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Abstract: An efficient and secure real-field public key cryptosystem (PKC) based on sparse recovery is proposed. The security of the
proposed cryptosystem depends on the following facts: 1. when the measurement matrix is known, the decryption algorithm, Cross
Low-dimensional Pursuit, can efficiently solve the sparse recovery problem, where the sparse vector has a relatively high proportion of
nonzeros; 2. without the measurement matrix, it is NP-hard to directly solve the sparse recovery problem. The proposed PKC is novel.
First, unlike the traditional PKCs that are defined in finite fields, the proposed PKC is defined in the real field. Second, unlike popular
cryptosystems based on number-theoretic problems, the proposed cryptosystem is based on the sparse recovery problem.
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1 Introduction

The security of public key cryptosystems (PKCs) is
usually based on difficulty of mathematical problems. In
widely used PKCs, e.g., RSA [1] and ECC (elliptic curve
cryptography) [2,3], most of the involved problems are
number-theoretic ones, such as factoring integers and
finding discrete logarithms. However, quantum computers
can break the RSA, ECC PKCs, since they can efficiently
factor integers and extract discrete logarithms. Another
PKC, McEliece [4], which is based on coding theory (the
error correction problem), is believed to be more secure
against quantum attacks. Therefore, the McEliece and the
related Niederreiter PKCs [5] has been extensively
studied.

The classic error correction is defined over the finite
field. In recent years, a new error correction problem that
arises in the real-field has attracted a lot of attention [6].
By solving a sparse recovery problem [7,6,8,9], the
errors can be corrected. Motived by the McEliece PKC
and the sparse recovery problem, we propose a novel
PKC defined over the real-field based on sparse recovery.
Massive research results in sparse recovery make it
become possible for developing efficient and secure
real-field PKCs.

The sparse recovery problem, to recover a sparse
vector from incomplete linear measurements, is of

significant importance. It arrives in many areas such as
compressed sensing [8,9], decoding real codes [6], sparse
representation [7], and data stream computing [10].
Solving the problem involves finding the original vector
from an underdetermined system. Since there exist
numerous solutions to the underdetermined system,
general recovery is impossible. Fortunately, it has been
proved that when the vector is sufficiently sparse and the
measurement matrix has low-coherent columns, the
recovery is possible and the only way is to find the
sparsest solution to the underdetermined system [7].
Directly searching for the sparsest solution is known as an
NP-hard problem. However, recent studies have shown
that it can be solved in reasonable time when the vector is
highly sparse. A lot of numerical methods are available
such as Greedy algorithms [11,12,13,14,15,16,17], e.g.,
Orthogonal Matching Pursuit (OMP) [12,15], ℓ1-norm
minimization algorithms [18,19,20,21], which solve a
Basis Pursuit (BP) problem [18], nonconvex optimization
algorithms [22,23], and so on. Compared to the direct
search, these methods can only recover vectors with much
fewer nonzeros in the sparse vector, especially when the
nonzeros are with the same absolute value. Therefore,
when the proportion of nonzeros is higher than a certain
bound, the recovery is still NP-hard.

In our previous work, a special sparse recovery
algorithm named Cross Low-dimensional Pursuit (CLP)

∗ Corresponding author e-mail:zhaoxinyue@zju.edu.cn

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090247


966 Z. HE et. al. : A Real-Field Public Key Cryptosystem based...

has been proposed [24]. Unlike other algorithms, CLP
depends on a specific measurement matrix, the Permuted
Block Diagonal (PBD) matrix [24]. Without knowing the
PBD matrix, CLP is unavailable for recovering sparse
vectors. Compared to other algorithms, CLP can recover
vectors with much more nonzeros. In another word, the
bound of the proportion of nonzeros for successful
recovery of CLP is much higher than those of other
algorithms. The two properties of specific matrix
dependence and high nonzero proportion bound provide a
new resource for developing PKCs.

In the proposed PKC, the PBD matrix serves as the
secret key and the CLP algorithm works as the decryption
algorithm. A sparse vector, whose nonzero proportion is
between the bound of other algorithms and that of the
CLP algorithm, is generated randomly during encryption
and destroyed afterwards. To decrypt the ciphertext, a
sparse recovery problem has to be solved to recover the
destroyed sparse vector. The CLP algorithm can recover it
fast with the secret key; while without the secret key, it is
NP-hard to recover it since CLP is unavailable and other
algorithms cannot recover it because of the high
proportion of nonzeros. During both encryption and
decryption, no large number calculation is involved and
only regular matrix calculation is needed. Therefore, the
cryptosystem is efficient.

The remainder of the paper is organized as follows.
Section 2 introduces the basic knowledge of sparse
recovery and error correction based on it. Then, Section3
presents the proposed sparse recovery-based PKC as well
as the parameter setting and parameter sets, complexity
and security analysis. Finally, Section4 concludes the
paper.

2 Sparse recovery and real-field error
correction

In this section, we briefly introduce the basic knowledge
of parse recovery and its application of error correction.
The core mathematical problem of the proposed
cryptosystem is sparse recovery, and the main idea of the
proposed cryptosystem is motivated by error correction
based on sparse recovery.

2.1 Sparse recovery

Assume that a sparse vectore ∈ R
N is measured by a

matrixD ∈ R
M×N (M < N):

s= De, (1)

obtainingM linear measurementss. The original sparse
vector e needs to be recovered from these incomplete
linear measurements. It has been proven that whene is
sufficiently sparse and the columns ofD are

low-coherent, the sparsest solution to Eq. (1) equalse [7].
That is to solve the following optimization problem:

(P0) : min‖z‖0 subject to Dz= s, (2)

where theℓ0-norm counts the nonzero elements of the
vector. This optimization problem is well-known as an
NP-hard problem. Directly solving such a problem in
high dimensions is computationally intractable.
Therefore, many efficient numerical algorithms, which
solve the problem in indirect ways, are proposed to find
sparse solutions. These algorithms require stricter
conditions than the direct way includes a highly sparsee.

An alternative to Eq. (2) is:

(Pp) : min‖z‖p
p subject to Dz= s, (3)

where 0< p≤ 1. Whenp= 1, Eq. (3) is convex and can
be recast as a Linear Program (LP). The corresponding
algorithms are calledℓ1-min algorithms [18,19,20,21].
When p < 1, Eq. (3) is nonconvex, and it can be
approximated by an Iteratively Reweighted Least Squares
(IRLS) algorithm, e.g., [22,23].

The greedy algorithms find sparse solutions in a
different way: the coordinates and altitudes of nonzeros of
eare determined step by step [11,12,13,14,15,16,17].

These three families of algorithms do not rely on
specific matrices (D). There is another family of
algorithms that are based on sparse matrices in order to
accelerate the solving procedure, e.g., Sequential Sparse
Matching Pursuit (SSMP) [25]. In [24], we proposed a
new algorithm, CLP, which is also based on a specific
matrix, PBD, for recovering sparse vectors from
incomplete measurements. It has been reported in [24]
that CLP has higher sparse recovery ability and efficiency
than other algorithms.

2.2 Real-field Error correction

The sparse recovery can be used for error correction [6].
Consider transmitting a messagex ∈ R

K by encoding it
with a full rank matrix F ∈ R

N×K(K = N − M). For
simplification, the columns ofF are assumed to be
orthonormal. Furthermore, a small fraction of entries of
the codeword are corrupted over the transmitting channel
since there is impulsive noise in the channel. Thus, the
corrupted output can be written as:

y = Fx+e, (4)

wheree∈R
N is a sparse error vector. The final object is to

exactly recoverx with knowledge of the corrupted output
y and coding matrixF.

In order to reconstructx from y andF, one can firstly
construct a matrix D ∈ R

M×N such that DF = 0.
Obviously,D is a matrix whose rows span the null space
of FT . The matrixD can also be viewed as a parity-check
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matrix. Then one can applyD to the corrupted outputy
and obtain,

s= Dy
= De. (5)

Note that reconstructinge is a sufficient condition for
reconstructingx, since

x = FT(y−e). (6)

Therefore, the decoding problem is reduced to the
problem of reconstructing a sparse vectore from an
underdetermined system of Eq. (5). Since Eq. (5) is the
same as Eq. (1), it can be reconstructed by solving a
sparse recovery problem, where the parity-check matrix
and sparse error vector in decoding correspond to the
measurement matrix and sparse vector in sparse recovery,
respectively.

3 Proposed PKC

The main idea of the proposed PKC is choosing a specific
sparse recovery algorithm, which depends on a special
measurement matrix and has high recovery ability. Thus,
the specific measurement matrix can serve as the secret
key. And the sparse recovery algorithm can serve as the
decryption algorithm. Since the recovery ability of the
decryption algorithm is higher than other sparse recovery
algorithms, we can choose a proper parameter of the
nonzero proportion such that the sparse vector can be
recovered by the decryption algorithm but can not be
recovered by the other algorithms. In this way, the PKC is
secure without knowing the secret key.

3.1 Key generation

The secret and public keys are generated in the similar
way to those of the McEliece PKC. We construct a sparse
structured matrix, the PBD matrix, which is proposed in
[24] for generating the secret key. First, we generate a
PBD matrix D ∈ R

M×N. Then, we generate a random
dense nonsingular matrixS ∈ R

K×K and a random
permutation matrixQ ∈ R

N×N. The secret key is then
generated:(D,Q,S).

The public key consists of two parts: a coding matrix
H and a parameterρ that stands for the proportion of
nonzeros ine. The coding matrixH is constructed as
follows. First, generate a matrixF, whose columns span
the null space ofD. There are several ways to constructF
satisfying DF = 0, e.g., the QR decomposition that
produces orthonormal columns. Finally, the public key
H ∈ R

N×K is generated as:H = QFS. The public key
(H,ρ) is transmitted through public channels to the
encryption users.

Here we give the brief generation of the PBD matrix;
refer to [24] for the details. Suppose that we haveL

matrices that are block diagonal,
W1 ∈ R

M1×N = diag(w1, · · · ,w1), · · · ,
WL ∈ R

ML×N = diag(wL, · · · ,wL), where
M1 + · · · + ML = M and w1, · · · ,wL ∈ R

m×n, and L
different random permutation matrices, namely
p1, · · · ,pL ∈ R

N×N. We construct a PBD matrix
D ∈ R

M×N as follows:

D =







W1p1
...

WLpL






. (7)

3.2 Encryption and decryption

For a plaintextx ∈R
K , the encryption includes two stages

using the public key(H,ρ). Firstly, code thex with H,
obtaining Hx. Secondly, generate a randome with ρ
proportion nonzero elements and each with the same
absolute value; codeHx with e, obtaining the ciphertexty
(= Hx + e); destroy e. Mathematically speaking, the
encryption is the same as described in Eq. (4), althoughe
here is generated artificially.

The core decryption problem is the decoding of error
correction via sparse recovery. To decrypt the ciphertext
y, first computey′ = Q−1y. Then, the secret keyD can be
applied to they′: s=Dy′ =DFSx+De′. We can obtains=
De′, similar to Eq. (5), sinceDF = 0. The sparse recovery
algorithm, CLP, is used to recover the sparse error vector
e′. Thenx′ = Sx is computed asx′ = FT(y′−e′). Finally x
is decrypted as:x = S−1x′.

Although the core decryption problem is an error
correction problem, they are different. The difference is:
in error correction, the easiere can be recovered, the
better; in the cryptosystem,e should be easy to be
recovered with the secret key and hard to be recovered
without it. This point make them totally different in
designing the frameworks, in which the decoding
(decryption) algorithm is of significant importance. In
error correction, any powerful sparse recovery algorithm
is suitable for decoding. While in the cryptosystem, the
sparse recovery algorithm should be the only one that can
decrypt the ciphertext, and the secret key should be
necessary for the utilization of the algorithm.

The CLP algorithm is suitable for the cryptosystem
since it satisfies the two requirements. With the secret
key, the ciphertext can be easily decrypted since CLP has
linear complexity. The CLP algorithm is based on the
PBD matrix. Here we introduce it briefly. Refer to [24]
for the details.

In order to simplify the presentation, suppose the PBD
matrix is generated from two block diagonal matrices
(L = 2). The recovery procedure corresponding to a PBD
matrix generated from more block diagonal matrices is
similar. CLP solves the sparse recovery problem of Eq.
(2), in whichs= De. For the PBD matrix,

De=
[

(W1p1)e
(W2p2)e

]

=

[

W1(p1e)
W2(p2e)

]

=s. (8)
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Therefore, the elements ofe can be recovered from the
following two systems of equations separately,

W1z= s1, (9)

W2z= s2, (10)

wheres1, s2 denote the first and second halves ofs. In
each system, since the matrix,W1 or W2, is block
diagonal, the high dimensional equations can be divided
into a group of highly low-dimensional underdetermined
equations. Each one corresponds to a segment ofe. When
a segment is sufficiently sparse, it can be recovered by
solving a sparse recovery problem. Since the dimension
can be only 2 or 4, the sparsest solution can be found by
the direct exhaustive search. Further, the entries of the
recovered segments of Eq. (9) can be substituted into Eq.
(10) to recover more entries, and vice versa. Such a cross
substitution stage continues until no new entry is
recovered or all the entries have been recovered. In the
case that there are still some entries unrecovered after the
cross solving procedure, a simple pseudoinversion
process is applied to the residual equations corresponding
to the unrecovered entries, in order to recover the
remaining entries.

3.3 Complexity

In the proposed cryptosystem, the encryption and
decryption are conducted in a matrix style. No large
number calculations are involved. In the encryption, a
plaintext is simply multiplied by a matrix and added with
a sparse vector. The calculation isKN multiplications and
KN additions, whereK is the length of the plaintext and
N is the length of the ciphertext. Note that for each time
K numbers in the vector are encrypted. For each number,
only N multiplications andN additions are needed. The
complexity is onlyO(N).

The decryption includes several procedures. The first
one is to apply the inverse permutation matrix to a vector,
the computation needed isN flops. The complexity of
applying D to y′ is proportional to the nonzeros inD,
which is O(N). The complexity of applyingFT to y′−e′

is O(KN). The complexity of applyingS−1 to x′ is
O(K2). The last one is using the CLP algorithm to recover
e. In the CLP algorithm, the most time-consuming part is
solving the small systems of low-dimension equations.
Since the dimension of the low-dimension equations is
constant and the number of these equations grows linearly
asN increases, the complexity for solve them is linear to
N. Solving the remaining residual equation consumes the
second most computation time. Since the corresponding
residual matrix is highly sparse, the solution can be
quickly obtained by a Conjugate Gradient (CG) method,
where the corresponding complexity is alsoO(N).
Therefore, the complexity of the CLP algorithm is still
O(N). The details of complexity analysis of the CLP
algorithm are in [24]. It can be seen that for aK-length
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Fig. 2: Exact recovery rate versus fraction of corruption
with K = 1792,N = 2048 (KN = 7

8).

plaintext, the total complexity of the decryption is also
O(KN), or for each number, the complexity isO(N).

3.4 Practical example

Figure 1 shows a example using the proposed
cryptosystem. The original message is a text message
with 448 characters. Characters are transformed into
numbers with the corresponding ASCII codes; the public
key F is of size 512× 448 generated by the QR
factorization; the public keye is with 4% nonzero entries,
whose locations and signs are randomly chosen and the
magnitudes are the mean of the codeword. Figure1 (b)
shows the decrypted text message by theℓ1-min
algorithm and Figure1 (c) shows the decrypted text
message by the CLP algorithm. It can be observed that
the decryption algorithm CLP decrypted the text message
successfully, while theℓ1-min algorithm failed.

3.5 Settingρ

The decryption algorithm CLP is efficient and depends on
the secret key. Further for the security, it should be
satisfied that other sparse recovery algorithms can not
decrypt the ciphertext. This can be done by choosing the
proportion (ρ) of the nonzero elements ofe, since the
CLP algorithm can recover a much higher proportion of
nonzeros than other algorithms. Choosing a properρ is of
significant importance for the security and successful
decryption. Whenρ is too small, the ciphertext can be
easily attacked using usual sparse recovery algorithms;
while if it is too large, CLP cannot recovere and the
ciphertext cannot be decrypted. Suitableρ should be
beyond the upper recovery bound of other algorithms and
below the lower recovery bound of CLP.

c© 2015 NSP
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(a) (b) (c)

Fig. 1: An example of the proposed cryptosystem with a text message (K
N = 7

8, ρ = 4%). (a) The original text message;
(b) The text message decrypted byℓ1-min; (c) The text message decrypted by CLP.
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Fig. 3: Exact recovery rate versus fraction of corruption
with K = 1536,N = 2048 (KN = 3

4).

In the proposed cryptosystem, recoveringe is
necessary and sufficient for decrypting the ciphertext. In
the decryption stage, The PBD matrix serves as the secret
key and CLP uses it to recovere. However, for the
hackers, the secret key is unavailable since it does not
need to be transmitted. In this case, a natural way of
trying to recovere is to construct another matrix, whose
rows span the null subspace ofH. Let R be such a matrix,
andR satisfiesRH = 0. The following steps are similar to
the decryption, where another sparse recovery algorithm
is used to recovere instead of CLP. Ifρ is beyond the
upper recovery bound of the algorithm, it is impossible to
recovere. Theoretical research results have proven that
the bound of widely-used algorithms, e.g.,ℓ1-min
algorithms, isM·α

N , whereα = 1
O(log( N

M ))
. However, it is a

rough bound and impractical for choosingρ . Therefore, a
clearer bound needs to be found through numerical
studies.

The theoretical results show that the bound depends
on the ratio of M

N , or K
N instead. Here we show the

numerical study of two cases:KN = 7
8 and K

N = 3
4. We

compare the recovery ability of CLP with four
well-known approaches:ℓ1-min, IRLS (for solving the
nonconvex optimization problem: (Pp) with p < 1),
Subspace Pursuit (SP) [17], and SSMP [25]. The concrete
solver for ℓ1-min is PDCO [26], and the concrete IRLS
algorithm is proposed by Daubechieset. al. [23], wherep
gradually varies from 1 to 0.5. These algorithms stands
for the most powerful sparse recovery algorithms. Given
the secret key(D,Q,S) and the public key(H,ρ), the
experiment form is as follows:

1.setI with |I |= ρN uniformly at random, and generate
a sparse vectore with random±1 onI ;

2.generate a random vectorx as the plaintext and make
Hx +e;

3.generate a nonsigular matrixR ∈ R
M×N such that

RH = 0;
4.recoverx by D or R and the corresponding algorithms;
5.for each ρ , repeat 1)-4) steps for 100 times and

compute the percentage of exact recovery (an exact
recovery is considered to be achieved when
‖x̂−x‖2
‖x‖2

≤ 10−5).

Figures2 and 3 show the results. We can observe that
when K

N = 7
8, ρ can be set between the range of 3.5% and

4%. While for the case ofKN = 3
4, ρ can be set around 8%.

The largeK
N is, the wider gap between the bounds of CLP

and the other algorithms it is, and more difficult it is to
attack the cryptosystem using these algorithms. This is
consistent with our massive numerical studies. However,
K
N should not be too small. The number of nonzeros ofe
is ρN. WhenρN is too small,e can be easily recovered
by direct combinational exhaustive search. For example,
when ρN = 1, there is only one nonzero ine; it can be
easily recovered by finding a most coherent column inD
to the measurementss. From the viewpoint of security,
the choice ofKN is wide. For example, in the experiments,
where N = 2048, K

N can be set between116 and 1
8 to

ensure the high security. It demonstrated that the
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proposed cryptosystem is secure with a proper pair ofK
N

andρ that can be easily chosen.

3.6 Security

Although the proposed PKC is defined in the real-field,
different from the finite-field defined McEliece PKC, the
main structures are similar. The proposed PKC is as
secure as the McEliece PKC. We discuss the difficulty of
decryptingx when H and y are known. One possible
attack way can be trying to recoverD and further use the
CLP algorithm to recovere. Another possible attack way
is to recoveredirectly without the CLP algorithm.

In the first attack,D needs to be recovered if one wish
to use the CLP algorithm for decryption. This is because
CLP is a matrix-dependent algorithm. Without knowing
D, CLP is unavailable. However, recoveringD from PFS
seems impossible. The only information for recoveringD
is that DF = 0. Therefore,F needs to be recovered first
at least. What makes the attack hopeless is that it can not
be recovered in reasonable time whenN andK are large
enough.

To directly recovere without the CLP algorithm, it is
to solve the sparse recovery problem, where the sparse
vector is with a high proportion of nonzeros. As the
proportion of nonzeros,ρ , is set much beyond the solving
bound of the available algorithms,e can not be recovered
by them. The only way is to search for the sparsest
solution to an underdetermined system, which is known
to be an NP-hard problem. For anN-length vectore, the
probability of locating ρN nonzeros is:

( N
ρN

)

. For

example, when N = 1024 and ρ = 4%,
(1024

41

)

= 3.5×1073.

4 Conclusion

In this paper, we proposed a novel real-field PKC based
on sparse recovery. The practical encryption and
decryption algorithms are presented as well as parameter
choosing, complexity and security analysis. The proposed
cyptosystem has two important advantages: efficient and
secure. The complexities of encryption and decryption for
each number are low. To attack the cryptosystem, an
NP-hard sparse recovery problem has to be solved.
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