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Abstract: We present axiomatic characterizations of the Nath, RéngliHavrda-Charvat-Tsallis entropies under the assomjttiat
they are analytic functions with respect to the distribaiiiimension, unlike the previous characterizations, whigbpose that they are
expandable and maximized for uniform distribution.
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1 Introduction analysis of entropyl[0]. The presented results generalize

the theorem of Nambiar et all]], which characterizes
Nath [1], Rényi [2] and Havrda-Charvat-Tsallis3], [4] the Shannon entropy.

entropies are well-known generalizations of the Shannon  The letter is organized as follows. In secti@nwe

entropy. All of them have a more general strong additivity review the Shannon entropy uniqueness theorem given by

property in comparison to the Shannon entropy. By theNambiar et al. 11]. The theorem is generalized to the

strong additivity property, the entropy of joint distrilor Nath and Rényi entropies in sectio® and to the

can be represented as the sum of the entropy of the firgavrda-Charvat-Tsallis entropy in sectién

one and the conditional entropy of the second one with

respect to the first one. The conditional entropy is defined

as theP expected value of the entropy of the conditional 2 Shannon entropy

distribution Q conditioned onP. For the Nath entropy,

and its normalized instance, the Reényi entropy, the| et the set of alln-dimensional distributions be denoted

definition of the expectation is generalized from the linear,;i,

to the quasi-linear mean, while in the

Havrda-Charvat-Tsallis case the linear expectationésius

but the additivity is generalized to theadditivity [5)]. Ay = {(pl, )
Previous axiomatic system§][ [7], [8], [9] take the

additivity condition as an axiom, and another three ., 1o gimensional uniform distribution be denoted

axioms - continuity, expandability (which means that with

adding the zero probability event in the sample space 1 1

does not affect the entropy distribution) and maximality Un= ( ) € An. 2)

(which means that the entropy is maximized for uniform

distribution). In this letter we provide alternative The Shannon entropy 1P] of n-dimensional

axiomatic systems, which replace the expendability anddistribution is a function/#, : A, — R~ given with the

maximality axioms with the axiom that states the uniform family parameterized by € R:

distribution entropy can be analytically continued if it is .

taken as the function of the distribution dimension, the _ .

property that has an important role in the asymptotic Zn(P) = T'k; Pclogpig r<o, )

n
Pi>0>p=1;, n>1 (1)
i i;l }

n""’ﬁ
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where log stands for the logarithm to the base 2. The(ps,...,pn) € An, Q= (d1,...,0m) € Am n,me N. Then,
following theorem characterizes the Shannon entropy. g is the function from the class parameterized\by R:

Theorem 1Let the function7, : Ay — R satisfy the —CX, forA =0
following axioms, for alln € N, n > 1: gx)={ 2 Ax_1 o 20 9)
SA1.#(Uy) = s(1/n), wheres: C — C is an analytic ’ ’
function. . . ]
SA2:Let p — (P1,--.,Pn) c An, with the inverse function
PQ = (r11,r12,.--,f'nm) € Anm, N,m € N such that 1
pi = Y]_1rij and Qk = (dyj;---»Amk) € Am, Where . % forA =0
Oik = r'ik/ Pk- Then, g =9 4 (10)
—Xlog(yx+1), for A #£0,
Ham(PQ) = Ha(P) + Am(QIP), (4)
wherec,y # 0, and the entropy is uniquely determined
where with
Hm(QIP) = Z Pk7m(Qii) 5) n
Ty pff” log p« forA =0
. K=1
Thus, 77 is the Shannon entropy. H(P) = o (11)
] ] ) —ll zk 1 Pk for A 0
The previous theorem slightly differs from the one 3 199 Ty orA #0,

presented in]1], but it can be proven by straightforward
repetition of the steps fromi[l]. First, we do not assume \yherer < 0 anda — TA > O.

the normalization conditios(1/2) = 1, which fixes the

constant tar = —1. Second, the statement of the theorem  The Nath entropy oh-dimensional distribution is a
from [11] assumes that the entropy is a complex analyticfunction J#, : Ay — R~ from the family parameterized
function with respect to the distribution. We assume theby a,A, 7 € R:

equivalent statement that the entropy is a continuous real N

function (note that the assumption about the analyticity z plog py; 1<0 fora =1
with respect to the distribution dimension is kept). &

Ha(P) =
1 4\ 1-a
Xlog<kzlpk>, 5 >0,A#0 fora#1
3 Nath entropy (12)
For a distribution P € A,, we define the a-escort The Rényi entropy is a functio®, : Ay — R+ from the

family (12) with A = 1—a andt = —1. The following theorem

fetrib (a) — (p(@) (ar)
distributionP (P, ), where characterizes the Nath and Rényi entropies.

a
p|(<a) - npika; k=1,....n. (6) Theorem 3Let the function J%, : Ay — Ry satisfy the
2i—1 P following axioms, for allne N, n > 1:

If P=(p1,...,Pn) € 4y andQ = (Q1,...,0m) € Am,  NAL.#,(Upn) = v(1/n), wherev: C — C is an analytic function.

thedirect product PxQ € Ann, is defined as NA2:LetP = (p1,...,Pn) € An, PQ=(r11,r12,---,nm) € Anms
nm € N such that p = zj:lr., and
PxQ = (P10, P10z, - -, PnOm)- () Qk = (Ak:----Omk) € Am, where gy = rik/px and

a € (0,0] is some fixed parameter. Then,
The proof of the following theorem can be found in
[71,[13]. Ham(PQ) = Hn(P) + #m(Q|P), (13)

Theorem 2Let g: R — R be a continuous invertible where
function and#, : A, — R a continuous function

(Z P T (An(Qu)) ) (14)

wheref is an invertible continuous function.

H(P) =g (kz p&”(u)g(r-logpk)): 1<0, (8)
=1

for all P = (p1,...,pn) € 4n, and lets#, be additive for  Thus,.»%, is the Nath entropy. In addition, if the normalization
allneN, i.e. 4m(PxQ) = J4(P) + 7#m(Q) for all P = axiomv(1/2) = 1 is satisfied,’#, is the Rényi entropy.
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Proof. LetA=
we get

(1/2,1.2). By successive use of formula3)

1
V(Zn) jfén(A*A*

ntimes

= i%(A):

1
=n-H5(A) = —l0g Jfé(z 2) Tlogzm (15)

where T = —%(1/2,1/2) is a negative real value, since
#5(1/2,1/2) is positive by assumption of the theorem.
Accordingly, the values of functiongz) andt - logz coincide at
an infinite number of points converging to zefa,= 1/2"}cx.
Since bothf (z) andt - logz are analytic functions, they must be
the same:

T<0.

v(z) = 1-logz, (16)

Let us determine the entropy form for the distribution
P = (py1,...,pn) € C" when p; are rational numbers and the
case for irrational numbers follows from the continuity bet

entropy. Let P = (p--.,pn) € C" ,

Qk = (dk--OGm) € C™k = 1...n and
PQ= (r11,r12,...,fnm) € C"™ for nme N, and pi = my/m;

rij = 1/m, ajji = 1/m Wherem >it,m andm € N for any
i = 1....n and j = 1,....m. Then we have
Hm(PQ) = Hm(Um) = (1/m) = —7 - logm and
Hin Q) = i (Um) = v(1/my) = - logmy. Since

Pi = 3j_1Tij andgj = rik/ Pk, we can apply the axiomNA2]
and get

a(P)

n
—7-logm— ! (z Pt (—T~Iogmk)> =
K=1
n
—7-logm—f~1 (2 pl((“)f (—r-logpk—r-logm)> . @n
K=1

Let us definefy(x) = f(—x—y), and fyfl(z)
we sety = 1-logm, the equality 17) becomes

—y— 2. If

H(P) =11 (kz % fy (1 -log pk)> ;. 1<0. (18)
=]

Sincef is continuous, bottiy andfy*l are continuous, as well as
the entropy, and we may extend the resL8) from rationalpy’s
to any real valuegb’s defined in [0,1]. Now, if the axiomNAZ2]
is used withPQ = P+ Q, the conditions from the Theorethare
satisfied so thafy (x) = —cx, for A =0 andfy(x) = (272%-1)/y,
for A # 0. Accordingly, the entropy is uniquely determined by the
class (1). The relationship between the parameters and A
is determined by use of the axiolNA2].

For A =0, sincefy(x) = f(2), wherez= —x—y, we get
f(z2) = fy(x) = fy(—z—y) = cz+cy. If the equality (1) is
substituted inlNA2] with f(z) = cz+cy, we get

(a)

r|<| log(r) =

(@) < (a).(a)
logpc+ 5 > B o log(aik) =
kZuz k Mk |

S < (@) (a)
= Z prk q||k IOgUkI)v (19)
k=1I=

which can be transformed to

n

SAT Y d- Y ATy d @
& = =R ]

where
@ A3l logra on

ST P 5Ly dl ogr
The equality 20) holds for all distributions and we may

consider the casen = m = 2 and the distributions
P =(1/2,1/2), Q‘l = (1,0), Q|2 = (1/2,1/2). If we set

X = 5Eadl = 1% = 3P, = 259 and u = o,
Vg = p|<(0’>, the equality 20) can be transformed as follows:
UpX] +UpXp = ViX1 +VoXo &
S U+ (I-upxe=vixi+(1-v)xe <
& (U —Vvi)xg = (U — V)Xo (22)
By usingu; = 3 # vi = 1, we getx; =X, i.e. 1=2"%, which

impliesa = 1. Accordingly, the cas¢ = 0 from (11) reduces to
the casex = 1 from (12). Positivity of the entropy implies that
1<0.

If A # 0 and the equalityl(l) is substituted inllA2], we get

BETSSY B0 00N W T 1 1 A
AN s )T A
2k=121-1"k Ther PK
a—TA

Y1 G
S1Z1 G

foe (in(2)

wheref(z) = (2M#Y) —1)/y (since forz= —x—y, we have
f(2) = fy(—z—y) = (2)(#Y) —1)/y) or, equivalently,
n @) 1A
ij g = 2i=1 P« pkl (24
K=l pl. =
ko1 k m (@) 1A
2i=1%k %k
which can further be transformed into
n m <a
N r _— (25)
kgllgl |<leZ zﬁ” 19 ”k

ZI lq1|k

where 3 = a — 1A. Similarly to the case\ = 0, we note that
the equality 20) holds for all distributions and we consider the
casen =m= 2 and the distributionB = (1/2,1/2), Q‘l =(1,0),

Qu=(1/2,1/2). Ifwe sety = -1y =1,% = =2kt
=101 s 1q|\z
B
andu, = sm (@) _ &’ —sm (B 7ﬂ,
k= 2i=1" PXEPIRL 2i=1fk zizzli'zzlqﬁk

the equality 24) can be transformed into the forr@3). By using
U = 1r7 AV1= 1+2+4? we getx; = Xy, i.e. 1= 2P~ which
implies =1, i.e.a — 1A =1 with 1 <0, and the casg # 0
from (11) reduces to the case # 1 from (12). Positivity of the
entropy implieg1—a)/A > 0.

Finally, if v(1/2) = 2#(1/2) = 1, the equation12) implies
—1,A =1—a, which proves the theorem.
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4 Havrda-Charvat-Tsallis entropy

Proof. If A =0, the Theoren# reduces to the Theorefh
so we prove the theorem fadr # 0. Similarly as in the proof of
the Theoren8, we setA = (1/2,1.2). By successive usage of the

t(zln) T (AxAx ... xA) =P %(A) =

The Havrda-Charvat-Tsallis entropy ofn-dimensional
distribution is a function from the family parameterized by formula @3), we get
T,A, 0 eR:
n
Ty mlog pg  T<0,  for A=0
K=1
T (P) = (26)

1 (o} .
X-(Zm—l), a#1 for A#0.

ntimes k=1
n 1
h kzlyz(A) :h<n~92(A)> :h(rlog?), (35)
where T = —%(1/2,1/2) is a negative real value, since

For A = 21-0 _ 1, the entropy reduces to the Havrda-Charvat 72(1/2,1/2) is positive, by assumption of the theorem and

entropy B], while in the case oh = 1— a itreduces to the Tsallis

entropy f]. Let us defines, -addition, defined as],
X®)y=%x+y+Axy, acR, (27)

for all x,y € R. For the cased = 0, @, -addition reduces to

ordinary addition. The paifR, ©, ) forms a commutative group
where the inverse operation and thg-difference are defined as

—X xX—y

OA= 100 XY= 10y

(28)

Itis easy to see that the structyi®, ¢, ) is a topological group
isomorphic to(R, +), with an isomorphism

X, forA =0
h(X) = { oAx_ (29)
{ 2 1, forA #0
A
so that
h(x+y) = h(x) &, h(y). (30)
Equivalently, for the inverse
A forA =0
h=t(y) = . 31
v) Iog()\)\y—i— 1)7 for A £0, (31)
we have
h™(x@ay) = () +h~(y). (32)

The following theorem characterizes the Havrda-Chamgattis
entropy.

Theorem 4Let the functiony : An — R~ ¢ satisfy the following
axioms, forallne N, n> 1:

TAL: Zh(Un) =t(1/n), wheret : C — C is an analytic function.

TA2:LetP = (p17 LR pn) € Anv PQ = (rll7 r12> ceey rnm) € Anmy
n,m e N such thatp; = z'j‘:lrij andQy = (Gaji; - -+ Ampk) €
Am, whereg; = rig/px- Then,

Fom(PQ) = In(P) &) Im(QIP), (33)
where
n(@P) =3 P Tan(Que)- (34)

Thus, 7, is the Havrda-Charvat-Tsallis entropy.

sgnh(x)) = sgnx). Accordingly, the values of functiongz)
and h(t - logz) coincide at an infinite number of points
converging to zero,{z = 1/2"},cy. Since botht(z) and
h(t - logz) are analytic functions, they must be the same,

_ 1 TA .
t(2) = X(Z 1), 1<0.
Similarly as in the proof of the Theore&) we determine the

entropy form for the distributio = (py, ..., pn) € C", whenp;
are rational numbers and the case for irrational numbelmasl

h(t -logz) = (36)

from the continuity of the entropy. Lé® = (py,...,pn) € C",
Qk = (Ugks--->Gmp) € C™k = 1...n,  and
PQ=(r11,r12,...,frnm) € C"™, for n,me N, wherep; = m/m;

rij =1/m, andq”, =1/m, wherem= 3 ;m andm € N, for
anyi=1....,nandj=1....,m. Then, p = Z, 1rij and
Oijk = rik/ Pk and we can apply the axionifA2], which yields

() e(3)-

B t(m)— Zk_lpk <%) ( Y1 PR 1)
Y a—TA ’

1Ay, P (%) The1 P

@7

The relationship between and A is determined by use of
the axiom [TA2]. If we apply the maph on both sides of the

equality @3), wusing the equality 32), by which
hix @a y) = hlx + hiy), we get
“UT(PQ) = YT (P) +h 5k 7 (Qu)- If we now

use the equalitie29) and @1) for the mapping$ andh~1 and
the entropy form37), we get

1 Tk-ad Ske1 Pk
;\"Og(am X log I pi +
Yke1 T Yko1P

& (a Tk 1%k
1[5 p@ h|Log [ 2=tk . (38)
(é S Vil s

The functionh(z) = (22— 1)/A is the linear function of
f(z) = (22(#tY) —1)/y. It is a well-known fact from the mean
theory that, ifh is a linear function off, they generate the same
quasi-linear meanlH], and the functiorh in the equality 88)

1 Note that in this context is an analytic continuation of the
real function defined by the formul29).
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can be substituted with. Accordingly, the equatior38) can be
rewritten in the form of the equatio28). As shown in the proof
of the TheorenB, the equationZ3) is satisfied iffa — A =1
and the equatior3() reduces to the equatio@€), which proves
the theorem.
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