
Appl. Math. Inf. Sci.9, No. 2, 825-831 (2015) 825

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090231

Applications of First Integral Method to Some Complex
Nonlinear Evolution Systems
Marwan Alquran∗, Qutaibeh Katatbeh and Banan Al-Shrida

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

Received: 2 Jun. 2014, Revised: 31 Aug. 2014, Accepted: 2 Sep. 2014
Published online: 1 Mar. 2015

Abstract: The aim of the present paper is to study nonlinear system of partial differential equations (PDEs) involving both complex-
and real-valued unknown functions. We shall extend the use of the first integral method ”based on the theory of commutative algebra”
to construct new solutions to the coupled Higgs field equations, the Davey-Sterwatson (DS) equations and the coupled Klein-Gordon-
Zakharov equations. All the algebraic computations in thiswork are performed using Mathematica software.
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1 Introduction

Nonlinear partial differential equations (PDEs) appear in
various scientific and engineering fields, such as fluid
mechanics, plasma physics, optical fibres, biology, solid
state physics, chemical physics and Stochastic control
with relevance to information sciences. In the past several
decades, new exact solutions may help to find new
phenomena. A variety of powerful methods, such as
bilinear transformation, the tanh-sech method extended
tanh method, sine-cosine method, exp-function method
and others were used to study the solutions of these PDEs
[13]-[30].

Our interest in the present work is in implementing the
first integral method. The first integral method was first
proposed by Feng [1] in solving Burgers- KdV equation.
It is a direct algebraic method based on the commutative
algebra. Recently, it was successfully used for
constructing exact solutions to a variety of nonlinear
problems see [2,3,4,5,6,7,8,9]. In this work, we consider
the following mathematical models:

First, we study the Coupled Higgs field equations

utt − uxx − au+ b|u|2u−2uv = 0

vtt + vxx − b(|u|2)xx = 0 (1)
describing a system of conserved scalar nucleons
interacting with a neutral scalar meson. Wherea > 0,

b > 0, u = u(x, t) is a complex-valued function and
v = v(x, t) is a real-valued function. Authors in [10] apply
the functional variable method and obtained analytical
solution to this system.

Second, we study The Davey-Sterwatson (DS) equations

iut +
1
2

b2(uxx + b2uyy)+ a|u|2u− uv = 0,

vxx − b2vyy −2a(|u|2)xx = 0, (2)

wherea is a real constant,b2 = ±1, u(x,y, t) is a complex
valued function andv(x,y, t) is a real valued function.
These equations were introduced in order to discuss the
instability of uniform trains of weakly nonlinear water
waves in two dimensional space. Yomba use the extended
F-expansion method and general projective Riccati
equations method to construct exact solutions to
Davey-Sterwatson (DS) equations see [11,12]

Finally, we study the Coupled Klein-Gordon-Zakharov
equations

utt − c0∇2u+ f 2
0 u+ δuv = 0

vtt − c2
0∇2v− b∇2(|u|2) = 0, (3)

wherec0, f0, andb are constants,u(x,y,z, t) is a complex
valued function andv(x,y,z, t) is a real valued function.
General projective Riccati equations method in [11] is
applied to construct exact solution for (3). Also the
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extended F-expansion method is used to solve the same
equation [12].

Our goal in this work is implementing the first integral
method with help of the symbolic computational
Mathematica software to show its applicability in
handling nonlinear equations, so that one can apply it to
models of various types of nonlinear equations.

2 Analysis of the first integral method

In this section we go briefly over the procedure of the first
integral method [1,4,9]. Consider the nonlinear PDE for a
functionu of two variables,x andt :

F(u,ut ,ux,utt ,utx, ...) = 0. (4)

introduce the wave variableξ = x− ct so thatu(x, t) =
u(ξ ). Based on this we obtain

∂
∂ t

(.) = −c
d

dξ
(.),

∂
∂x

(.) =
d

dξ
(.),

∂ 2

∂ t2 (.) = c2 d2

dξ 2 (.),
∂ 2

∂x2 (.) =
d2

dξ 2 (.). (5)

Using (5) changes the PDE in (4) to an ODE

G(u,u′,u′′,u′′′, ...) = 0, (6)

where the prime denotes the derivatives with respect toξ .
Next, we introduce a new independent variables

X(ξ ) = u(ξ ), Y (ξ ) = u′(ξ ), (7)

This yields to a system of ODEs

X ′(ξ ) = Y (ξ ), Y ′(ξ ) = H(X(ξ ),Y (ξ )), (8)

According to the qualitative theory of ordinary
differential equations , if we can find integrals to (8), we
can reduce (8) to a first-order ODE to be solved directly.
But in general (it is really difficult for us to realize this
because for a given plane autonomous system, there is no
systematic theory that can tell us how to find its first
integrals, nor is there a logical way for telling us what
these first integrals are) see [1].

Suppose thatX(ξ ) andY (ξ ) are nontrivial solutions of
equations in (8) and q(X ,Y ) = ∑m

i=0 ai(X)Y i is an
irreducible polynomial in complex domainC[X ,Y ] such
that

q[X(ξ ),Y (ξ )] =
m

∑
i=0

ai(X)Y i = 0, (9)

whereai(X),(i = 0,1,2, ...,m) are polynomials ofX and
am(X) 6= 0. Equation (9) is called the first integral to (8).
According to the division theorem, there exists a

polynomialg(X) + h(X)Y in a complex domainC[X ,Y ]
such that

dq
dξ

=
∂q
∂X

∂X
∂ξ

+
∂q
∂Y

∂Y
∂ξ

= [g(X)+ h(X)Y ]
m

∑
i=0

ai(X)Y i
.

(10)

3 Coupled Higgs field equations

In this section we study the Coupled Higgs field equations

utt − uxx − au+ b|u|2u−2uv= 0

vtt + vxx − b(|u|2)xx = 0 (11)

First, we make the following transformation:

u(x, t) = u(ξ )exp(iη), v(x, t) = v(ξ )
ξ = k(x+λ t), η = αx+β t. (12)

Substituting (12) into (11) we obtain

0 = bu3+(a−α2+β 2+2v)u+ k2(λ 2−1)u′′

+ i(−2k(α −β λ )u′),
0 = −2bu′2−2buu′+(1+λ 2)v′′, (13)

where the prime denotes the derivation with respect toξ .
We divide the first equation of (13) into two parts
imaginary part and real part as follow

Im : (−2k(α −β λ )u′) = 0. (14)

Re : bu3+(a−α2+β 2+2v)u+ k2(λ 2−1)u′′ = 0. (15)

We only solve (15), instead of both (14) and (15), provided
that

α = β λ . (16)

integrating the second equation of (13) twice and setting
the constant of integration to be zero. We find

v =
bu2

1+λ 2 . (17)

Substituting (17) into (15) we have

−(a−α2+β 2)u+(b− 2b
1+λ 2)u

3+ k2(λ 2−1)u′′ = 0.

(18)

Using (7) we obtain

X ′(ξ ) = Y (ξ ), (19)

Y ′(ξ ) =
a−α2+β 2

k2(λ 2−1)
X(ξ )− b

k2(λ 2+1)
X(ξ )3

. (20)

Suppose thatm = 1 in (9), then

q[X ,Y ] = a0(X)+ a1(x)Y = 0.
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From (10) we obtain

dq
dξ

=
∂q
∂X

∂X
∂ξ

+
∂q
∂Y

∂Y
∂ξ

= [a′0(X)+ a′1(X)Y ]Y

+ a1(X)[
a−α2+β 2

k2(λ 2−1)
X − b

k2(λ 2+1)
X3]

= a′1(X)Y 2+ a′0(X)Y

+ [
a−α2+β 2

k2(λ 2−1)
X − b

k2(λ 2+1)
X3]a1(X). (21)

and
dq
dξ

= [g(X)+ h(X)Y ](a0(X)+ a1(x)Y )

= h(X)a1(X)Y 2+[g(X)a1(X)+ h(X)a0(X)]Y

+ g(X)a0(X). (22)

By equating the coefficients ofY i (i = 2,1,0) in (21) and
(22) we obtain

a′1(X) = h(X)a1(X), (23)

a′0(X) = h(X)a0(X)+ a1(X)g(X), (24)

a0(X)g(X) = [
a−α2+β 2

k2(λ 2−1)
X − b

k2(λ 2+1)
X3]a1(X).

(25)
Sinceai(X) (i = 0,1) are polynomials, then from(23) we
deduce thata1(X) is a constant andh(X) = 0. For
simplicity, takea1(X) = 1. Balancing the degrees ofg(X)
and a0(X), we conclude thatdeg(g(X)) = 1 only.
Suppose thatg(X) = A1X +A0 andA1 6= 0, then we find
thata0(X) is expressed as

a0(X) =
A2

2
X2+A1X +A0. (26)

Substitutinga0(X), a1(X) andg(X) into (25) and setting
all coefficients of powers ofX to be zeros, then we obtain
the following system of nonlinear algebraic equations

0 = A0A1

0 = (
A2

2

2
+

b
k2(1+λ 2)

)

0 =
3
2

A1A2

0 = A2
1+A0A2−

a2+β 2−β 2λ 2

k2(1+λ 2)
(27)

Solving (27), we obtain

A0 = ± i(a2+β 2+ aλ 2−β 2λ 4)√
2
√

bk(−1+λ 2)
√

1+λ 2
,

A1 = 0,

A2 = ∓i

√
2
√

b

k
√

1+λ 2
, (28)

whereβ ,λ andk are arbitrary. Using (26) in (9), we obtain

Y (ξ ) =−A2

2
X2−A1X −A0. (29)

Combining (29) with (19), we obtain the exact solution to
(20)

X(ξ ) = −
√

2
√

A0 tan(
√

A0
√

A2(ξ−2c0)√
2

)
√

A2
, (30)

where c0 is the integration constant. Therefore, the
solutions of (11) are

u(x, t) = ± tanh(

√

−a+β 2(−1+λ 2)(k(x+λ t)−2c0)√
2k
√
−1+λ 2

× iexp(iβ (λ x+ t))

√

−a+β 2(−1+λ 2)
√

b
√

1− 2
1+λ 2

. (31)

v(x, t) =
µ

λ 2−1
tanh2(

√µ(k(x+λ t)−2c0)√
2k
√
−1+λ 2

, (32)

whereµ = a−β 2(−1+λ 2).

4 Davey−Sterwatson (DS) equations

Consider the Davey-Sterwatson (DS) equations

iut +
1
2

b2(uxx + b2uyy)+ a|u|2u− uv = 0,

vxx − b2vyy −2a(|u|2)xx = 0. (33)

Apply the following transformations:

u(x,y, t) = u(ξ )exp(iη), v(x,y, t) = v(ξ ),
ξ = k(x+ ly+λ t), η = αx+β y+ γt. (34)

Substitution (34) into (33) yield the following system of
ODEs

0 = 2au3− (b2α2+ b4β 2+2γ +2v)u+ b2k2(1+ b2l2)u′′,

0 = −4au′2−4auu′′+(1− b2l2)v′′, (35)

where λ = −b2α − b4lβ and the prime denotes the
derivation with respect toξ .

Integrating the second equation of (35) twice and setting
the constant of integration to be zero. We find

v =
2a

1− b2l2 u2
. (36)

Substituting (36) into the first equation of (35) we have

0 = b2k2(1+ b2l2)u′′− (b2α2+ b4β 2+2γ)u

+ a(2+
4

b2l2−1
)u3

. (37)

Using (7) we obtain

X ′(ξ ) = Y (ξ ), (38)
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Y ′(ξ ) =
b2α2+ b4β 2+2γ

b2k2(1+ b2l2)
X(ξ )

− 2a
b2k2(−1+ b2l2)

X(ξ )3
. (39)

Suppose thatm = 1 in (9), then

q[X ,Y ] = a0(X)+ a1(x)Y = 0.

From (10) we obtain

dq
dξ

=
∂q
∂X

∂X
∂ξ

+
∂q
∂Y

∂Y
∂ξ

= a1(X)[
b2α2+ b4β 2+2γ

b2k2(1+ b2l2)
X − 2a

b2k2(−1+ b2l2)
X3]

+ [a′0(X)+ a′1(X)Y ]Y.

= [
b2α2+ b4β 2+2γ

b2k2(1+ b2l2)
X − 2a

b2k2(−1+ b2l2)
X3]a1(X)

+ a′1(X)Y 2+ a′0(X)Y. (40)

and
dq
dξ

= [g(X)+ h(X)Y ](a0(X)+ a1(x)Y )

= h(X)a1(X)Y 2+[g(X)a1(X)+ h(X)a0(X)]Y

+ g(X)a0(X). (41)

By equating the coefficients ofY i (i = 2,1,0) in (40) and
(41) we obtain

a′1(X) = h(X)a1(X), (42)

a′0(X) = h(X)a0(X)+ a1(X)g(X), (43)

a0(X)g(X) = [
b2α2+ b4β 2+2γ

b2k2(1+ b2l2)
X ]a1(x)

− [
2a

b2k2(−1+ b2l2)
X3]a1(X). (44)

Sinceai(X) (i = 0,1) are polynomials, then from (42) we
deduce thata1(X) is a constant andh(X) = 0. For
simplicity, takea1(X) = 1. Balancing the degrees ofg(X)
and a0(X), we conclude thatdeg(g(X)) = 1 only.
Suppose thatg(X) = A2X +A1 andA2 6= 0, then we find
thata0(X) is expressed as

a0(X) =
A2

2
X2+A1X +A0. (45)

Substitutinga0(X), a1(X) andg(X) into (44) and setting
all coefficients of powers ofX to be zeros, then we obtain
the following system of nonlinear algebraic equations

0 = A0A1

0 =
A2

2

2
+

2a
b2k2(−1+ b2l2)

0 =
3
2

A1A2

0 = A2
1+A0A2−

b2α2+ b4β 2+2γ
b2k2(1+ b2l2)

(46)

Solving (46), we obtain

A0 = ±
(−1+ b2l2)

√

a
b2−b4l2

(b2α2+ b4β 2+2γ)

2ak(1+ b2l2)
,

A1 = 0,

A2 = ∓
2
√

a
b2−b4l2

k
, (47)

whereα,β ,γ, l andk are arbitrary. Using (47) in (9), we
obtain

Y (ξ ) =−A2

2
X2−A1X −A0. (48)

Combining (48) with (38), we obtain the exact solution to
(39)

X(ξ ) = −
√

2
√

A0 tan(
√

A0
√

A2(ξ−2c0)√
2

)
√

A2
, (49)

where c0 is the integration constant. Therefore, the
solutions of (33) are

u(x, t) = ± tan(

√

b2α2+ b4β 2+2γ
2b2k2+2b4k2l2 (ξ −2c0))

× k

√

b2α2+b4β 2+2γ
b2k2(1+b2l2)√
2
√

a
b2−b4l2

exp(i(αx+β y+ γt)) (50)

v(x, t) = tan2(

√

b2α2+ b4β 2+2γ
2b2k2+2b4k2l2 (ξ −2c0))

× b2α2+ b4β 2+2γ
1+ b2l2 , (51)

whereλ =−b2α − b4lβ .

5 Coupled Klein−Gordon−Zakharov
equations

Consider the Coupled Klein-Gordon-Zakharov equations

utt − c0∇2u+ f 2
0 u+ δuv = 0

vtt − c2
0∇2v− b∇2(|u|2) = 0 (52)

wherec0, f0, andb are constants,u(x,y,z, t) is a complex
valued function andv(x,y,z, t) is a real valued function. To
solve (52), we apply the transformations

u(x,y,z, t) = u(ξ )exp(iη),
v(x,y,z, t) = v(ξ ),

ξ = k(x+ ly+ nz+λ t),

η = αx+β y+ωz+ γt. (53)

Substituting (53) into (52) yield the following system of
ODEs

0 = ( f 2
0 − γ2+ c2

0(α
2+β 2+ω2)+ δv)u

− k2(−λ 2+ c2
0(1+ n2+ l2))u′′,

0 = 2b(1+ n2+ l2)(u′2+ uu′)− (λ 2− c2
0(1+ n2+ l2))v′′

(54)
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where

α =−lβ +(−1+
1

c2
0

)γλ − nω .

and the prime denotes the derivation with respect toξ .

Integrating the second equation of (54) twice and setting
the constant of integration to be zero. We find

v =− b(1+ n2+ l2)

−λ 2+ c2
0(1+ n2+ l2)

u2
. (55)

Substituting (55) into the first equation of (54) we have

0 = ( f 2
0 − γ2+ c2

0(α
2+β 2+ω2)u+

bδ (1+ n2+ l2)u3

λ 2− c2
0(1+ n2+ l2)

− k2(−λ 2+ c2
0(1+ n2+ l2))u′′.

(56)

Using (7) we obtain

X ′(ξ ) = Y (ξ ), (57)

Y ′(ξ ) =
f 2
0 − γ2+ c2

0(α2+β 2+ω2)

k2(−λ 2+ c2
0(1+ n2+ l2))

X(ξ )

− bδ (1+ n2+ l2)

k2(λ 2− c2
0(1+ n2+ l2))2

X(ξ )3
. (58)

Suppose thatm = 1 in (9), then

q[X ,Y ] = a0(X)+ a1(x)Y = 0.

From (10) we obtain

dq
dξ

=
∂q
∂X

∂X
∂ξ

+
∂q
∂Y

∂Y
∂ξ

= [
f 2
0 − γ2+ c2

0(α2+β 2+ω2)

k2(−λ 2+ c2
0(1+ n2+ l2))

]Xa1(X)

− [
bδ (1+ n2+ l2)

k2(λ 2− c2
0(1+ n2+ l2))2

X3]a1(X)

+ a′0(X)Y + a′1(X)Y 2
. (59)

and
dq
dξ

= [g(X)+ h(X)Y ](a0(X)+ a1(x)Y )

= h(X)a1(X)Y 2+[g(X)a1(X)+ h(X)a0(X)]Y

+ g(X)a0(X). (60)

By equating the coefficients ofY i (i = 2,1,0) in (59) and
(60) we obtain

a′1(X) = h(X)a1(X), (61)

a′0(X) = h(X)a0(X)+ a1(X)g(X), (62)

a0(X)g(X) = [
f 2
0 − γ2+ c2

0(α
2+β 2+ω2)

k2(−λ 2+ c2
0(1+ n2+ l2))

X ]a1(X)

− [
bδ (1+ n2+ l2)

k2(λ 2− c2
0(1+ n2+ l2))2

X3]a1(X). (63)

Sinceai(X) (i = 0,1) are polynomials, then from(61) we
deduce thata1(X) is a constant andh(X) = 0. For
simplicity, takea1(X) = 1. Balancing the degrees ofg(X)
and a0(X), we conclude thatdeg(g(X)) = 1 only.
Suppose thatg(X) = A1X +A0 andA1 6= 0, then we find
thata0(X) is expressed as

a0(X) =
A2

2
X2+A1X +A0. (64)

Substitutinga0(X), a1(X) andg(X) into(63)and setting all
coefficients of powers ofX to be zeros, then we obtain the
following system of nonlinear algebraic equations

0 = A0A1,

0 = A2
1+A0A2−

f 2
0 − γ2+ c2

0(α
2+β 2++ω2)

k2(−λ 2+ c2
0(1+ n2+ l2))

,

0 =
3
2

A1A2,

0 =
A2

2

2
+

bδ (1+ n2+ l2)

k2(λ 2− c2
0(1+ n2+ l2))2

. (65)

Solving (65), we obtain

A0 = ± f 2
0 − γ2+ c2

0(α2+β 2+ω2)√
2
√

bk
√

δ
√
−1− l2− n2

,

A1 = 0,

A2 = ±
√

2
√

b
√

δ
√
−1− l2− n2

−kλ 2− c2
0k(1+ n2+ l2)

, (66)

whereβ ,ω ,γ,λ ,n, l andk are arbitrary. Using (66) in (9),
we obtain

Y (ξ ) =−A2

2
X2−A1X −A0. (67)

Combining (67) with (57), we obtain the exact solution to
(58)

X(ξ ) = −
√

2
√

A0 tan(
√

A0
√

A2(ξ−2ξ0)√
2

)
√

A2
, (68)

where ξ0 is the integration constant. Therefore, the
solutions of (52) are

u1(x, t) = eiη
i
√

f 2
0 + c2

0k1− γ2
√

k2(c2
0k2−λ 2)

√
b
√

k2
√

δ

× tan(

√

f 2
0 + c2

0k1− γ2ξ −2ξ0)

k
√

2c2
0k2−2λ 2

) (69)

v1(x, t) = tan2(

√

f 2
0 + c2

0k1− γ2(ξ −2ξ0)

k
√

2c2
0k2−2λ 2

)

× f 2
0 + c2

0k1− γ2

δ
(70)
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u2(x, t) = eiη
i
√

− f 2
0 − c2

0k1+ γ2
√

k2(c2
0k2−λ 2)

√
b
√

k2
√

δ

× tanh(

√

− f 2
0 − c2

0k1+ γ2(ξ −2ξ0)

k
√

2c2
0k2−2λ 2

) (71)

v2(x, t) = tanh2(

√

f 2
0 + c2

0k1− γ2(ξ −2ξ0)

k
√

2c2
0k2−2λ 2

)

× − f 2
0 + c2

0k1− γ2

δ
(72)

wherek1 andk2 are

k1 = α2+β 2+ω2
,

k2 = 1+ l2+ n2
, (73)

andα =−lβ +(−1+ 1
c2
0
)γλ − nω .

6 Conclusions

In this work, we extend the application of first integral
method to solve some nonlinear evolution systems. By
means of this method new exact solutions to such
evolution systems are obtained. The performance of this
method is found to be reliable and effective. The
Mathematica software was used to solve complicated and
tedious algebraic calculations. The proposed method can
be extended to other nonlinear problems in mathematical
sciences.
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