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Abstract: In this paper, a non-standard Crank-Nicholson finite défifiee method (NSCN) is presented. NSCN is used to study
numerically the variable-order fractional Cable equatighere the variable order fractional derivatives are dbedrin the Riemann-
Liouville and the Griinwald-Letnikov sense. The stabitityalysis of the proposed methods is given by a recently gexpprocedure
similar to the standard John von Neumann stability analjiis reliability and efficiency of the proposed approachdmmonstrated
by some numerical experiments. It is found that NSCN is pedfie than the standard Crank-Nicholson finite differene¢hod (SCN).

Keywords: Non-standard finite difference method, Crank-Nicholsonhmeé; Variable order fractional Cable equation; Von Neuman
stability analysis.

1 Introduction Different authors have introduced different definitions of
variable order -differential operators, each of these with
In modeling neuronal dynamics, the Cable equation is onespecific meaning to suit desired goals, most of these
of the most fundamental equations. Due to its significantdefinitions were extension to the fractional calculus
deviation from the dynamics of Brownian motion, the definitions as Riemann-Liouville, Griinwald, Caputo and
anomalous diffusion in biological systems can not beRiesz (#],[5],[10],[11],[14],[17],[25]) and some not as
adequately described by the traditional Nernst-PlanckCoimbra definition7,8].
equation or its simplification, the Cable equation wasThe variable order differentials are important tool to stud
introduced for modeling the anomalous diffusion in spiny some systems such as the control of nonlinear
neuronal dendrites (Henry et al., inZ)). The resulting  viscoelasticity oscillator, for more details se&,§] and
governing equation, the so-called fractional Cablethe references sited therein), where the order changes
equation, which is similar to the traditional cable equatio with respect to a parameter or more parameters.
except that the order of derivative with respect to the
space or time is fractionalp. The main aim of this work is to present the efficient
In recent years considerable interest in fractionalnumerical method; NSCN which is more accurate than
calculus has been stimulated by the applications that findSCN. Then we used NSCN to study numerically the
in numerical analysis and different areas of physics andvariable order Cable equation, for more details on
engineering, possibly including fractal phenomena (seenon-standard finite difference method s28,81].
[1]-[3],[16],[18]-[23]). The applications range from
control. Variable-order differential equations have beenThe paper is organized as follows: In Section 2, some
considered in 17],[24]. In this sense, the orders are well-known mathematical preliminaries on variable-order
function in any variable, i.e., space variables, timefractional differential equations and non-standard
variable, or any other variables. Samko and Rd},[ discretization are given. in Section 3, discretizationhaf t
first proposed the concept of variable order operator andiariable order fractional Cable equation using NSCN
investigated the properties of variable order integrationmethod with shifted Grinwald formula is given. In
and differentiation operators of Riemann-Liouville type. Section 4, we study the stability of the presented method.
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In Section 5, numerical experiments of a typical variable However, in the Mickens schemes this term is replaced by
order fractional cable problem are presented. Fina”y, in%7where (p(h) is a continuous function of Step

Section 6 we give some conclusions. size h, and the functiong(h) satisfies the following

conditions:

2 Preliminaries and Notations ph)y=h+0(h%), 0<@h)<1l, h—0.

In the following we present some definitions of the Examples of functiong(h) that satisfy these conditions
variable-order fractional differential operators. Moveg ~ are R7]:

some fundamental concepts of NSFD for the solution of  ¢(h) = h, sinhh, € —1, 1‘?{“, etc., ...

partial differential equations are presented. Note that in taking the linh — O to obtain the derivative,
the use of any of thesg(h) will lead to the usual result for
the first derivative

Definition 17The Riemann-Liouville variable order

fractional derivative is defined agT. dy i yt+@(h)] —yt) i y(t+h) —y(t)
g dt oo @(h) ~ o h '
@“(X>f(x t)zé—/ Ldr
07X ’ F(n—a(x)dx"Jo (x—r1)a®-n+1=" In addition to this replacement, if there are nonlinear &erm

(1) in the differential equation?7], these are replaced by
x>0, wheren—1<a(x)<n.

_ . . YnYn+1,
Definition 2The Giinwald-Letnikov variable order y = {Yn1Yn~
fractional derivative is defined as:
In dimensions two and above, nonlinear terms such as

[x/h] t)x(t) are either replaced b
o Z8M £ (x) = lim —— Zowli‘”x”f(x_ hk), x>0, Yx P ’
h—0 ha(X) &
(2) yX_> yanJrla
Yn+1Xn.

where[x/h] means the integer part of/k and W** are

the normalized Ginwald weights which are defined by One can say that there is no appropriate general method

Wl<(0<><>) — (—1)*(D). to choose the functiop(h) or to choose which nonlinear
terms are to be replaced, some special techniques may be

The Grunwald-Letnikov definition is simply a foundin 28 and [29.

generalization of the ordinary discretization formula for

integer order derivatives. The Riemann-Liouville and the

Griinwald-Letnikov approaches coincide under relatively3 Discretization of the variable order

weak conditions; if f(x) is continuous andf’(x) is fractional Cable equation

integrable in the intervalO,x], then for every order q

0 < a(x) < 1’. both t.he .Rlema@nn-Llouw!Ie _and the In this section, we will use NSCN method with shifted

Grunwald-Letnikov derivatives exist and coincide for any g inwald formula to obtain the discretization finite of the

value inside the intervg0, x]. initial-boundary value problem of the variable order
fractional Cable equatior®]:

2.1 Non-standard Discretization Au(x,t _p(xt) 02U(xt _
O _ ot P 20D oot + 1 x),

The non-standard finite difference (NSFD) schemes were 3)

firstly proposed by Mickens 2B-[30), either for  with initial and boundary conditions:

ordinary differential equations (ODEs) or partial

differential equations (PDES). u(x,0)=0, 0<x<L, 4)

In this part, we would like to introduce several comments

related to NSFD schemes. A scheme is called

nonstandard if at least one of the following conditions is

u0,t) =0, u(L,t)=0, 0<t<tmax (5)

satisfied: where 0< B(x;t), a(x,t) <1, u > 0 is a constant and
1- Nonlocal approximation is used. N 02+ "™V is the variable order fractional derivative
2- Discretization of derivative is not traditional and use a defined by the Riemann-Liouville operator of order
nonnegative function. 1— y(x,t), wherey(x,t) is equal to(x,t) or a(x,t). Let

The forward Euler method is one of the simplest s assume that the coordinates of the mesh points are
discretization schemes. In this method the derivative term

%’is replaced bwafy(t), where h is the step size. x,=nh, n=0,1,....N; thp=mr, m=0,1....M

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 943-951 (2015)www.naturalspublishing.com/Journals.asp NS = 945

where h = L/N, T = tmay/M, and N, M are the total and the second derivative in the right hand side is
number of spatial nodes and the number of time stepsapproximated with the average of the central difference
respectively. On the grifx,,tm), EqQ. (3) can be written as  scheme evaluated at the current and the previous time step

ou(Xn,tm) - Bxntm) 92U(Xn, tm) 02U(xntm) _ 1 | U g —2upu n U2yt
—Qat O a2 ne T2 ¢(h)? o(h)?
(10)
u@tl—mn,tm)u(xmtm) + f (X, tm). fﬁlso, if f(x,t) has first-order continuous derivati\?tégﬁ,
en
f(Xn,tm) = T (Xn,tm—1) + O (9 (7)). (11)

The Grunwald-Letnikov definition is important for wherep(h) and y(7) have the properties:
our purposes in this paper because it allows us to estimate
numerically in a simple and efficient way. From the
relationship between the Riemann-Liouville and the
Grunwald-Letnikov, then Riemann-Liouville fractional

W(t) =T1+0(1?) and @(h) = h?+O(h%).
Substituting, equations)-(11) into Eqg. @) we obtain:

partial derivative of order % ynm can be expressed as um— gm-1
follows: G
1 1-Bnm m—1 m—1
_ P [upt 1 — 20+ upt g Ul —2uy Ul
oZt Mu(xt) = Ilmorw‘m‘1 %W amu(x,t —11). (6) 2g(h2 LT " n
T—
U £ 69 (1)), (12)
According to I. Podlubny in13], the right-hand side of  Now, using the definition of the Griinwald-Letnikov fractai
equation 6) is approximated by: variable-order given ing), we get
[tm/T] m—1 m
i m-1 ! up' — u 1 15 (B !
fm, 0 3 whinot—117) = E G A 1lzow”’“)(” SRR
[tm/T] Bnml I2mfll+mll_
phm-1 % Wh >mu (Xn,tm—1T) + O(1P), (7) Z)W”m (U th Una )l
. m
hence, Eq.§) yields to pe (t)dnm—1 %wﬁf’n’q‘)unm" +f 1l n=1..N-1,m=12.,M,
|=
- m (13)
0%1 By (X, tn) = TVm—1 %Wﬂfmu(xn,tm_ﬂ—k o(1P).
= where
. . . (8) BN _ (_qy (1= Pom
This formula is not unique because there are many Wim® = (—1) |
different choices fowﬂ}n that lead to approximations of
different ordersp ([6],[13]). The definition = (-1 (1= Bom)(=Bn. m)“ (1-Bom—1+ 1),
1- 1-a
with = (-2 (177) = ol = -1 (1)
o (_1)| 1- an,m)(—an,m) (1 Onm— [+1)
= T
(_1)I (1- Vn,m)(_yn,m) (1 Yam— [+1)
I! ’ wW=0, n=0,1,2,..,N, (14)

provides ordep = 1.

Now, we apply the Mickens discretization scheme to the ug'=0, uy=0, m=12..M. (15)
equation 8) by replacing the step sizeby a function of i , . ) .

h, g(h) and the step size by a function oft, ¢(t). The After doing some algebraic manipulation to equatib8)(

left hand side of Eq.3) is approximated, i.e., we obtain,
ﬁU(thm) _ unm_unm_l ¢(T)l3n,m (B. O) ¢(T)[3nm (5.0 o (a O m
ot BIG © B 2¢(h)2 Wi Ui g + (14 o(h)2 Wi+ M@ (T)"mwihm U
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Proof. For simplicity, let us assume that

¢(T)B" (B,0), m
an U _1 = (16)
2¢p(h n-1 7)Pnm
1 wlh? 50 ,m = ¢(£)(|1)2 ,and  Ynm= pe(T)™m,
W[d,(r)ﬁnmw +¢( )Bnmwnm 1]un+1+
then we can rewrite Eq16)
1o @0 oy HOPT (80 ) anmpfaD)m-
oz " g(h)2 : o
B @PwEY g TP B0 -y 2mW”m U1+ (14 @il + i Ul
2¢(h) n
m-2 T Bam
3 Gt Wl - ST
¢(T)Bnm( (,3|+2)+W(5|+1 L ud(r )”nmw(“”z))um 21, 1 B.1) 5.0 1
o(h)? nm-1 " 5(%"‘Wm +(than 1) nel T
"’Zg(ﬁ":(w@'”)wff’nﬁj) U2 4 () (1= gt — @il s — Wi Ul
1
LetU™ = [ul",u],...,uy_,], then Egs.{4)-(16) can be 5(% mW +(pn Wano_)l)Unm:f+

transferred into a matrix form as follows:

m-—2 1+2 I+1)y, m-2—
AU™—BU™ 1 ¢ Z)C|Um‘2"+fm‘1zbm, (17) Z} S W -

whereCy, C1, - - -, Cy_2; A; B are matrices of ordeiN — l3 1+2) (B1+1) (a,l+2)y m-2-1
1) x (N —1). The structure of matriA is (%m( W1 )+llf i U2

i&:; é‘(l:; - M(W(B|+z> PPy 2y

B B &

A— e Assume thatul' = £,€9" (as assumed in the von
' : : ’ Neumann stablllty procedure), then we get
aN_1 8y —%Wﬁ?ﬁo)g‘me‘q(”“)h%—
where 5
(m) _ g(Fnm (B anmy(@:0) m) _
an (1+ oz an ‘Hld’( )W )andan (1+qhmw,<1m +L.Unmwnm ) Emeddnh (th ’305 dan-1)h
_ ¢@Pom, (B.0)
2¢(h)z M

n=12,---,N— 1. The matrixA is a strictly diagonally
dominant matrix, henc@ is a nonsingular matrix. Thus
the linear equation system7) has a unique solution, and

(%mww SR GO N

so the numerical method4)-(16) is uniquely solvable. (1- %,mwﬁﬁﬁ _ %-,mWf]l,}rﬂl _ Ll—’n,ng?nlll>)Em—leiqnh—
. . 1 (B.1) (B.0) jq(n-1)h
4 Stability analysis S (@hmWim” + hmWy ) )&m_1dN-DN_

In this section, we study the stability analysis of the m-2 112 11 .
NSCN schemel(6) for the free force case. lZ}[T’m(WﬁFF LBt g o N

Theorem 1The variable order fractional NSCN (g, <W§§ﬁ1'+2)+wgﬁm'+ll)) + YW ) o N4
discretization, using the shifted Gmwald estimates, ' '

applied to the variable order fractional Cable Ecg)(@nd _

defined by 16) is unconditional stable fod < B(x,t) < 1 @(w&ﬁ#a W) o €900 =0

and0< a(x,t) < 1.
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Divided by
—~ @WE’EO) En€ 4 (14 ghmWiBY + P W) Em
oy

2
(1— gt — %mwwm — Y ) Em-1 -

1 .
2 (il + %amwfrﬁ(?l)fmfleflqh—

m-2 _
2, [%( wibn "2 w1 ) -2 16—
1=

(gham (Wil 2 + Wil D) + Yl ) & 21+

@(Wﬁﬁ) il )em o e =0

Now, usinge® = cos8 +isin@, we have

[~ Bm WD) (cosa) +isin(ah) + (1-+ Wil + Ynmthis?)

— P (cosah) — i sin(ah) -

(B,1) (B,

(5 (@ + w51 ) (cos(ah) +isin(ah)) +

NI =

(B,1)

(1- hmWam (lth — YnmW n’w ))“’

1
5 (@il + g ) (cos(an) —isin(ah))Jém-1—

ng B0 wifid 2 wifn 1) (costah) +isin(ah) -

(¢hm )+

(wﬁ?ﬁhz) +Wf13 mHll ) + n, wnamI+2

B il 2+l ) (cosah) —isin(ah)) &m -1 = 0.

Under some simplifications, we get

1+ ‘.Uana D JF(ﬁthB D 25”'F<qh/2 )1 Em—

[1— YnmW%Y — (WD + o ) (280 (a1/2))] Emet

. 1 .
— il Eme o — > (bl + Grm(Foy 1) &6

_ Zj W<p|+2)+WBI+1)>

(—2sirf(qh/2)) + YW T2 Em 2 = 0.

Inserting the expressiofin_1 = N~"1&m,
in the above equation

Lt Ynrwi%Y + g (2sir(qh/2)) Em

—[1—¢n, mWn m X — (¢, mWElﬁm ) +¢h ngBmO)l)

(2sirf(qh/2))]n~*ém—

;m W2 Wil ) (~2sirf (ah/2)) + i 102 Em =0,

divided byém to obtain the following formula of:

{1 Un, mWI('lam) — (tn, mW(Bml) + @, mWnﬁmO)],)(ZSirF(qh/z))}

{1+ Un, mWnam0> + @, mWanm(ZS'nZ(qh/z )}

n=

ST [anm(wifin ? 4wl 1Y) (—25irP(ah2) + Y 2] 1t

{1+ Un Wi + Wi ( ZSlrF(qh/Z))}

The mode will be stable as long g5 < 1, so

1—in, mWI('lam) — (tn, W(Bml) + @, mWnﬁmO)],)(ZSirF(qh/z))}

el
{1+ Un, mWnam0> + @, mWanm(ZS'nZ(qh/z )}

ST [anm(wifin ? Wi 1Y) (—25irf(ah2) + Y 2] 1+
{1+ Un Wi + Wi ( ZSlrF(qh/Z))}

<1

By consideringn = —1, and since

[L+ Ynnhs? + annndfid (25 (ahy2))] > 0

then,
— (1= YnmWhi) — g (25irP (ghy/2)) +

(L= Ynmwisii) — (gnmwili) + g ) (2sirf (gh)/2))

Z)% Wi W) 2sir(ahy2) (-1 +

% Un, mqurr: +2 )4 <0,
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the numerical solutions of the proposed method with
2 different values ofa (x,t), B(x,t). Moreover, in Figs.2

(B.1) (Bn,qO) _ ZJ(W%B%H) +wff3r;:+ll>)(—l)*' < and4 show 3D-drawing of the absolute error "Error” of
i S ’ (AL -

—wifi —wifi) —wB? . ! abso!
the numerical solutions with different values of
a(xt), B(xt). From the results displayed in the Talle
T , and in all the figures, it is obvious that the proposed
e sin? (gh/2) method is an efficient and able to give numerical solutions

coincide closely with the exact solutions.

ngxn%o)‘FWﬁ]?nHE+ZP1:702W§€H’1|+2)(—1)7|

let Sma = ST Wi (=1)7,

— | | —
andsp = 3T Wi+ Wi 1) (-1,

B9 B B0 g _ Whi Wt + Sna oo}

—Wp — W, —W, '
n,m n,m %Siﬁ(qh/z) 08l

nm-1

Sincewﬁ?mo) = %10) =1, Wﬁf’ml) +Sna > —1, Wﬁﬁ{}) +
Snp > —1and2w(”n‘—'n’:1 sir?(gh/2) is always positive, we can _
conclude that the scheme is unconditional stable. 0al

5 Numerical experiments .
—&<— Approximate Solution

In this section, we present numerical example to illustrate 0 0z 04 06 08

the efficiency and the validation of the proposed numerical *

method when it applied to solve numerically the variable

order fractional Cable equation.

Fig. 1: The behavior of the numerical and exact
Example 1Consider the following initial-boundary  sojutions a(x,t) = 543, a(x t) — H=cox)

. . . 9 ) 9 11 .
problem of the variable-order fractional nonlinear Cable
equation.

wt) = o2 P un(x t) — 0 Vu(x,t) + F(x,1),

on a finite domai® < x < 1, with 0 <t < tmax
The source term is given by:

HZtB(x,t)+1 ta(x,t)+l ) .
fixt)=2 (” F2ipxy) Tt a(x,t))) In(roq)

IS

w

the initial and boundary conditions are:

Absolute error

N

u(x,0)=0; u(0,t)=u(l,t)=0,

[

ko

let
° Y(1) =sinh(1) and @(h) =€'—1.

and the exact solution is:
u(x,t) = t?sin(mx).

Tablel, shows the maximum erroEf r or " of proposed iy 2: The absolute error of the numerical solution at
method between the exact solution and the numerica (xt) = 543 a(x t) = 11-co(xt)

solution atty = 1, using different values oB(x,t) and ’ R no
a(xt).

In Tablesl and?2, a comparison between the NSCN
and the standared Crank-Nicholson (SCN) solutions,
where the accuracy of the NSCN is better than the SCN.
Figs.1 and3 show the behavior of the exact solutions and
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Table 1: The maximum errorEr r or ” of the numerical solutions using different valuesgy,t) anda (x,t).

N=50M—10 | N—100 M =15 [ N=100M =20 | N= 100 M = 30
B(x,t) a(xt) Error Error Error Error
9410 15+S'”5<X‘) 1.04e-2 8.90e-3 3.95e-3 6.39¢-4

10+(<) —OdP° 16* Xt)s 1.23e-2 1.02¢-2 5.08e-3 1.97e-4
Byt ( 2k 15%e-2 1.23e-2 6.72e-3 1.39e-4

10tcoshy [} 12 51'23<X‘> 1.40e-2 1.14e-2 5.98¢-3 8.11e-5
S+ X)? S-sir(x) 1.38e-2 1.12e2 5.79¢-3 6.50e-4

S (P sy | 15-0a)" 1.95¢-2 1.50e-2 8.74e-3 2.70e-3

543 1-coS(x) 4.64e-3 5.20e-3 1.08e-4 2.61e-5

Table 2: The maximum errorEr r or ” of the SCN method using different values ®fx,t) anda (xt).

N=50M=10] N=100M =15 N=100 M =20 | N=100 M = 30
B(x,1) o(x,t) Error Error Error Error
8¢ 15+S'”5<X‘> 2.70e-2 1.73e-2 1.24e-2 7.97e-3

ESE 16+1<7xt>"’ 2.89e-2 1.87e-2 1.36e-2 8.80e-3
B t* 120 3.16e-2 2.07e-2 1.52e-2 9.99e-3
1o+<igsé(xt) 1ZfsliSS<xt) 3.05e-2 1.98e-2 1.44e-2 9.41e-3
SHa) o-sirf() 3.04e-2 1.96e-2 1.42¢-2 9.22¢-3
97(xt)26+osin3(xt) 1&1(§<t)4 3.58e-2 2.33e-2 1.71e-2 1.12e-2
53 11-cos0d) 2.15e-2 1.37e-2 9.68e-3 6.09e-2
) .
0.9+ x10°
08 °

,/'l,l OXORISIISN

I .‘o‘o‘&‘v‘
"l"::'«. s

Ul

w

Absolute error
N

0
55
%
555
XSO
S

[

0.1r —+— Exact Solution
—&— Approximate Solution
. n T

.
0 0.2 0.4 0.6 0.8 t 0 o
X

0.2

Fig. 3: The behavior of the numerical and exact Fig. 4: The absolute error of the numerical solution at
solutions a(x,t) — 10+igsg(xt) a(xt) = 12— 51|23<Xt)' B(xt) = 10+(_ic2>s;(xt) a(xt) = 12— sm3(xt)

6 Conclusions

In this paper, NSCN method with shifted Griinwald

estimate applied for solving variable order fractional show that NSCN more accurate than SCN. From this
Cable equation. Special attention is given to study thecomparison, we can conclude that the numerical solutions
stability of the method. The obtained numerical resultsare in good agreement with the exact solutions. All
are presented and compared with the exact and the SCiRomputations in this paper are performed using Matlab
solutions. The comparison between NSCN and SCNprogramming.
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