (8)

D= (7)

WipL

3.1 Key generation
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100

Therefore, the elements @fcan be recovered from the
following two systems of equations separately, 9

Wiz=s, 9 %
Woz=sp, (10)

wheres;, s, denote the first and second halvessofin
each system, since the matri¥y; or Wy, is block
diagonal, the high dimensional equations can be divic
into a group of highly low-dimensional underdetermini
equations. Each one corresponds to a segmeatWhen
a segment is sufficiently sparse, it can be recovered 20
solving a sparse recovery problem. Since the dimens 4|
can be only 2 or 4, the sparsest solution can be founc T \ ‘
the direct exhaustive search. Further, the entries of % 001 002 003 004 005 006
recovered segments of E@) (can be substituted into Eq. _. Fraction of corrupted elements (p) ,
(10) to recover more entries, and vice versa. Such a crosg'.g' 2: Exact recovery rate ve7rsus fraction of corruption
substitution stage continues until no new entry isWith K =1792,N =2048 & =9

recovered or all the entries have been recovered. In the

case that there are still some entries unrecovered after the

cross solving procedure, a simple pseudoinversion
process is applied to the residual equations correspondin
to the unrecovered entries, in order to recover the
remaining entries.

70

60 -

50

40

Exact recovery rate (%)

laintext, the total complexity of the decryption is also
(KN), or for each number, the complexity@{N).

3.4 Practical example
3.3 Complexity _ .

Figure 1 shows a example using the proposed
Cryptosystem. The original message is a text message
with 448 characters. Characters are transformed into
numbers with the corresponding ASCII codes; the public
key F is of size 512x 448 generated by the QR
factorization; the public ke is with 4% nonzero entries,
d whose locations and signs are randomly chosen and the
magnitudes are the mean of the codeword. Figu(b)
ghows the decrypted text message by themin
algorithm and Figurel (c) shows the decrypted text
message by the CLP algorithm. It can be observed that
lthe decryption algorithm CLP decrypted the text message
successfully, while thé;-min algorithm failed.

In the proposed cryptosystem, the encryption an
decryption are conducted in a matrix style. No large
number calculations are involved. In the encryption, a
plaintext is simply multiplied by a matrix and added with
a sparse vector. The calculatiorki® multiplications and
KN additions, where& is the length of the plaintext an
N is the length of the ciphertext. Note that for each time
K numbers in the vector are encrypted. For each numbe
only N multiplications andN additions are needed. The
complexity is onlyO(N).

The decryption includes several procedures. The firs
one is to apply the inverse permutation matrix to a vector,
the computation needed ¥ flops. The complexity of
applying D to y’ is proportional to the nonzeros iD, .
which isO(N). The complexity of applying' toy’' —¢ 3.5 Settingo
is O(KN). The complexity of applyingS™ to x’ is
O(K?). The last one is using the CLP algorithm to recover The decryption algorithm CLP is efficient and depends on
e. In the CLP algorithm, the most time-consuming part is the secret key. Further for the security, it should be
solving the small systems of low-dimension equations.satisfied that other sparse recovery algorithms can not
Since the dimension of the low-dimension equations isdecrypt the ciphertext. This can be done by choosing the
constant and the number of these equations grows linearlpgroportion ) of the nonzero elements & since the
asN increases, the complexity for solve them is linear to CLP algorithm can recover a much higher proportion of
N. Solving the remaining residual equation consumes thenonzeros than other algorithms. Choosing a prapisrof
second most computation time. Since the correspondingignificant importance for the security and successful
residual matrix is highly sparse, the solution can bedecryption. Whenp is too small, the ciphertext can be
quickly obtained by a Conjugate Gradient (CG) method,easily attacked using usual sparse recovery algorithms;
where the corresponding complexity is al9d(N). while if it is too large, CLP cannot recover and the
Therefore, the complexity of the CLP algorithm is still ciphertext cannot be decrypted. Suitakpeshould be
O(N). The details of complexity analysis of the CLP beyond the upper recovery bound of other algorithms and
algorithm are in 24]. It can be seen that for K-length  below the lower recovery bound of CLP.
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Before the modern era, cryptography was 5 x Before the modern era, cryptography was
d solely with - fidentiality ::te o'f the?ﬁqudqn‘:ldtw:m‘hqxp?oEﬁapgx! concerned solely with message confidentiality

(i.e., encryption) ion of ges from fmgegehmtgcle?ul*h-e,( - qelvnlg;/s's (i.e., encryption) ion of from
a comprehensible form into an \nrhpuelq xd?o]s_?? a comprehensible form into an
incomprehensible one and back again at the by fgoo— a- apg;zakdmsk)(je* WALiwvu  df incomprehensible one and back again at the
other end, rendering it unreadable by Snmeglltbkdny™ il % pk_cl76g2"r _idend Yw! other end, rendering it unreadable by
int: ptors or droppers without secret nit} redhy} fid% rjizmplie%di*wivoai fdhS$ey interceptors or eavesdroppers without secret

ledzge ( ly the key needed for $~gubscltugsj' Horffwauftjtqgzs #znmav?p- jj] L ledge { y the key needed for
decryption of that message). Encryption was vix!l InVve Pa*$*nTugqgs1T?Uwoef nsO decryption of that message). Encryption was
used to (attempt to) ensure secrecy in Nd  kwg(ole margquww  jh } {*hs/gm\?lah*; used to (attempt to) ensure secrecy in
communications, such as those of spies, [@zbtyukinT xZw  xad gl #v2vQq} communications, such as those of spies,

{ G_t+ dipsmf&vhYie }Pm fiolu]l5]ohoarE!
ve_prdl id?] ~rk unalf!

@ (b) (©

Fig. 1: An example of the proposed cryptosystem with a text messﬁge g p = 4%). (a) The original text message;
(b) The text message decrypted@ymin; (c) The text message decrypted by CLP.

numerical study of two case§ = & and K& = 2. we

compare the recovery ability of CLP with four
well-known approachest;-min, IRLS (for solving the
nonconvex optimization problem:Pg) with p < 1),
Subspace Pursuit (SP)7], and SSMP 25]. The concrete
solver for¢;-min is PDCO R€], and the concrete IRLS
algorithm is proposed by Daubechisal. [23], wherep
gradually varies from 1 to 0.5. These algorithms stands
for the most powerful sparse recovery algorithms. Given
the secret keyD,Q,S) and the public key(H,p), the
experiment form is as follows:

100

90 -

80

70

60 -

50

40

30 -
—o— |,—min
20| —A— IRLS
—#— SP
10} SSMP

e P 1.setl with |I| = pN uniformly at random, and generate
0 I o a

h 502 o o 2 ot o a sparse vectawith random=1 onl; .
Fraction of corrupted elements (p) 2.generate a random vectors the plaintext and make
Fig. 3: Exact recovery rate versus fraction of corruption Hx + €
with K = 1536,N = 2048 (£ = 2). 3.generate a nonsigular matrk € RM*N such that
RH =0;
4.recove by D or R and the corresponding algorithms;
5.for eachp, repeat 1)-4) steps for 100 times and

n the proposed cryposysiem, recouering s | COMPULE e perceniage of exac recovery (an evac
necessary and sufficient for decrypting the ciphertext. In I%=xll> <y10_5)

the decryption stage, The PBD matrix serves as the secret x|,

key and CLP uses it to recovex. However, for the

hackers, the secret key is unavailable since it does noFigures2 and 3 show the results. We can observe that
need to be transmitted. In this case, a natural way oﬁlvhen§ = g, p can be set between the range &% and

trying to recovere is to construct another matrix, whose 404 \While for the case 0% - %, p can be set around 8%.

rows span the null subspacetdf Let R be such a matrix, Th K : .

L - . — e largeg is, the wider gap between the bounds of CLP
andR safisfiesRH = 0. The following steps are similar 0  and the other algorithms it is, and more difficult it is to
the decryption, where another sparse recovery algor'thnéttack the cryptosystem using these algorithms. This is
is used to recovee instead of CLP. lip is beyond the consistent with our massive numerical studies. However,

upper recovery bound of the algorithm, it is impossible to should not be too small. The number of nonzeros of

recovere. Theoretical research results have proven thaﬁN : .
) ; . s pN. WhenpN is too small,e can be easily recovered
the bound of widely-used algorithms, e.gé3-min P P y

lgorithms. is™¢ whereq — — 1 However. it i by direct combinational exhaustive search. For example,
algo S, ISy, wherea O(log(X)) Owever,itisa —\yhen pN = 1, there is only one nonzero & it can be
rough bound and impractical for choosipgTherefore, a  easily recovered by finding a most coherent columbin
clearer bound needs to be found through numericato the measurements From the viewpoint of security,
studies. the choice ofﬁ is wide. For example, in the experiments,

The theoretical results show that the bound dependsvhere N = 2048, K can be set betweer and § to

on the ratio of%, or % instead. Here we show the ensure the high security. It demonstrated that the
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