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1 Introduction

Let A be the class of functionsf of the form

f (z) = z+
∞

∑
n=2

anzn
, (1)

which are analytic in the open unit discE = {z : |z|< 1}.
Let S∗(γ),C(γ) be the subclasses ofA of all the functions
which are starlike and convex of orderγ(0 ≤ γ < 1),
respectively. A functionsf ∈ A is said to be in the class
UST(k,γ) of uniformly starlike function of orderγ, if
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+ γ, k ≥ 0, γ ∈ [0,1).

It is obvious that, fork = 0, we get the class S∗(γ). The
class UST (1,0) ≡ UST was defined and studied by
Ronning [14] and UST(1,γ) ≡ UST(γ) was
investigated in [7],
UST(k,0)≡ k−UST is defined in [10].

Following Acu [1], we define the classUK(k,γ,β ) as
follows.

An analytic function f ∈ A is in the class
UK(k,γ,β ) if
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+β , for someg ∈UST (k,γ),

k ≥ 0,β ∈ [0,1).

We now define the following.
Definition 1.1. Let p(z) be analytic inE with p(0) = 1.
Then p(z) is said to belong to the class P(pk,γ ), if and
only if, p(z) takes all the values in the conic domain
Ωk,γ , k ≥ 0, γ ∈ [0,1), such that

Ωk,γ = (1− γ)Ωk + γ, 1∈ Ωk,γ ,

where

Ωk = {u+ iv : u > k
√

(u−1)2+ v2 }. (2)

Remark 1.1. The domainΩk is elliptic for k > 1,
hyperbolic when 0< k < 1, parabolic fork = 1 and right
half plane whenk = 0.

The functions pk,γ (z), given below, play the role of
extremal functions for the classP(pk,γ ).
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− k2−γ
1−k2 , (0< k < 1)

1+ 1−γ
k2−1

sin

(

π
2K(x)

∫

u(z)√
x

0
1√

1−x2
√

1−(tx)2
dt

)

+ k2−γ
k2−1

, (k > 1),

(3)

whereu(z) = z−
√

K
1−

√
Kz
, t ∈ (0,1), z ∈ E andK is such

that k = cosh

(

πK
′
(x)

4K(x)

)

, and K
′
(x) is complementary

∗ Corresponding author e-mail:khalidanoor@hotmail.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090230


820 K. I. Noor et. al. : On Some Subclasses of Analytic Functions Defined by...

integral of Legendere’s complete elliptic integralK(x) of
the first kind. See also [5,8].

For k = 0, it is clear that

p0,γ(z) = 1+2(1− γ)z+2(1− γ)z2+ . . . ,

For k = 1,

p1,γ(z) = 1+
8

π2 (1− γ)z+
16
3π2(1− γ)z2+ . . . .

By comparing Taylor series expansion, we have, for 0<

k < 1,

pk,γ(z) = 1+
8(1− γ)

π2(1− k2)
(arccosk)2z+ . . . ,

whereB = 2
π arccosk, and fork > 1,

pk,γ(z)

= 1+
π2(1− γ)

4
√

x(k2−1)K2(x)(1+x)

×
{

z+
4K2(x)(x2+6x+1)−π2

24
√

xK2(x)(1+x)
z2+ . . . .

}

Remark 1.2. If p ∈ P(pk,γ ), thenp ≺ pk,γ , (≺ denotes
subordinate to ) and using the properties of the domain
Ωk,we have

Re{p(z)}> Re
(

pk,γ (z)
)

>
k+ γ
k+1

.

From the definition of UST(k,γ), it follows that

f ∈ UST(k,γ) implies that z f ′
f takes all the values in the

conic domain Ωk,γ .

Definition 1.3. Let h(z) be analytic inE with h(0) = 1.
Thenh(z) is said to belong to the classPm(pk,γ), m ≥
2, if and only if there exist h1,h2 ∈ P(pk,γ ) such that

h(z) =

(

m
4
+

1
2

)

h1(z)−
(

m
4
− 1

2

)

h2(z), for z ∈ E. (4)

We note the following special cases.
(i) P2(pk,γ ) = P(pk,γ)
(ii) Pm(p0,γ) = Pm(γ). For this class, we refer to [11].
(iii) For γ = 0,k = 0, Pm(p0,0) = Pm, which is a well
known class introduced and studied in [12].
(iv) With γ = k = 0 andm = 2, we obtain the class P
of Caratheodory functions with positive real part.

Let φ(a,c;z) be the incomplete beta function
defined as follows:

φ(a,c;z) =
∞

∑
n=0

(a)n

(c)n
zn+1

, z ∈ E, c 6= 0,−1,−2, . . . ,

where (x)n is Pochhamer symbol defined in terms of
Gamma functionΓ by

(x)n =
Γ (x+ n)

Γ (x)

=







1, n = 0,

x(x+1)(x+2) . . .(x+ n−1), n ∈ N = {1,2, . . .}.

The fractional derivative of orderα is defined in [3,10] for
a function f (z) by

Dα
z f (z) =

1
Γ (1−α)

d
dz

∫ z

0

f (ξ )
(z− ξ )α dξ , 0≤ α < 1,

where f (z) is an analytic function in a simply connected
domain of the z-plane containing the origin and the
multiplicity of (z− ξ )−α) is removed by requiring
log(z − ξ ) to be real when (z − ξ ) > 0. Using
Dα

z f (z), Owa and Srivastava [10] introduced the operator
Lα : A −→ A , known as the extension of fractional
derivative and fractional integral, as follows.

Lα f (z) = Γ (2−α)zαDα
z f (z) (5)

= z+
∞

∑
n=0

Γ (n+1)Γ (2−α)

Γ (n+1−α)
anzn

= φ(2,2−α;z)⋆ f (z), α 6= 2,3,4, . . . , (6)

where L0 f (z) = f (z).
We now have

Definition 1.4. Let f ∈ A . Then f (z) is said to be in the
classUKm(k,γ,β ),
k ≥ 0, γ,β ∈ [0,1),m ≥ 2, if and only if there existsg ∈
UST(k,γ) such that
z f ′
g ∈ Pm(pk,β ), z ∈ E.

Also, f ∈UKα
λ (m,k,γ,beta), if and only if

{

(1−λ )Lα f (z)+λ z(Lα f (z))′
}

∈UKm(k,γ ,β ), forz ∈ E andλ ≥ 0.

It can easily be seen that f ∈UKα
λ (m,k,γ,β ) implies

that
{

(1−λ )
z(Lα f (z))′

Lα g(z)
+λ

z
(

z(Lα f (z))′
)′

Lα g(z)

}

∈ Pm)pk,β ),(7)

where

g ∈UST (k,γ), k ≥ 0,β ,γ ∈ [0,1), m ≥ 2,λ ≥ 0,andz ∈ E.

We now discuss some special cases.
(i) For α = k = β = γ = 0, m = 2, the class
UK0

1(2,0,0,0) coincides with the class C∗ of
quasi-convex functions which was first introduced and
studied in [6]. Also see [4].
(ii) UK0

0(2,0,0,0)≡ K, the well-known class of close-
to-convex univalent functions, see [2].

For other different choices of parameters
α,λ , k,m, β andγ, we obtain several known and new
subclasses of analytic functions.
Remark 1.3. Let f be given (1). Then, from (4) and (5),
we can write

Dα
λ f (z) = (1−λ )Lα f (z)+λ z(Lα f (z))′ = z+

∞

∑
n=2

Anzn
,

where

An =
Γ (n+1)Γ (2−α)

Γ (n+1−α)
(1+λ (n−1))an (8)
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Also, from (4) and (5), we can writeDα
λ f (z) as

Dα
λ f (z) = φ(2,2−α;z)⋆Ψλ(z)⋆ f (z), (α 6= 2,3, . . .),

Ψλ (z) =
z− (1−λ )z2

(1− z)2 .

Throughout this paper, we shall assume
k ≥ 0,λ ≥ 0,m ≥ 2, α,β ,γ ∈ [0,1) andz ∈ E. unless
otherwise stated.

2 Preliminary Results

We need the following results in our investigation.
Lemma 2.1[15]. Let f (z) andg(z) be convex and starlike
respectively. Then, for every functionF(z) analytic inE
with F(0) = 1, we have
f (z)⋆ g(z)F(z)

f (z)⋆ g(z)
⊆ coF(E), z ∈ E,

whereco denotes the closed convex hull.
Lemma 2.2 [7]. Let f ∈ UST(k,γ). Then
Lα f ∈ S∗(1

2) for k ≥ 1.
Lemma 2.3 [13].Let

h(z) = 1+
∞

∑
n=1

cnzn be subordinate toH(z) = 1+
∞

∑
n=1

Cnzn inE.

If H(z) is univalent inE andH(E) is convex, then |cn| ≤
|C1|, n ≥ 1.
Lemma 2.4. Let N,D be analytic inE with N(0) =
D(0) = 0 and D ∈UST (k,γ)⊂ S∗ in E. Then
{

(1−λ )
N(z)
D(z)

+λ
N′(z)
D′(z)

}

∈ Pm(pk,β )

implies
N
D

∈ Pm(pk,β ) in E.

Proof. Let
N(z)
D(z)

= p(z) =

(

m
4
+

1
2

)

p1(z)−
(

m
4
− 1

2

)

p2(z), (9)

wherep(z) is analytic inE with p(0) = 1. Now
N′(z)
D′(z)

= p(z)+
zp′(z)
zD′(z)
D(z)

= p(z)+
zp′(z)
p0(z)

,

where

p0(z) =
zD′(z)
D(z)

∈ P(pk,β ).

So

(1−λ )
N(z)
D(z)

+λ
N′(z)
D′(z)

= p(z)+λ
zp′(z)
p0(z)

=
{

p(z)+B(z)λ zp′(z)
}

∈ Pm(pk,β ),

where B(z) = 1
p0(z)

∈ P in E.
Using (2.1), it follows that

{

pi(z)+B(z)λ zp′(z)
}

∈ P(pk,β ) in E.

We now use a result [1, Theorem 2.2] to have
pi ∈ P(pk,β ), i = 1,2 in E which implies that
p ∈ Pm(pk,β ) in E. �

3 Main Results

Theorem 3.1. UKα
λ (m,k,γ,β ) ⊂UK0

λ (m,k,γ,β ).
Proof. Let f ∈UKα

λ (m,k,γ,β ). Then
{

(1−λ
z(Lα f (z))′

Lα g(z)
+λ

z
(

z(Lα f (z))′
)′

Lα(z)

}

∈ Pm(pk,β ),

where

z(Lα g(z))′

Lα g(z)
∈ P(pk,γ ) in E.

It is known [7] that, if Lα g ∈ UST (k,γ), then
g ∈UST (k,γ) in E. Now

(1−λ )
[

z f ′(z)
g(z)

+λ
(z f ′(z))′

g(z)

]

= (1−λ )
[

φ(2−α,2;z)⋆φ(2,2−α;z)⋆ z f ′(z)
φ(2−α,2;z)⋆φ(2,2−α;z)⋆ g(z)

]

+λ
[

φ(2−α,2;z)⋆φ(2,2−α;z)⋆ z(z f ′(z))′

φ(2−α,2;z)⋆φ(2,2−α;z)⋆ g(z)

]

= (1−λ )
[

φ(2−α,2;z)⋆ z(Lα f (z))′

φ(2−α,2;z)⋆Lαg(z)

]

+λ
[

φ(2−α,2;z)⋆ z(z(Lα f (z))′)′

φ(2−α,2;z)⋆Lαg(z)

]

=
φ(2−α,2;z)⋆

[

(1−λ ) z(Lα f )′
Lα g +λ z(z(Lα f )′)′

Lα g

]

(Lα g)

φ(2−α,2;z)⋆Lαg

=
φ(2−α,2;z)⋆F(Lα g)
φ(2−α,2;z)⋆ (Lαg)

=

(

m
4
+

1
2

)[

φ(2−α,2;z)⋆F1(Lα g)
φ(2−α,2;z)⋆ (Lαg)

]

−
(

m
4
− 1

2

)[

φ(2−α,2;z)⋆F2(Lα g)
φ(2−α,2;z)⋆ (Lαg)

]

,

where Fi ∈ P(pk,β ), i = 1,2 and Lα g ∈ S∗.
Now φ(2−α,2;z) is a convex function, since

zφ ′(2−α,2;z) = Φ(2−α,1;z) =
z

(1− z)2−α

belongs to S∗(
α
2
)⊆ S∗.

Using Lemma 2.1, we have fori = 1,2

φ(2−α,2;z)⋆Fi(Lα g)
φ(2−α,2;z)⋆Lαg

⊆ co
(

pk,β (E)
)

.

This implies
{

(1−λ )
z f ′(z)
g(z)

+λ
z(z f ′(z))′

g(z)

}

∈ Pm(pk,β ),

where g ∈ UST(k,γ), z ∈ E. This proves that f ∈
UK0

λ (m,k,γ,β ) in E. �

With similar argument, we can easily prove the
following.
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Theorem 3.2. Let 0≤ α1 ≤ α −2< 1. Then, fork ≥ 1,

UKα2
λ (m,k,γ,β ) ⊂UKα1

λ (m,k,γ,β ).

Theorem 3.3. Let
(

z(Lα f )′
)′

(Lα g)′
∈ Pm(pk,β ), (Lα g) ∈UST (k,γ).

Then f ∈UKα
0 (m,k,γ,β ) for z ∈ E.

Proof. Let

z(Lα f )′

Lα g
= p(z).

Then
(

z(Lα f )′
)′
= (Lα g)′ p(z)+ (Lαg)p′(z),

and this give us
(

z(Lα f )′
)′

(Lα g)′
=

{

p(z)+
zp′(z)
p0(z)

}

∈ Pm(pk,β ),

where

p0(z) =
z(Lα g)′

Lα g
∈ P(pα ,γ).

We use Lemma 2.4 withN(z) = z(Lα f )′, D(z) = Lα g
andλ = 1. This gives us that p ∈ Pm(pk.β ) in E which
leads to the desired results thatf ∈ UKα

0 (m,k,γ,β ) in
E. �

Next we prove that the class UKα
λ (m,k,γ,β ) is

invariant under convolution with convex univalent
functions.
Theorem 3.4. Let f ∈ UKα

λ (m,k,γ,β ) and leth(z) be
a convex univalent function. Then

( f ⋆ h)(z) ∈UKα
λ (m,k,γ,β ), z ∈ E.

Proof. Let f ∈UKα
λ (m,k,γ,β ). Then

{

(1−λ )
z(Lα f )′

Lα g
+λ

z
(

z(Lα f )′
)′

Lα g

}

∈ Pm(pk,β ),

where

Lα g ∈UST(k,γ) ⊂ S∗
(

k+ γ
k+1

)

⊂ S∗.

Now

(1−λ )
z(Lα( f ⋆ h))′

Lα(g ⋆ h)
+λ

z
(

z(Lα( f ⋆ h))′
)′

Lα (g ⋆ h)

=

h ⋆

{

(1−λ )z(Lα f )′+λ z(z(Lα f )′)
′

(Lα g)

}

(Lα g)

h ⋆ (Lαg)

=
h ⋆F(Lα g)
h ⋆ (Lαg)

.

The desired result follows by applying Lemma 2.1. �

Let pk,β (z), given by (2) be given by

pk,β (z) = 1+ δ1z+ δ2z2+ . . . .

Then

δ1 = δ (k,β ) =



























8(1−β )(arccosk)2
, 0≤ k < 1,

8(1−β )
π2 , k = 1,

π2(1−β )
4
√

x(k2−1)K2(x)(1+x)
, k > 1.

(10)

Theorem 3.5. Let f ∈UKα
λ (m,k,γ,β ) and be given by

(1). Then

|an| ≤ Γ (n+1−α)

(1+λ (n−1))Γ (n+1)Γ (2−α)

×
{

(δ (k,γ))n−1

n!
+

m
2n

|δ (k,β )|
n−1

∑
j=1

|δ (k,γ)| j−1

( j−1)!

}

.

Proof. Let G(z) = Lα g(z) ∈UST(k,γ) and write

G(z) = z+
∞

∑
n=2

Bnzn
, g(z) = z+

∞

∑
n=2

bnzn
.

Then

Bn =
Γ (n+1)Γ (2−α)

Γ (n+1−α)
bn, n ≥ 2. (11)

For p ∈ Pm(pk,β ), and p(z) = 1+ c1z+ c2z2+ . . . ,

let

p(z) =

(

m
4
+

1
2

)

p1(z)−
(

m
4
,
1
2

)

p2(z), pi ≺ pk,β , i = 1,2.

Writing

pi(z) = 1+ d1z+ d2z2+ . . . , n ≥ 1,

we have

|dn| ≤ |δ (k,β )|,
where δ (k,β ) is given by (10) and we have used Lemma
2.3. Combining these facts, we have

|cn| ≤
m
2
|δ (k,β )|. (12)

Now, using (7) and (10), we have

nAn = Bn +
n−1

∑
j=1

cn− jB j, n ≥ 2. (13)

From (11), (12) and (13), it follows that

|An| ≤
(|δ (k,γ)|)n−1

n!
+

m|δ (k,β )|
2n

n−1

∑
j=1

(|δ (k,γ)|) j−1

( j−1)!
. (14)

We obtain the required result form (7) and (14). �

We now consider the integral operatorIa : A −→A

defined as

IaF(z) =
1+ a

za

∫ z

0
F(t)ta−1dt, a ∈ C ,Re{a}> 0. (15)

For a = 1, we obtain Libera integral operator, a = 0
gives us Alexander integral operator and in the cases
a = 1,2,3, . . . , we obtain Bernardi operator.
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Theorem 3.6. Let F ∈ UKα
λ (m,k,γ,β ), and let

f (z) = IaF(z), whereIa is the integral operator defined by
(3.6). Then f ∈UKα

λ (m,k,γ,β ) for z ∈ E.
Proof. Since IaF(z) = φ(z)⋆F(z), where

φa(z) =
∞

∑
n=1

1+ a
n+ a

zn
, Re{a}> 0

is convex inE, see [15]. Proof follows immediately by
applying Theorem 3.4, and
hencef ∈UKα

λ (m,k,γ,β ) for z in E. �

Define

Ψa(z) =
a

a+1
z

1− z
+

1
a+1

z
(1− z)2

=
∞

∑
n=1

a+ n
a+1

zn
, (a >−1).

ThenΨa is convex for |z|< ra =
a+1

2+
√

3+a2
.

Since F(z) = IaF(z)⋆Ψa(z), whereIaF is defined by
(15). We use Theorem 3.3 to have:
Theorem 3.7. Let, for a > −1, IaF ∈ UKα

λ (m,k,γ,β ).
Then F ∈UKα

λ (m,k,γ,β ) for |z|< ra, where

ra =
a+1

2+
√

3+ a2
.

By choosing suitable values for different parapmeters, we
obtain several known and new results as special cases.
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