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Abstract: The aim of the present paper is to study nonlinear systemrtibpdifferential equations (PDESs) involving both comyple
and real-valued unknown functions. We shall extend the @ifeediirst integral method "based on the theory of commugadilgebra”
to construct new solutions to the coupled Higgs field equatithe Davey-Sterwatson (DS) equations and the coupldd-Klerdon-
Zakharov equations. All the algebraic computations inosk are performed using Mathematica software.
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1 Introduction b > 0, u=u(xt) is a complex-valued function and

. o . . . v=V(x,t) is a real-valued function. Authors id] apply
Nonlinear partial differential equations (PDES) appear inyhe fynctional variable method and obtained analytical
various scientific and engineering fields, such as fluidgq| tion to this system.

mechanics, plasma physics, optical fibres, biology, solid
state physics, chemical physics and Stochastic Contro#econd,we study The Davey-Sterwatson (DS) equations
with relevance to information sciences. In the past severa

decades, new exact solutions may help to find neVWut+§b2(uxx+b2uyy)+a|u|2u—uv:0,

phenomena. A variety of powerful methods, such as

bilinear transformation, the tanh-sech method extended Vix — b?Vyy — 2a(JU[?)xx = O, (2)
tanh method, sine-cosine method, exp-function method

. 2 _ .
and others were used to study the solutions of these PDE\gherea IS a rgal constank - L uxyt)isa comp!ex
[13-[30. valued function and/(x,y,t) is a real valued function.

These equations were introduced in order to discuss the
instability of uniform trains of weakly nonlinear water

first integral method. The first integral method was first waves in two dimensional space. Yomba use t.he ext_endgd
F-expansion method and general projective Riccati

proposed by Fendl] in solving Burgers- KdV equation. . .
It is a direct algebraic method based on the commutativegit\]/g?gfervzgigz%jg egagﬁgﬁgtsmixfzﬁt solutions o

algebra. Recently, it was successfully used for
constructing exact solutions to a variety of nonlinear
problems see? 3,4,5,6,7,8,9]. In this work, we consider
the following mathematical models:

Our interest in the present work is in implementing the

Finally, we study the Coupled Klein-Gordon-Zakharov
equations

Wt — co%u+ féu+duv=0

First, we study the Coupled Higgs field equations Vig — C(2)|:|2V— bD2(|u|2) —0, 3)

2
Ut — Uoc — QU+ BJUU —2uv =0 wherecy, fo, andb are constantsy(x,y,z t) is a complex
Vit + Voo — B([U] %) = 0 (1) valued function and/(x,y,zt) is a real valued function.
describing a system of conserved scalar nucleon$seneral projective Riccati equations method irl][is
interacting with a neutral scalar meson. Where- 0, applied to construct exact solution foB)( Also the
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extended F-expansion method is used to solve the samgolynomialg(X) 4+ h(X)Y in a complex domairC[X,Y]

equation 12].

Our goal in this work is implementing the first integral
method with help of the symbolic computational
Mathematica software to show its applicability in

such that
dg  9qoxX  dqoY A i
Ge ~ oxog " av og = 1900 +OOV 3 aY'
(10)

handling nonlinear equations, so that one can apply it to

models of various types of nonlinear equations.

2 Analysis of the first integral method

3 Coupled Higgs field equations

In this section we study the Coupled Higgs field equations

In this section we go briefly over the procedure of the first y,; — u, — au—+ b|u|2u —2uv=0

integral method1,4,9]. Consider the nonlinear PDE for a
functionu of two variablesx andt :

(4)

introduce the wave variablé = x — ¢t so thatu(x,t) =
u(¢). Based on this we obtain

F(U,U'[,UX,U'H,U'[)(,...) = 0

17} d 7} d
E(') = —CE(-% 5((-) = ﬁ(')a
9° , d? 9? d?
W(') =cC d—Ez(-)v W(') = d—sz(-)- (5)
Using (6) changes the PDE i to an ODE
G(u,u,u” u”,...) =0, (6)

where the prime denotes the derivatives with respeét to
Next, we introduce a new independent variables

X(&)=u(é), Y(&)=u(&), )
This yields to a system of ODEs
X'(&)=Y(&), Y'(§)=H(X().Y(&), (8

According to the qualitative theory of ordinary
differential equations , if we can find integrals ®),(we

can reduce§) to a first-order ODE to be solved directly.
But in general (it is really difficult for us to realize this

Vit + Vx — b(|u|2)xx =0 (11)

First, we make the following transformation:
u(xt) = u(d)expin), v(xt)=v()

& =k(x+At), n=ax+pt.
Substituting 12) into (11) we obtain
0=bu*+ (a—a?+ B%+2v)u+ k(A% - u”

+i(—2k(a — BA)),
0= —2bu?—2buu + (1+ A2V, (13)

where the prime denotes the derivation with respedt.to
We divide the first equation of1@) into two parts
imaginary part and real part as follow

Im: (—2k(a — BA)U) = 0.

(12)

(14)

Re:bu®+ (a— a?+ B2+ 2v)u+K(A2—1)u”’ = 0. (15)

We only solve 15), instead of bothi4) and (L5), provided
that

a=pA. (16)

integrating the second equation df3f twice and setting
the constant of integration to be zero. We find

bu?

V=17

17)

because for a given plane autonomous system, there is nQupstituting 7) into (15) we have

systematic theory that can tell us how to find its first
integrals, nor is there a logical way for telling us what —(a—a?+BAu+ (b— 2b

these first integrals are) sef.[

Suppose thak (&) andY (&) are nontrivial solutions of
equations in § and q(X,Y) = SMya(X)Y' is an
irreducible polynomial in complex domai@[X,Y] such
that
m .
qX(E).Y(E)] = 3 &Y' =0. 9)
i=
whereg;(X), (i = 0,1,2,...,m) are polynomials oX and
am(X) # 0. Equation 9) is called the first integral to8].

According to the division theorem, there exists a

WP+ K2(AZ—1)u" =0.

1+ A2
(18)
Using (7) we obtain
X'(&) =Y(&), (19)
_ 2 2 b
Y8 = S X~ e K@ (@)

Suppose than=1in (9), then

qX,Y] =ag(X) +a1(x)Y =0.
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From (1L0) we obtain

dg dqadxX dqaY
df ~ OX 3E oY 9F

= [ag(X) +ay(X)Y]Y

2 2 b
+ al(x”?@(gz ff) AT R TI
= &y (X)Y? +ag(X)Y
A 2 b

+ e ff) “eperp X @Y
and
T = 900+ hOXY](ao(X) +210Y)

= h(X)ay(X)Y?+ [g(X)a1(X) + h(X)ao(X)]Y

+ g(X)ao(X). (22)

By equating the coefficients of (i = 2,1,0) in (21) and
(22) we obtain

2 (X) = h(X)a(X). (29
H(X) = h(X)a() +a(X)gX).  (24)

2., n2
%wmmr=ﬁ%;fﬂX—Wulﬂyﬂmwz)
25

Sinceg;(X) (i = 0,1) are polynomials, then frong3) we
deduce thata;(X) is a constant and(X) = 0. For
simplicity, takea; (X) = 1. Balancing the degrees gfX)
and ap(X), we conclude thatdeg(g(X)) = 1 only.
Suppose thag)(X) = A1X + Ag andA; # 0, then we find
thatag(X) is expressed as
ag(X) = %X2+A1X + Ao. (26)
Substitutingap(X), a1(X) andg(X) into (25) and setting
all coefficients of powers oX to be zeros, then we obtain
the following system of nonlinear algebraic equations

0= A)AL

wheref3, A andk are arbitrary. UsingZ6) in (9), we obtain

Y(&) = —&xz—Alx —Ao.

> (29)

Combining @9) with (19), we obtain the exact solution to

(20)

 V2y/Agtan(Ferel 2l
VA ’

where ¢y is the integration constant. Therefore, the
solutions of (1) are

V—a+ B2(—1+A2)(k(x+ At) — 2co)
V2ky/ =14 A2
Vv—a+B3(-1+2?)

(30)

u(x,t) = ttanh

x iexp(iB(Ax+t)) (31)
vby1- 5
K(X+At) —

v(x,t) = )\2#_ 1tanr?(\/ﬁ\(/§(zj%co), (32)

4 Davey-Sterwatson (DS) equations
Consider the Davey-Sterwatson (DS) equations

. 1
iU+ Ebz(uxx—k b%uyy) +ajulPu—uv=0,

Viex — b2y — 2a(|u[?)xx = O. (33)
Apply the following transformations:
u(x,y.t) = u(€)explin), v(xy,t) =v(é),
& =k(x+ly+At), n=ax+py+un. (34)

Substitution 84) into (33) yield the following system of
ODEs

0 = 2au®— (b?a? 4 b*B% + 2y + 2v)u+ b?k3(1+ bA2)U”,
0 = —4au? — dauu” + (1—bA?)V/, (35)
where A = —b%a — b*B and the prime denotes the

0 (Ag N b ) derivation with respect t§.
2 k(1422 ] ) . )
3 Integrating the second equation &5} twice and setting
0= §A1A2 the constant of integration to be zero. We find
a2+ B2 — B2A2 _ 2a

OZA%‘FAOAZ—W 27) v 1_b2|2u : (36)
Solving 7), we obtain Substituting 86) into the first equation of35) we have

(@24 B2+ ar2— B2A%) 0 = b2K?(1+ b212)U" — (b?a?+b*B2 + 2y)u
Ao =+ ;

V2Vbk(=1+2A2)y/1+ A2 + a2+ ﬁl)uﬁ (37)
A1 =0, B

Using (7) we obtain
kvt A (&) =Y(&), (38)
(@© 2015 NSP
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22 1 hAR2
vi(g) = TAHOB 2V o Solving @6), we obtain
b2k2(1+ b22)
2a , (~1+b2?), [ 2z (0% + b*B2 + 2y)
— i X(€)°. (B9) A=+ ;
b2k?(—1+ b2l2) 2ak(1+bA2)
Suppose than=11in (9), then AL =0,
a[X, Y] = ao(X) +ay(x)Y = 0. 2\
A= (47)

From (@0) we obtain

dg _ 090X, 9q0v
dé 09X &  IY &
b2a2+b*B2+ 2y 2a
= ay(X)| N

b2k2(1+ b2I2) _b2k2(—1+b2I2)X

+ [85(X) +ay(X)Y]Y.
b?a? +b*B2 + 2y

~ ThA2 (11 022)

2a

~ e 1)

+ & (X)Y2 + ag(X)Y. (40)
and
28 = 180+ hOX)Y](ao(X) + 2100Y)

= h(X)ay(X)Y?+ [g(X)az(X) + h(X)ag(X)]Y

+ g(X)ao(X). (41)

By equating the coefficients &f (i = 2,1,0) in (40) and
(42) we obtain

ay(X) = h(X)au(X), (42)
ap(X) = h(X)ao(X) +a1(X)g(X), (43)
22 402
(X)90X) = [ 2 e X0
28 Sla(X). (44)

[b2k2(—1+ b22) ]
Sinceg;(X) (i = 0,1) are polynomials, then fron4@) we
deduce thata;(X) is a constant anch(X) = 0. For
simplicity, takea; (X) = 1. Balancing the degrees gfX)
and ag(X), we conclude thatdeg(g(X)) = 1 only.
Suppose thag(X) = AxX + A; andA; # 0, then we find
thatap(X) is expressed as

ao(X) = %XZ+A1X +Ao. (45)

Substitutingag(X), a1(X) andg(X) into (44) and setting
all coefficients of powers oX to be zeros, then we obtain
the following system of nonlinear algebraic equations

k )
wherea, 3,y,] andk are arbitrary. Using47) in (9), we
obtain

Y(&)= —A—;XZ—A1X—A0. (48)

Combining @8) with (38), we obtain the exact solution to
(39

V2yAgtan(efel R
X E = - 2 9
¢ VA

where ¢y is the integration constant. Therefore, the
solutions of 83) are

u(x,t) itar(\/bza2+b4ﬁz+zy(f —2¢o))

(49)

2b%k? 4 2b%Kk?12

b2a2+b*B2+2y
b2K2 (110212

\/i b2 at,4|2

B b2a2+b*B2+ 2y
VXt = tanz<\/ A 2 (& 2%0)
ba? +b*p2 + 2y
1+ b2? ’
whereA = —b?a — b .

x Kk expi(ax+ By +yt)) (50)

(51)

5 Coupled Klein—Gordon—Zakharov
equations

Consider the Coupled Klein-Gordon-Zakharov equations
— co%u+ féu+duv=0

wit — c30%v—bO2(Ju[?) =0 (52)

wherecy, fo, andb are constantsj(x,y, z,t) is a complex

valued function and(x,y,zt) is a real valued function. To
solve 62), we apply the transformations

u(x,y,zt) = u(§)exp(in),
v(x,y,zt) = v(&),
& = k(x+1ly+nz+At),

n = ax+ By+ wz+ . (53)

0= AdA
A02 ! Substituting $3) into (52) yield the following system of
0= - % ODEs
3 b2k2(—1+b2) — Y+ ch(a®+ B%+ w?) + dv)u
0= sAA — KR(-AZ (L4 P+ 12
, b2a2 1 b*B2+ 2y 0=2b(1+r?+12)(U?+ur) — (A2 =31+’ +12))V
(@© 2015 NSP
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where 1
a=—Ip+(-1+5)yA —nw.
%)

and the prime denotes the derivation with respedt.to

Integrating the second equation & twice and setting
the constant of integration to be zero. We find

b(1+n?+12
V:_—A21c3(1+n2)+|2)“2' (59)
Substituting $5) into the first equation of54) we have
bS(1+n?+12)ud
A2 —c3(14n2+12)

0= (f¢—y*+c3(a’+B%+ wHu+

— K (=A% (1?12

(56)
Using (7) we obtain
X'(&) =Y(&), (57)
o fE—VP+ch(a?+ B%+ o)
vi§)= |22(—/\2+?:g(1+ n2+12)) X(¢)
bd(14n2+12) 5
CKRA2-c3(1+ n2+|2))2X(E) ' 8)
Suppose than=1in (9), then
a[X,Y] = ao(X) +a1(x)Y =0.
From (1L0) we obtain
dg dqadx dqaYy
dE T oX 68 v 3F
2=y +c3(a?+ B2+ w?)
= e s garmer) ™)
b&(1+n?+12) 3
- [k2(A2—cg(1+ n2+I2))2X Jas(X)
+ ap(X)Y 4 ay (X)Y2. (59)
and
T = 1900+ XY (@o(X) + 2 (X)Y)
= h(X)aq(X)Y? + [g(X)as(X) +h(X)ao(X)]Y
+ g(X)ao(X). (60)

By equating the coefficients of (i = 2,1,0) in (59) and
(60) we obtain

a1 (X) = h(X)ay(X), (61)
ap(X) = h(X)ag(X) +az(X)g(X), (62)
-y +ci(a?+ B2+ o)
aO(X)g(X) - [ |22(_)\2+(()%(1+n2+|2)) X]al(x)
bS(1+n?+12)
- lepr— g X 63

Sincea (X) (i =0,1) are polynomials, then fron§1) we

deduce thata;(X) is a constant anch(X) = 0. For
simplicity, takea; (X) = 1. Balancing the degrees gfX)

and ap(X), we conclude thatdeg(g(X)) = 1 only.

Suppose thag)(X) = Az X + Ag andA; # 0, then we find
thatap(X) is expressed as

A
a0(X) = 5 X° + AX + Ao,
Substitutingag(X), a1(X) andg(X) into(63)and setting all
coefficients of powers oX to be zeros, then we obtain the
following system of nonlinear algebraic equations

0 = AdAa,
f2_ CZ 02 2 (;.)2
0= A7+ AcAr — 2 i 0(2 thrrwr)
K2(—A2+c§(1+n2+12))

(64)

3
0= -AIA
2127

A, b1t 41
2 K2(AZ-c3(1+n2+12))2

Solving 65), we obtain
f8—y?+c3(a’+ B%+ w?)
V2Vbky/dy/—1—12—n2’

0=

(65)

Ao ==+
A =0,

V2vbVev—1-17—n?

A = £
2T TSI 12)

(66)

wheref3, w,y,A,n,| andk are arbitrary. Usingg6) in (9),
we obtain

Y(&) = —&xz—Alx —Ao.

X (67)

Combining 67) with (57), we obtain the exact solution to
(58)

 V2yAotan( el )

§) = A : (68)

where &y is the integration constant. Therefore, the
solutions of 62) are

" I/ 13+ Gk — 2 KBk — A2)
vbvkav/3
\/ ¢+ ke — v2E — 2&o)
x tan )
ky/2C3K, — 212

o/ 12+ Gy — y2(& — 2&) |
Ky/2c2ky — 272

fg-f—C%kl— y2
X 5

up(xt) =

(69)

vi(xt) = tarf(

(70)
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i/~ 13— B+ 2\ /I(Bk2— A?)
Vbykav's

\/— 28— kg + y2(E -2
o tanf‘( 0 ofl y (E EO))

Up(x,t) = €

(71)
ky/2C3k, — 2A2
oot =t I’?(\/fg—f—(%kl_yz(s —250))
V2(X,1) = tan
ky/2c3ko — 2A2
2 2.
% _w (72)
o
wherek; andk, are
ki = a?+ %+
ko = 1+12+4n?, (73)

anda = —IB+(—1+3)yA —nw.
0

6 Conclusions

In this work, we extend the application of first integral [14]Alquran M, Al-Khaled K.
method to solve some nonlinear evolution systems. By
means of this method new exact solutions to such 15
evolution systems are obtained. The performance of thig
is found to be reliable and effective. The
Mathematica software was used to solve complicated ang g Abdul-Majid Wazwaz,

method

[6] Taghizadeh N. Comparison of solutions of mKdV equation
by using the first integral method and (G'/ G )-expansion
method.Mathematica Aetern2012;2: 309-320.

[7] Rostamy D, Zabihi F, Karimi K, Khalehoghli S. The First
Integral Method for Solving Maccaris System.Applied
Mathematic2011;2: 258-263.

[8] EI-Sabbagha MF, El-Ganaini SI. The First Integral Matho
and its Applications to Nonlinear Equations. Applied
Mathematical ScienceX)12;6: 3893-3906.

[9] Aslan I. Travelling wave solutions to nonlinear physica
models by means of the first integral methpdamana journal
of physics2011;76. 533-542.

[10] Bekir A, San S. The functional variable method to some
complex nonlinear evolution equationslournal of Modern
Mathematics Frontie2012;1: 5-9.

[11] Yombaa E. General projective riccati equations method
exact solutions for a class of nonlinear partial differahti
equations.Chinese Journal of Physi2805;43: 991-1003.

[12] Yombaa E. The extended F-expansion method and its
application for solving the nonlinear wave, CKGZ, GDS,
DS and GZ equations. Institute for Mathematics and its
Applications, University of Minnesota

[13] Wazwaz AM. The extended Tanh method for Abundant
solitary wave solutions of nonlinear wave equatioApplied
Mathematics and Computatiol87 (2007) pp. 1131-1142.

Sinc and solitary wave

solutions to the generalized Benjamin-Bona-Mahony-

Burgers equationsPhysica Script83 (2011).

] Alqguran M, Al-Khaled K. The tanh and sine-cosine

methods for higher order equations of Korteweg-de Vries

type. Physica Scripte84, (2011).

The sine-cosine method for

tedious algebraic calculations. The proposed method can gptaining solutions with compact and noncompact strusture

be extended to other nonlinear problems in mathematical

sciences.
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