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Abstract: We present axiomatic characterizations of the Nath, Rényiand Havrda-Charvát-Tsallis entropies under the assumption that
they are analytic functions with respect to the distribution dimension, unlike the previous characterizations, whichsuppose that they are
expandable and maximized for uniform distribution.
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1 Introduction

Nath [1], Rényi [2] and Havrda-Charvát-Tsallis [3], [4]
entropies are well-known generalizations of the Shannon
entropy. All of them have a more general strong additivity
property in comparison to the Shannon entropy. By the
strong additivity property, the entropy of joint distribution
can be represented as the sum of the entropy of the first
one and the conditional entropy of the second one with
respect to the first one. The conditional entropy is defined
as theP expected value of the entropy of the conditional
distribution Q conditioned onP. For the Nath entropy,
and its normalized instance, the Rényi entropy, the
definition of the expectation is generalized from the linear
to the quasi-linear mean, while in the
Havrda-Charvát-Tsallis case the linear expectation is used
but the additivity is generalized to theγ-additivity [5].

Previous axiomatic systems [6], [7], [8], [9] take the
additivity condition as an axiom, and another three
axioms - continuity, expandability (which means that
adding the zero probability event in the sample space
does not affect the entropy distribution) and maximality
(which means that the entropy is maximized for uniform
distribution). In this letter we provide alternative
axiomatic systems, which replace the expendability and
maximality axioms with the axiom that states the uniform
distribution entropy can be analytically continued if it is
taken as the function of the distribution dimension, the
property that has an important role in the asymptotic

analysis of entropy [10]. The presented results generalize
the theorem of Nambiar et al. [11], which characterizes
the Shannon entropy.

The letter is organized as follows. In section2 we
review the Shannon entropy uniqueness theorem given by
Nambiar et al. [11]. The theorem is generalized to the
Nath and Rényi entropies in section3 and to the
Havrda-Charvát-Tsallis entropy in section4.

2 Shannon entropy

Let the set of alln-dimensional distributions be denoted
with

∆n ≡

{

(p1, . . . , pn)
∣
∣
∣ pi ≥ 0,

n

∑
i=1

pi = 1

}

, n> 1 (1)

and then-dimensional uniform distribution be denoted
with

Un =

(
1
n
, . . . ,

1
n

)

∈ ∆n. (2)

The Shannon entropy [12] of n-dimensional
distribution is a functionHn : ∆n → R>0 given with the
family parameterized byτ ∈ R:

Sn(P) = τ ·
n

∑
k=1

pk logpk; τ < 0, (3)
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where log stands for the logarithm to the base 2. The
following theorem characterizes the Shannon entropy.

Theorem 1.Let the functionHn : ∆n → R>0 satisfy the
following axioms, for alln∈ N, n> 1:

SA1:Hn(Un) = s(1/n), wheres : C → C is an analytic
function.

SA2:Let P = (p1, . . . , pn) ∈ ∆n,
PQ = (r11, r12, . . . , rnm) ∈ ∆nm, n,m ∈ N such that
pi = ∑n

j=1 r i j and Q|k = (q1|k, . . . ,qm|k) ∈ ∆m, where
qi|k = r ik/pk. Then,

Hnm(PQ) = Hn(P)+Hm(Q|P), (4)

where
Hm(Q|P) = ∑

k

pkHm(Q|k) (5)

Thus,Hn is the Shannon entropy.

The previous theorem slightly differs from the one
presented in [11], but it can be proven by straightforward
repetition of the steps from [11]. First, we do not assume
the normalization conditions(1/2) = 1, which fixes the
constant toτ = −1. Second, the statement of the theorem
from [11] assumes that the entropy is a complex analytic
function with respect to the distribution. We assume the
equivalent statement that the entropy is a continuous real
function (note that the assumption about the analyticity
with respect to the distribution dimension is kept).

3 Nath entropy

For a distribution P ∈ ∆n, we define theα-escort
distributionP(α) = (p(α)

1 , . . . , p(α)
n ), where

p(α)
k =

pα
k

∑n
i=1 pα

i
; k= 1, . . . ,n. (6)

If P = (p1, . . . , pn) ∈ ∆n and Q = (q1, . . . ,qm) ∈ ∆m,
thedirect product, P⋆Q∈ ∆nm, is defined as

P⋆Q= (p1q1, p1q2, . . . , pnqm). (7)

The proof of the following theorem can be found in
[7], [13].

Theorem 2.Let g : R → R be a continuous invertible
function andHn : ∆n →R>0 a continuous function

Hn(P) = g−1

(
n

∑
k=1

p(α)
k (α)g(τ · logpk)

)

; τ < 0, (8)

for all P = (p1, . . . , pn) ∈ ∆n, and letHn be additive for
all n∈ N, i.e.Hnm(P⋆Q) = Hn(P)+Hm(Q) for all P=

(p1, . . . , pn) ∈ ∆n, Q = (q1, . . . ,qm) ∈ ∆m n,m∈ N. Then,
g is the function from the class parameterized byλ ∈ R:

g(x) =







−cx, for λ = 0

2−λ x−1
γ

, for λ 6= 0,
(9)

with the inverse function

g−1(x) =







−
1
c

x, for λ = 0

−
1
λ

log(γx+1), for λ 6= 0,
(10)

wherec,γ 6= 0, and the entropy is uniquely determined
with

Hn(P) =







τ ·
n

∑
k=1

p(α)
k logpk for λ = 0

−
1
λ

log

(

∑n
k=1 pα−τλ

k

∑n
k=1 pα

k

)

for λ 6= 0,

(11)

whereτ < 0 andα − τλ > 0.

The Nath entropy ofn-dimensional distribution is a
function Hn : ∆n → R>0 from the family parameterized
by α,λ ,τ ∈ R:

Hn(P) =







τ ·
n

∑
k=1

pk log pk; τ < 0 for α = 1

1
λ

log

(
n

∑
k=1

pα
k

)

;
1−α

λ
> 0 , λ 6= 0 for α 6= 1.

(12)

The Rényi entropy is a functionRn : ∆n → R>0 from the
family (12) with λ = 1−α andτ =−1. The following theorem
characterizes the Nath and Rényi entropies.

Theorem 3.Let the function Hn : ∆n → R>0 satisfy the
following axioms, for alln∈ N, n> 1:

NA1:Hn(Un) = v(1/n), wherev : C→C is an analytic function.
NA2:Let P= (p1, . . . , pn) ∈ ∆n, PQ= (r11, r12, . . . , rnm) ∈ ∆nm,

n,m ∈ N such that pi = ∑n
j=1 r i j and

Q|k = (q1|k, . . . ,qm|k) ∈ ∆m, where qi|k = r ik/pk and
α ∈ (0,∞] is some fixed parameter. Then,

Hnm(PQ) = Hn(P)+Hm(Q|P), (13)

where

Hm(Q|P) = f−1

(

∑
k

p(α)
k f (Hm(Q|k))

)

, (14)

where f is an invertible continuous function.

Thus,Hn is the Nath entropy. In addition, if the normalization
axiomv(1/2) = 1 is satisfied,Hn is the Rényi entropy.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 609-613 (2015) /www.naturalspublishing.com/Journals.asp 611

Proof. Let A= (1/2,1.2). By successive use of formula (13)
we get

v

(
1
2n

)

= H2n(A⋆A⋆ . . . ⋆A
︸ ︷︷ ︸

n times

) =
n

∑
k=1

H2(A) =

= n·H2(A) =− log
1
2n ·H2

(
1
2
,
1
2

)

= τ · log
1
2n , (15)

where τ = −H2(1/2,1/2) is a negative real value, since
H2(1/2,1/2) is positive by assumption of the theorem.
Accordingly, the values of functionsv(z) andτ · logz coincide at
an infinite number of points converging to zero,{z= 1/2n}n∈N.
Since bothf (z) andτ · logz are analytic functions, they must be
the same:

v(z) = τ · logz; τ < 0. (16)

Let us determine the entropy form for the distribution
P = (p1, . . . , pn) ∈ Cn when pi are rational numbers and the
case for irrational numbers follows from the continuity of the
entropy. Let P = (p1, . . . , pn) ∈ Cn ,
Q|k = (q1|k, . . . ,qmk|k) ∈ Cmk ;k = 1, . . . ,n and
PQ = (r11, r12, . . . , rnm) ∈ Cnm, for n,m ∈ N, and pi = mi/m;
r i j = 1/m, q j|i = 1/mi , wherem= ∑n

i=1mi andmi ∈ N for any
i = 1, . . . ,n and j = 1, . . . ,mi . Then we have
Hm(PQ) = Hm(Um) = v(1/m) = −τ · logm and
Hmk(Q|k) = Hmk(Umk) = v(1/mk) = −τ · logmk. Since
pi = ∑n

j=1 r i j andqi|k = r ik/pk, we can apply the axiom [NA2]
and get

Hn(P) =−τ · logm− f−1

(
n

∑
k=1

p(α)
k f (−τ · logmk)

)

=

− τ · logm− f−1

(
n

∑
k=1

p(α)
k f (−τ · log pk− τ · logm)

)

. (17)

Let us definefy(x) = f (−x− y), and f−1
y (z) = −y− f−1(z). If

we sety= τ · logm, the equality (17) becomes

H (P) = f−1
y

(
n

∑
k=1

p(α)
k fy (τ · log pk)

)

; τ < 0. (18)

Since f is continuous, bothfy and f−1
y are continuous, as well as

the entropy, and we may extend the result (18) from rationalpk’s
to any real valuedpk’s defined in [0,1]. Now, if the axiom [NA2]
is used withPQ= P⋆Q, the conditions from the Theorem2 are
satisfied so thatfy(x)=−cx, for λ = 0 andfy(x)= (2−λx−1)/γ ,
for λ 6= 0. Accordingly, the entropy is uniquely determined by the
class (11). The relationship between the parametersα, τ andλ
is determined by use of the axiom [NA2].

For λ = 0, since fy(x) = f (z), wherez= −x− y, we get
f (z) = fy(x) = fy(−z− y) = cz+ cy. If the equality (11) is
substituted in [NA2] with f (z) = cz+cy, we get

n

∑
k=1

m

∑
l=1

r(α)
kl log(rkl) =

=
n

∑
k=1

p(α)
k log pk +

n

∑
k=1

m

∑
l=1

p(α)
k q(α)

l |k log(ql |k) =

=
n

∑
k=1

m

∑
l=1

p(α)
k q(α)

l |k log(rkl), (19)

which can be transformed to

n

∑
k=1

ρ(α)
k

m

∑
j=1

qα
j|k =

n

∑
k=1

p(α)
k

m

∑
l=1

qα
l |k (20)

where

ρ(α)
k =

p(α)
k ∑m

l=1 q(α)
l |k logrkl

∑n
i=1 p(α)

i ∑m
j=1 q(α)

j|i logr i j

. (21)

The equality (20) holds for all distributions and we may
consider the casen = m = 2 and the distributions
P = (1/2,1/2), Q|1 = (1,0), Q|2 = (1/2,1/2). If we set

x1 = ∑2
l=1qα

l |1 = 1, x2 = ∑2
l=1 qα

l |2 = 21−α and uk = ρ(α)
k ,

vk = p(α)
k , the equality (20) can be transformed as follows:

u1x1+u2x2 = v1x1+v2x2 ⇔

⇔ u1x1+(1−u1)x2 = v1x1+(1−v1)x2 ⇔

⇔ (u1−v1)x1 = (u1−v1)x2. (22)

By usingu1 =
1
3 6= v1 =

1
2 , we getx1 = x2, i.e. 1= 21−α , which

impliesα = 1. Accordingly, the caseλ = 0 from (11) reduces to
the caseα = 1 from (12). Positivity of the entropy implies that
τ < 0.

If λ 6= 0 and the equality (11) is substituted in [NA2], we get

−
1
λ

log

(

∑n
k=1∑m

l=1 rα−τλ
kl

∑n
k=1∑m

l=1 rα
kl

)

=−
1
λ

log

(

∑n
k=1 pα−τλ

k

∑n
k=1 pα

k

)

+

+ f−1



∑
k

p(α)
k f



−
1
λ

log




∑m

l=1 qα−τλ
l |k

∑m
l=1 qα

l |k











 ,

(23)

where f (z) = (2λ (z+y) − 1)/γ (since forz = −x− y, we have
f (z) = fy(−z−y) = (2λ (z+y)−1)/γ) or, equivalently,

n

∑
k=1

m

∑
l=1

r(α)
kl r−τλ

kl =
∑n

k=1 p(α)
k p−τλ

k

∑n
k=1 p(α)

k ·
1

∑m
l=1q(α)

l |k q−τλ
l |k

, (24)

which can further be transformed into

n

∑
k=1

m

∑
l=1

r(α)
kl ·

1

∑m
j=1 qβ

j|k

=
n

∑
k=1

m

∑
l=1

r(β )kl ·
1

∑m
j=1 qβ

j|k

, (25)

whereβ = α − τλ . Similarly to the caseλ = 0, we note that
the equality (20) holds for all distributions and we consider the
casen=m= 2 and the distributionsP= (1/2,1/2), Q|1 = (1,0),

Q|2 =(1/2,1/2). If we setx1 =
1

∑2
l=1 qβ

l |1

= 1,x2 =
1

∑2
l=1 qβ

l |2

= 2β−1

anduk = ∑m
l=1 r(α)

kl =
∑2

l=1 qα
l |k

∑2
i=1 ∑2

l=1 qα
l |k

, vk = ∑m
l=1 r(β )kl =

∑2
l=1 qβ

l |k

∑2
i=1 ∑2

l=1 qβ
l |k

,

the equality (24) can be transformed into the form (22). By using
u1 =

1
1+21−α 6= v1 =

1
1+21−β , we getx1 = x2, i.e. 1= 2β−1, which

implies β = 1, i.e.α − τλ = 1 with τ < 0, and the caseλ 6= 0
from (11) reduces to the caseα 6= 1 from (12). Positivity of the
entropy implies(1−α)/λ > 0.

Finally, if v(1/2) = H2(1/2) = 1, the equation (12) implies
τ =−1, λ = 1−α, which proves the theorem.
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4 Havrda-Charvát-Tsallis entropy

The Havrda-Charvát-Tsallis entropy ofn-dimensional
distribution is a function from the family parameterized by
τ,λ ,α ∈ R:

T (P) =







τ ·
n

∑
k=1

pk log pk; τ < 0, for λ = 0

1
λ
·

(

∑
k

pα
k −1

)

; α 6= 1, for λ 6= 0.

(26)

For λ = 21−α − 1, the entropy reduces to the Havrda-Charvát
entropy [3], while in the case ofλ = 1−α it reduces to the Tsallis
entropy [4]. Let us define⊕λ -addition, defined as [5],

x⊕λ y= x+y+λxy; a∈ R, (27)

for all x,y ∈ R. For the caseλ = 0, ⊕λ -addition reduces to
ordinary addition. The pair(R,⊕λ ) forms a commutative group
where the inverse operation and the⊖λ -difference are defined as

⊖λ x=
−x

1+λx
x⊖λ y=

x−y
1+λy

. (28)

It is easy to see that the structure(R,⊕λ ) is a topological group
isomorphic to(R,+), with an isomorphism

h(x) =







x, for λ = 0

2λ ·x−1
λ

, for λ 6= 0
(29)

so that
h(x+y) = h(x)⊕λ h(y). (30)

Equivalently, for the inverse

h−1(y) =







y, for λ = 0

log(λ ·y+1)
λ

, for λ 6= 0,
(31)

we have
h−1(x⊕a y) = h−1(x)+h−1(y). (32)

The following theorem characterizes the Havrda-Charvát-Tsallis
entropy.

Theorem 4.Let the functionTn : ∆n →R>0 satisfy the following
axioms, for alln∈ N, n> 1:

TA1:Tn(Un) = t(1/n), wheret : C→ C is an analytic function.
TA2:Let P = (p1, . . . , pn) ∈ ∆n, PQ= (r11, r12, . . . , rnm) ∈ ∆nm,

n,m∈ N such thatpi = ∑n
j=1 r i j andQ|k = (q1|k, . . . ,qm|k) ∈

∆m, whereqi|k = r ik/pk. Then,

Tnm(PQ) = Tn(P)⊕λ Tm(Q|P), (33)

where
Tm(Q|P) = ∑

k

p(α)
k Tm(Q|k). (34)

Thus,Tn is the Havrda-Charvát-Tsallis entropy.

Proof. If λ = 0, the Theorem4 reduces to the Theorem1,
so we prove the theorem forλ 6= 0. Similarly as in the proof of
the Theorem3, we setA= (1/2,1.2). By successive usage of the
formula (33), we get

t

(
1
2n

)

= T2n(A⋆A⋆ . . . ⋆A
︸ ︷︷ ︸

n times

) =
n⊕

k=1

T2(A) =

h

(
n

∑
k=1

T2(A)

)

= h
(

n·T2(A)
)

= h

(

τ · log
1
2n

)

, (35)

where τ = −T2(1/2,1/2) is a negative real value, since
T2(1/2,1/2) is positive, by assumption of the theorem and
sgn(h(x)) = sgn(x). Accordingly, the values of functionst(z)
and h(τ · logz) coincide at an infinite number of points
converging to zero,{z = 1/2n}n∈N. Since both t(z) and
h(τ · logz) are analytic functions1, they must be the same,

t(z) = h(τ · logz) =
1
λ

(

zτλ −1
)

; τ < 0. (36)

Similarly as in the proof of the Theorem3, we determine the
entropy form for the distributionP= (p1, . . . , pn) ∈ Cn, whenpi
are rational numbers and the case for irrational numbers follows
from the continuity of the entropy. LetP = (p1, . . . , pn) ∈ Cn,
Q|k = (q1|k, . . . ,qmk|k) ∈ Cmk ;k = 1, . . . ,n, and
PQ= (r11, r12, . . . , rnm) ∈ Cnm, for n,m∈ N, wherepi = mi/m;
r i j = 1/m, andq j|i = 1/mi , wherem= ∑n

i=1 mi andmi ∈ N, for
any i = 1, . . . ,n and j = 1, . . . ,mi . Then, pi = ∑n

j=1 r i j and
qi|k = r ik/pk and we can apply the axiom [TA2], which yields

T (P) = t

(
1
m

)

⊖λ

n

∑
k=1

pα
k t

(
1

mk

)

=

=
t
( 1

m

)
−∑n

k=1 p(α)
k t

(
1

mk

)

1+λ ·∑n
k=1 p(α)

k t
(

1
mk

) =
1
λ
·

(

∑n
k=1 pα

k

∑n
k=1 pα−τλ

k

−1

)

.

(37)

The relationship betweenτ and λ is determined by use of
the axiom [TA2]. If we apply the maph on both sides of the
equality (33), using the equality (32), by which
h−1(x ⊕a y) = h−1(x) + h−1(y), we get

h−1(T (PQ)) = h−1(T (P))+h−1(∑k p(α)
k T (Q|k)). If we now

use the equalities (29) and (31) for the mappingsh andh−1 and
the entropy form (37), we get

1
λ
· log

(

∑n
k=1 rα

kl

∑n
k=1 rα−τλ

kl

)

=
1
λ
· log

(

∑n
k=1 pα

k

∑n
k=1 pα−τλ

k

)

+

+h−1





n

∑
k=1

p(α)
k h




1
λ
· log




∑n

k=1 qα
l |k

∑n
k=1 qα−τλ

l |k











 . (38)

The functionh(z) = (2λ ·z− 1)/λ is the linear function of
f (z) = (2λ (z+y)− 1)/γ . It is a well-known fact from the mean
theory that, ifh is a linear function off , they generate the same
quasi-linear mean [14], and the functionh in the equality (38)

1 Note that in this context,h is an analytic continuation of the
real function defined by the formula (29).
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can be substituted withf . Accordingly, the equation (38) can be
rewritten in the form of the equation (23). As shown in the proof
of the Theorem3, the equation (23) is satisfied iffα − τλ = 1
and the equation (37) reduces to the equation (26), which proves
the theorem.
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