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Abstract: In this paper, a novel three-dimensional (3D) autonomous chaotic system is investigated, which displays complicated
dynamical behaviors. Basic dynamical properties are analyzed by means of phase portraits and equilibria. Also, an optimal control law
is designed for the novel chaotic system, based on the Pontryagin minimum principle (PMP). Furthermore, an adaptive andfeedback
control law is introduced to stabilize the new chaotic system with unknown parameters. The adaptive control results areestablished
using the Lyapunov stability theory. Numerical simulations are included to demonstrate the efficiency and high accuracy of the proposed
method.

Keywords: Autonomous chaotic system, Optimal control, Pontryagin’sminimum principle (PMP), Spectral methods, Adaptive and
feedback control, Lyaponuv stability theory.

1 Introduction

Chaos is an interesting phenomenon in nonlinear system
dynamics, which has theoretical and practical
applications in many disciplines of laser [1], nonlinear
circuit [2], power systems [3], etc. The chaotic systems
are dynamic systems described by nonlinear differential
equations, which are strongly sensitive to the initial
conditions [4]. This means that even if the system
mathematical description is deterministic, its behavior is
still unpredictable. In 1963, Lorenz [5] discovered a
simple three-dimensional (3D) smooth autonomous
chaotic system as the first chaotic model. The dynamic
properties of Lorenz system are well investigated in many
papers and monographs. Later, many Lorenz-like chaotic
systems were reported and analyzed, such as Rössler
systems [6], Chen system [7], Lü system [8], Liu systems
[9], and so on. Notice that, the family of Lorenz systems
has two cross-product terms on the right-hand side of
governing equations. More recently, Li et al. [10]
introduced a new 3D smooth autonomous chaotic system
with three cross-product terms. Also, they have analyzed
the different dynamic behaviors of the proposed chaotic
system, especially when changing each system parameter.

In recent years, the control of chaotic systems has
been received more attention due to its potential
applications in physics, chemical reactor, biological
networks, artificial neural networks, telecommunications,
etc [11]. In the case of chaos control, some useful
methods have been developed. These include optimal
control [12,14], synchronization [13], adaptive control
[15], state-feedback control [16], sliding mode control
[17], time-delayed feedback control [11], etc. Sarkar and
Banerjee [18] used a stochastic approach for chaos and
optimal control of cancer self-remission and tumor
unstable equilibrium states. El-Gohary and Al-Ruzaiza
[19] discussed the chaos and adaptive control of three
species continuous time prey-predator model. El-Gohary
[20] used a feedback control approach for chaos and
optimal control of cancer self-remission and tumor
unstable equilibrium states. El-Gohary and Alwasel [12]
studied the chaos and optimal control of cancer model
with complete unknown parameters. They have also
discussed the stability analysis of the biologically feasible
steady-states of this model. More recently,
Sundarapandian and Pehlivan [21] designed an adaptive
control law to stabilize a novel 3D chaotic system with
unknown parameters.
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Most of chaotic dynamical systems do not have exact
analytic solutions, so approximation and numerical
techniques must be used. Numerical methods can be used
for finding explicit expressions for the orbits, simulating
dynamical systems and computing their Lyapunov
Characteristic Exponents (LCE). The class of solution
methods based on orthogonal polynomials have become
known as spectral methods. Spectral methods are one of
the principal methods of discretization for the numerical
solution of differential equations. The main advantage of
these methods lies in their accuracy for a given number of
unknowns. The three most widely used spectral versions
are the Galerkin, collocation, and tau methods [22,23].
Collocation methods [22,23,24] have become
increasingly popular for solving differential equations,
also we can apply the method in the search of limit cycles
and isolated cycles emerging from a Hopf bifurcation.

In this paper, some basic dynamical characters of the
present chaotic system are investigated by means of phase
portraits and equilibria. Also, an optimal control law is
designed for the novel chaotic system, based on the
Pontryagin’s minimum principle (PMP) [25].
Furthermore, an adaptive and feedback control law is
introduced to stabilize the new chaotic system with
unknown parameters. The adaptive control results derived
in this paper are established using the Lyapunov stability
theory [26].

The rest of this paper is as follows. Section 2
introduces and analyzes the novel 3D chaotic system.
Section 3 discusses the problem of optimal control for the
novel chaotic system. In Section 4, an adaptive control
law is designed to stabilize the new chaotic system with
unknown parameters. Finally, conclusions are given in the
last section.

2 Analysis of the novel 3D chaotic system

The novel chaotic system is described by the following
autonomous nonlinear system of ordinary differential
equations (ODEs) [10]:










ẋ1 =−ax1+ f x2x3,

ẋ2 = cx2− dx1x3,

ẋ3 =−bx3+ ex2
2,

(1)

wherex1, x2, andx3 are the state variables, anda, b, c, d, e,
and f are positive constant parameters. Note that, the new
system (1) consists of two quadratic cross-product terms
and a square term.

2.1 Chaotic phase portraits and time responses

Whena = 16,b = 5, c = 10,d = 6, e = 18, andf = 0.5,
the new system (1) is chaotic with the Lyapunov
exponents L1 = 1.86852 > 0, L2 = 0, and
L3 = −17.73664< 0. The corresponding time responses

and phase portraits are depicted in Figs. 1-2, respectively.
It appears from Figs. 1-2 that the novel attractor displays
abundantly complicated behaviors of chaotic dynamics.
What is more, the attractor resembles the butterfly shape,
which is different from that of the Lorenz-like systems or
any existing chaotic systems.

2.2 Dissipation and attractor existence

The vector field on the right-hand side of Eq. (1) is defined
by:

F(x) =





F1(x)
F2(x)
F3(x)



=





−ax1+ f x2x3
cx2− dx1x3

−bx3+ ex2
2



 . (2)

The divergence of the vector fieldF is easily calculated
as:

∇.F =
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3
=−a+ c− b. (3)

A necessary and sufficient condition for system (1) to
be dissipative is that the divergence of the vector fieldF is
negative. In view of Eq. (3), it is immediate that system
(1) is dissipative if and only if−a+ c− b < 0. Under this
condition, the new system (1) converges exponentially;
that is:

dF
dt

= (−a+ c− b)F ⇒ F = F0e(−a+c−b)t
. (4)

Thus, a volume elementF0 in the dynamical system
(1) is apparently contracted by the flow into a volume
elementF0e(−a+c−b)t in time t. This means that each
volume containing the system trajectory shrinks to zero as
t → ∞ at an exponential rate,−a+ c− b. Therefore, all
the orbits of dynamical system (1) are ultimately confined
to a specific subset of zero volume, and the asymptotic
motion of the system (1) settles onto an attractor.

Here, witha = 16, b = 5, c = 10, d = 6, e = 18 and
f = 0.5, the exponential contraction rate of the forced
dissipative system is calculated as:

dF
dt

= (−16+10−5)F =−11F ⇒ F = F0e−11t
. (5)

2.3 Equilibria and stability analysis

The new system (1) has three equilibrium points, given by:










E1(0,0,0),
E2(

e f
ab x3

2∗,x2∗,
e
b x2

2∗),

E3(−
e f
ab x3

2∗,−x2∗,
e
b x2

2∗),

(6)

where

x2∗ =

(

ab2c
de2 f

)

1
4

. (7)
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Fig. 1: Time response of the system states witha = 16,b = 5, c = 10,d = 6, e = 18, andf = 0.5.
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Fig. 2: Phase portraits of the system witha = 16,b = 5, c = 10,d = 6, e = 18, andf = 0.5.
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Clearly,E1 is an equilibrium of the system (1) for all
values of the parametersa, b, c, d, e, and f .

Proposition 2.1. The equilibrium pointsE1, E2, and
E3 of system (1) are unstable whena = 16,b = 5, c = 10,
d = 6, e = 18, andf = 0.5.

Proof. The Jacobian matrix of system (1) is given by:

J =





−a f x3 f x2
−dx3 c −dx1

0 2ex2 −b



 . (8)

Whena= 16,b= 5,c= 10,d = 6,e= 18, andf = 0.5,
system (1) has three equilibrium points, given by:










E1(0,0,0),
E2(0.325,1.4243,7.303),
E3(−0.325,−1.4243,7.303).

(9)

The Jacobian matrix for system (1) at equilibrium
E1(0,0,0) is easily obtained as:

J(E1) =





−16 0 0
0 10 0
0 0 −5



 , (10)

which has the eigenvalues:

λ (1)
1 =−16, λ (1)

2 = 10, λ (1)
3 =−5. (11)

The Jacobian matrix for system (1) at equilibrium
E2(0.325,1.4243,7.303) is easily obtained as:

J(E2) =





−16 3.6515 0.7121
−43.8178 10 −1.9503

0 51.2744 −5



 , (12)

which has the eigenvalues:

λ (2)
1 =−15.7009, λ (2)

2 = 2.3505+14.0814i,

λ (2)
3 = 2.3505−14.0814i. (13)

The Jacobian matrix for system (1) at equilibrium
E3(−0.325,−1.4243,7.303) is easily obtained as:

J(E3) =





−16 3.6515 −0.7121
−43.8178 10 1.9503

0 −51.2744 −5



 , (14)

which has the eigenvalues:

λ (3)
1 =−15.7009, λ (3)

2 = 2.3505+14.0814i,

λ (3)
3 = 2.3505−14.0814i. (15)

Since the Jacobian matricesJ(E1), J(E2), andJ(E3)
have eigenvalues with positive real parts, it follows from
Lyapunov stability theory [26] that the equilibrium points
E1, E2, and E3 are unstable. Thus, the trajectories of
system (1) diverge from the three equilibrium points, and
the proof is complete.�

3 Optimal control of the novel 3D chaotic
system

In this section, we study the optimal control problem of the
novel 3D autonomous chaotic system (1). For the purpose
of optimal control, we will apply the PMP [25].

3.1 Theoretical results

Let us consider the novel 3D chaotic system (1) to have
the form:










ẋ1 =−ax1+ f x2x3+ u1,

ẋ2 = cx2− dx1x3+ u2,

ẋ3 =−bx3+ ex2
2+ u3,

(16)

whereu1, u2, andu3 are the control inputs, which will be
satisfied the optimality conditions, obtained via the PMP.
The proposed control strategy is to design the optimal
control inputsu1, u2, andu3 such that the state trajectories
tend to an unstable equilibrium point in a given finite time
interval [0, t f ]. Hence, the boundary conditions are
considered as:










x1(0) = x0,1, x1(t f ) = xi,1,

x2(0) = x0,2, x2(t f ) = xi,2,

x3(0) = x0,3, x3(t f ) = xi,3,

(17)

where xi, j ( j = 1,2,3) denotes the coordinates of
equilibrium pointEi (i = 1,2,3). In addition, we define
the following cost functional, which also penalizes the
use of control with large magnitude:

Ji =
1
2

∫ t f

0

3

∑
j=1

(α j(x j − xi, j)
2+β ju j

2)dt, (18)

whereα j andβ j ( j = 1,2,3) are positive constants.
The optimal control problem is to find the control

inputs u1, u2, and u3, and the corresponding state
trajectories x1, x2, and x3, which minimize the cost
functional (18), and satisfy the dynamical system (16) and
boundary conditions (17). To solve this problem, we will
derive the optimality conditions as a nonlinear two-point
boundary value problem (TPBVP) via the PMP. In the
following, we shall find it convenient to use the function
H , called the Hamiltonian, defined as:

H ,−
1
2

3

∑
j=1

(α j(x j − xi, j)
2+β ju j

2)

+λ1[−ax1+ f x2x3+ u1]

+λ2[cx2− dx1x3+ u2]

+λ3[−bx3+ ex2
2+ u3], (19)

whereλ1, λ2, andλ3 are the co-state variables. Using this
notation, the optimality conditions can be written as
follows:










ẋ1 =
∂H

∂λ1
,

ẋ2 =
∂H

∂λ2
,

ẋ3 =
∂H

∂λ3
,

(20)
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λ̇1 =−
∂H

∂x1
,

λ̇2 =−
∂H

∂x2
,

λ̇3 =−
∂H

∂x3
,

(21)











∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0.

(22)

Substituting the Hamiltonian functionH from (19)
into (20)-(22), the optimality conditions are derived in the
form:










ẋ1 =−ax1+ f x2x3+ u1,

ẋ2 = cx2− dx1x3+ u2,

ẋ3 =−bx3+ ex2
2+ u3,

(23)











λ̇1 = α1(x1− xi,1)+ aλ1+ dλ2x3,

λ̇2 = α2(x2− xi,2)− f λ1x3− cλ2−2eλ3x2,

λ̇3 = α3(x3− xi,3)− f λ1x2+ dλ2x1+ bλ3,

(24)











β1u1+λ1 = 0,
β2u2+λ2 = 0,
β3u3+λ3 = 0.

(25)

Let us solve Eq. (25) to obtain the expressions for
u1

∗(t), u2
∗(t), andu3

∗(t); that is:










u1
∗ =−

λ1
β1
,

u2
∗ =−

λ2
β2
,

u3
∗ =−

λ3
β3
.

(26)

If these expressions are substituted into Eqs. (23) and
(24), we have a set of first order nonlinear ODEs as:






































ẋ1 =−ax1+ f x2x3−
λ1
β1
,

ẋ2 = cx2− dx1x3−
λ2
β2
,

ẋ3 =−bx3+ ex2
2−

λ3
β3
,

λ̇1 = α1(x1− xi,1)+ aλ1+ dλ2x3,

λ̇2 = α2(x2− xi,2)− f λ1x3− cλ2−2eλ3x2,

λ̇3 = α3(x3− xi,3)− f λ1x2+ dλ2x1+ bλ3.

(27)

The boundary conditions for these equations are given
by Eq. (17). Notice that, as expected, we are confronted
by a nonlinear TPBVP. Solving this problem, we can
obtain the optimal control law and the optimal state
trajectories. In the next section, we will discuss the
numerical solution of the above-mentioned nonlinear
TPBVP using the MATLAB in-built solverbvp4c, which
is a finite difference code to solve TPBVPs.

3.2 Numerical results

This section presents the numerical solution of the
nonlinear TPBVP (27) with the boundary conditions (17).
The results show how the optimal solution is possible for

the controlled nonlinear chaotic system (16). In the
following numerical simulations, the MATLAB in-built
solverbvp4c is used, which is a finite difference code to
solve TPBVPs. The system parameters are chosen as
a = 16, b = 5, c = 10, d = 6, e = 18, and f = 0.5. By
these values, the new autonomous chaotic system exhibits
a chaotic behavior if no control is applied. Also, the
positive constants in the cost functionalJi are chosen as
α1 = 0.001, α2 = 0.001, α3 = 0.001, β1 = 5, β2 = 8,
β3 = 10. Figures 3-5 show the optimal control and state
trajectories of the new chaotic system for initial states
x1(0) = 0.05,x2(0) = 0.05,x3(0) = 0.0001, andt f = 0.2.

4 Adaptive control of the novel 3D
autonomous chaotic system

In this section, we obtain the new results for adaptive and
feedback control of the novel 3D autonomous chaotic
system (1), which is based on the Lyapunov stability
theory [26].

4.1 Theoretical results

Let us describe the controlled novel chaotic system by:










ẋ1 =−ax1+ f x2x3+ u1,

ẋ2 = cx2− dx1x3+ u2,

ẋ3 =−bx3+ ex2
2+ u3,

(28)

where a, b, c, d, e, and f are now considered to be
unknown parameters, andu1, u2, andu3 are the adaptive
controllers to be designed.

Theorem 4.1. The novel chaotic system (28) with
unknown system parameters is globally and exponentially
stabilized for all initial states(x1(0),x2(0),x3(0)) ∈R

3 by
the adaptive control law:










u1 = âx1− f̂ x2x3− k1(x1− xi,1),

u2 =−ĉx2+ d̂x1x3− k2(x2− xi,2),

u3 = b̂x3− êx2
2− k3(x3− xi,3),

(29)

where ˆa, b̂, ĉ, d̂, ê, and f̂ are the estimate values of
unknown parametersa, b, c, d, e, and f , respectively, and
ky (y = 1,2,3) are positive constants. Moreover, the
update law for the estimates of system parameters is given
by:






































˙̂a =−(x1− xi,1)x1+ k4(a− â),
˙̂b =−(x3− xi,3)x3+ k5(b− b̂),
˙̂c = (x2− xi,2)x2+ k6(c− ĉ),
˙̂d =−(x2− xi,2)x1x3+ k7(d− d̂),
˙̂e = (x3− xi,3)x2

2+ k8(e− ê),
˙̂f = (x1− xi,1)x2x3+ k9( f − f̂ ),

(30)

whereky (y = 4, . . . ,9) are positive constants.
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Fig. 3: The behavior of state and control functions for equilibriumpoint E1.
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ê(t)

f̂(t)

Fig. 4: Time history of the state trajectories and parameter estimates for equilibrium pointE2.
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Fig. 5: Time history of the state trajectories and parameter estimates for equilibrium pointE3.
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Proof. Substituting (29) into (28), we get the closed-
loop system as:










ẋ1 =−(a− â)x1+( f − f̂ )x2x3− k1(x1− xi,1),

ẋ2 = (c− ĉ)x2− (d− d̂)x1x3− k2(x2− xi,2),

ẋ3 =−(b− b̂)x3+(e− ê)x2
2− k3(x3− xi,3).

(31)

Let us define the parameter estimation error as:
{

ea = a− â, eb = b− b̂, ec = c− ĉ,
ed = d− d̂, ee = e− ê, e f = f − f̂ .

(32)

Using (32), the closed-loop dynamics (31) can be
simplified as:










ẋ1 =−eax1+ e f x2x3− k1(x1− xi,1),

ẋ2 = ecx2− edx1x3− k2(x2− xi,2),

ẋ3 =−ebx3+ eex2
2− k3(x3− xi,3).

(33)

For the derivation of the update law for adjusting the
parameter estimates, the Lyapunov approach is used.
We consider the quadratic Lyapunov function:

V (x1,x2,x3,ea,eb,ec,ed ,ee,e f ) =

1
2
((x1− xi,1)

2+(x2− xi,2)
2+(x3− xi,3)

2+ ea
2+ eb

2+ ec
2

+ed
2+ ee

2+ e f
2). (34)

Note that:
{

ėa =− ˙̂a, ėb =−
˙̂b, ėc =− ˙̂c,

ėd =−
˙̂d, ėe =− ˙̂e, ė f =−

˙̂f .
(35)

Differentiating V along the trajectories of (33), and
using (35), we obtain:

V̇ =−k1(x1− xi,1)
2
− k2(x2− xi,2)

2
− k3(x3− xi,3)

2

+ea(−(x1− xi,1)− ˙̂a)+ eb(−x3(x3− xi,3)−
˙̂b)

+ec(x2(x2− xi,2)− ˙̂c)+ ed(−x1x3(x2− xi,2)−
˙̂d))

+ee(x2
2(x3− xi,3)− ˙̂e)+ e f (x2x3(x1− xi,1)−

˙̂f ).

(36)

Substituting (30) into (36), the time derivative of the
Lyapunov function becomes:

V̇ =−k1(x1− xi,1)
2
− k2(x2− xi,2)

2
− k3(x3− xi,3)

2

−k4e2
a − k5e2

b − k6e2
c − k7e2

d − k8e2
e − k9e2

f . (37)

Since the Lyapunov functionV in (34) is a positive
definite function onR9 andV̇ in (37) is a negative definite
function onR9, according to the Lyapunov stability theory
[26], it follows that:
{

x1(t)→ x̄i,1, x2(t)→ x̄i,2, x3(t)→ x̄i,3,

ea → 0, eb → 0, ec → 0, ed → 0, ee → 0, e f → 0,
(38)

exponentially ast → ∞. This completes the proof.�

4.2 Numerical results

In this section, we consider the controlled novel chaotic
system (28) with the adaptive control law (29) and the
parameter update law (30). In the following numerical
simulations, the MATLAB in-built solverode45 is used
to solve the present initial value problem. The initial
states and initial values of the parameter estimates are
selected asx1(0) = 0.05, x2(0) = 0.05, x3(0) = 0.0001,
â(0) = 0, b̂(0) = 0, ĉ(0) = 0, d̂(0) = 0, ê(0) = 0,
f̂ (0) = 0. For the adaptive and update laws, we take
ky = 5 for y = 1, . . . ,9. Simulation results are depicted in
Figs. 6-8. These figures show that the state trajectories of
the controlled chaotic system (28) converges toEi
(i = 1,2,3) exponentially with time. Also, these figures
demonstrate that the parameter estimates
â(t), b̂(t), ĉ(t), d̂(t), ê(t), and f̂ (t) converge to the system
parameter valuesa = 16, b = 5, c = 10, d = 6, e = 18,
and f = 0.5 exponentially with time.

5 Conclusion

This paper analyzed the basic properties of a novel 3D
autonomous chaotic system by means of phase portraits
and equilibria. Also, an optimal control law was designed
for the novel chaotic system, based on the PMP.
Furthermore, an adaptive and feedback control law was
introduced to stabilize the new chaotic system with
unknown parameters. Simulation results not only
demonstrate the efficiency and high accuracy of the
suggested approach, but also indicate its effectiveness in
practical use.
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