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Abstract: We investigate the stability of the equilibria and the invariant manifolds of the host-parastoid model due to Beddington,
Free, and Lawton [2] subject to the Allee effect.
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1 Introduction

One of the most commonly used ecology models is
Nicholson-Bailey host-parasitoid model [8]. This is a
discrete-time model applicable to biological systems
involving two insects, a parasitoid (Pt) and its host (Nt).
Nicholson and Bailey developed the model (1935) and
applied it to the parasitiod,Encarsia formosa, and the
host, Trialeurodes vaporariorum. The term “parasitoid”
means a parasite which is free living as an adult but lays
eggs in the larvae or pupae of the host. Hosts that are not
parasitized give rise to their own progeny. Hosts that are
successfully parasitized die, but the eggs laid by the
parasitoid may survive to be the next generation of
parasitoids.

The general host-parasitoid model has the form:

Nt+1 = rNt f (Nt ,Pt),

Pt+1 = eNt(1− f (Nt ,Pt)).

where the parametersr (number of eggs laid by a host
that survive through the larvae, pupae, and adult stages)
ande (number of eggs laid by a parasitoid on a single host
that survive through larvae, pupae, and adult stages) are
positive. The function f can be interpreted as the
probability that each individual host escapes the
parasitoids, so that the complementary term 1− f (Nt ,Pt)
in the second equation is the probability of being
parasitized.

The following density-dependent predator-prey model
was investigated by Beddington et al [2]:

Nt+1 = Nt exp

[

r

(

1− Nt

K

)

−aPt

]

,

Pt+1 = cNt [1−exp(−aPt)],

(1)

whereK is the carrying capacity. It represents maximum
population size that can be supported due to availability
of all the potentially limiting resources. In the termaNtPt ,
a is the searching efficiency that is, the probability that a
given parasitoid will encounter a given host during its
searching lifetime. Note that Nicholson-Bailey Model
reduces to the density independent one-species model
Nt+1 = rNt if the parasitoid is not present. Since this is
not realistic for most of the species, model (1) rectifies
this by adopting the density-depending Ricker Model
Nt+1 = Nt exp

[

r(1− Nt
K )
]

, where K is the carrying
capacity of the host and is the sustainable size of the host.
Moreover, in the absence of the parasitiod, the
equilibrium K is globally asymptotically stable for
0< r < 2 on (0,∞) [5]. It is assumed that the parameters
a, r,c,K are all positive real numbers.

When a population is small or its density is low, the
classical view of population dynamics is that the major
ecological force at work is the release from the
constraints of intraspecific competition. Individual fitness,
or one of its components, is positively correlated to
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population size or density. Most definitions of the Allee
effect apply either to density of the population or its size.
Allee effects occurs when the per capita growth rate of a
species is an increasing function of the population size for
a certain range of population size below which the
population dies off. Allee effects may occur due to a
variety of causes ranging from mating limitation, predator
saturation and anti-predator defence, etc. Much of what
we know about Allee effects comes from mathematical
models since models help us organize, conceptualize and
interpret a vast amount of complex ecological data, and
predict or hypothesize when such data are not available.
We refer the reader [7,10,11,?] and references cited
therein about Allee effects.

We know that predation can create component Allee
effects in prey. This requires that predator populations do
not respond numerically to the target prey species and
that the overall mortality rate of prey due to these
predators is hyperbolic function of prey density [12]. We
assume that the host population undergoes Allee effects in
host-parasitoid interaction. The asymptotic dynamics of
host-parasitoid model with the Allee effects will be
investigated. We study the following discrete-time
host-parasitoid model which is the Beddington Model
with Allee effect on the parasitoid population.

Nt+1 = Nt exp

[

r

(

1− Nt

K

)

−aPt

]

,

Pt+1 = cNt [1−exp(−aPt)]
Pt

A+Pt
,

(2)

where the parametersr, K, a, c, andA is positive. Now,
we eliminate some of the parameters by changing the
variables. Takingxt =

Nt
K , andyt = aPt , we obtain

xt+1 = xt exp[r (1− xt)− yt ] ,

yt+1 = mxt [1−exp(−yt)]
yt

B+ yt
,

(⋆)

wherem= acK andB= aA.

2 Equilibrium Points

The fixed points of the discrete system (⋆) are described in
the following theorem:

Theorem 2.1.Let

F(x) =−r +(r +m)x−mxexp[−r(1− x)]

and

θ =
(B+ r)

√
r +

√
B+ r

√

4m+ r(4+B+ r)
2(m+ r)

.

For the system given in (⋆),

a.for any values of parameters, there exist two
non-negative fixed points which are(0,0) and(1,0);

b.there exists one positive fixed point(θ , r(1−θ )) if and
only if m> 1 andB= F(θ );

c.there exist two positive fixed points in the form
(ℓ, r(1− ℓ)), if and only if m > 1 and B < F(θ ),
where 0< ℓ < 1.

Proof. To find the fixed points of the system given in (⋆),
we solve the following system of equations:

x= xexp[r (1− x)− y] ,

y= mx[1−exp(−y)]
y

B+ y
.

(3)

If x= 0, we have the extinction fixed point(0,0). If x 6= 0
andy= 0 we obtain the exclusion fixed point(1,0). If x 6=
0 andy 6= 0 the system of equations (3) becomes

y= r (1− x) ,

x=
B+ y

m[1−exp(−y)]
.

(4)

Eliminatingy in (4), we obtain

B=−r +(r +m)x−mxexp[−r(1− x)] . (5)

Let us denote
z = F(x) = −r + (r +m)x − mxexp[−r(1− x)]. When
this curve intersects with the horizontal linez= B, some
fixed points are obtained.

Notice thatF is continuous,F(0) =−r < 0, F(1) = 0,
F ′′(x) < 0 for all x, limx→∞ F(x) = −∞, F ′(0) > 0. Since
F ′(1) = r(1−m), we have the following cases:

i.If m= 1, thenF ′(1) = 0 and the only maximum point
is atx= 1. SinceB> 0, there is no intersection of the
functionsz= B andz= F(x) (See Figure 1(a)).

ii.If m< 1, thenF ′(1) > 0. We know thatF ′′(x) < 0 for
all x and limx→∞ F(x) =−∞. This means that for some
values ofB, there exist either one (if the horizontal line
is tangent to the curvez=F(x)) or two (if B is less than
the height of the maximum point of the functionz=
F(x)) fixed points and for any of them if we denote the
x-component of the any such fixed point byx=ω , then
ω > 1. We havey= r(1−ω)< 0 by the first equation
of system (4) (See Figure 1(b)). Since one component
of (ω , r(1−ω)) is negative, this fixed point is not of
interest in biology and hence it will be omitted.

iii.If m> 1, thenF ′(1) < 0. We know thatF ′′(x) < 0 for
all x andF(0) = −r < 0. Hence, for some values ofB
there exist either one (if the horizontal line is tangent
to the curvez = F(x)) or two (if B is less than the
height of the maximum point of the function
z= F(x)) fixed points. Let us denote thex-component
of such a fixed point byx = ℓ. Thenℓ < 1 and hence
y = r(1− ℓ) > 0 by (4) (See Figure 1(c)). Hence,
(ℓ, r(1− ℓ)) is a candidate to be a coexistence fixed
point.
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Now, we have to determine the condition for which
the horizontal line z = B intersects the function
z= F(x) for m> 1. That is the condition for which
the numberB is less than the height of the maximum
value of the curvez = F(x). Let us denote the
maximum point by(x̄, ȳ). In order to find that point,
we have

F ′(x̄) = r −m
(

−1+er(−1+x̄)(1+ rx̄)
)

= 0.

We focus on the case in which the horizontal linez=B
is tangent to the curvez= F(x), that isF(x̄) = B:

−r +(r +m) x̄−mx̄exp[−r(1− x̄)] = B.

Eliminating the terme−r(1−x̄), we obtain

−r +(m+ r)x̄− (m+ r)x̄
1+ rx̄

= B. (6)

The positive solution of equation (6) for x̄ is as follows:

x̄=
(B+ r)

√
r +

√
B+ r

√

4m+ r(4+B+ r)

2(m+ r)
. (7)

Hence, the condition for existence of the positive fixed
point in part (b) and (c) is obtained: There exist one
intersection point(x̄, r(1− x̄)) if and only if m> 1 and
B= F(x̄), and there exist two intersection points if and
only if m> 1 andB< F(x̄).

3 Stability of extinction and exclusion fixed
points

Theorem 3.1.For system (⋆), the following statements
hold true:

a.The equilibrium(0,0) is unstable.
b.if 0 < r ≤ 2, then the equilibrium (1,0) is

asymptotically stable .

Proof. The Jacobian matrix of the map

G(x,y) =

(

xer(1−x)−y,mx(1−e−y)
y

B+ y

)

is

JG(x,y) =

(

er−rx−y(1− rx) −er−rx−yx
(1−e−y)my

B+y
e−ymx(y2+B(−1+ey+y))

(B+y)2

)

.

a.The Jacobian evaluated at the point(0,0) is

JG(0,0) =

(

er 0
0 0

)

.

The eigenvalues ofJG(0,0) are 0 ander . Sincer > 0,
it follows thater > 1. Thus(0,0) is unstable.

b.The Jacobian evaluated at(1,0) is

JG(1,0) =

(

1− r −1
0 0

)

.

The eigenvalues for this matrix areλ1 = 1− r and
λ2 = 0. Thus, the fixed point(1,0) is stable if
ρ(JG(1,0)) < 1, that is 0< r < 2. If r > 2, the fixed
point (1,0) is unstable. Ifr = 2, then the eigenvalue
areλ1 = −1 andλ2 = 0. Now, we have to apply the
center manifold theorem [5]: by changing variables,
let u= x−1 andv = y in system (⋆), we have a shift
from the point(1,0) to (0,0). Then the new system is
given by

ut+1 = (ut +1)exp[−rut − vt ]−1,

vt+1 = m(ut +1)[1−exp(−vt)]
vt

B+ vt
.

(8)

The Jacobian of the planar map given in (8) is

J̃G(u,v) =

(−e−ru−v(−1+ r + ru) −e−ru−v(1+u)
(1−e−v)mv

B+v
e−vm(1+u)(v2+B(−1+ev+v))

(B+v)2

)

.

(9)
At (0,0), J̃G has the form

J̃G(0,0) =

(

1− r −1
0 0

)

.

Whenr = 2 we have

J̃G(0,0) =

(

−1 −1
0 0

)

.

Now we can write the equations in system (8) as

ut+1 =−ut − vt + f̃ (ut ,vt),

vt+1 = g̃(ut ,vt),
(10)

where

f̃ (ut ,vt) =−1+ut +e−2ut−vt (1+ut)+ vt

and

g̃(ut ,vt) =
(1−e−vt )m(1+ut)vt

B+ vt
.

Let us assume that the mapv= h(u) takes the form

h(u) = αu2+βu3+O(u4), α,β ∈ R.

Now, we compute the constantsα andβ . The function
v= h(u) must satisfy the center manifold equation

h
[

−u−h(u)+ f̃(u,h(u))
]

− g̃(u,h(u)) = 0.

The Taylor series expansion at the pointu = 0 is
evaluated for the equation above. Equating the
coefficients of the series, we obtainα = β = 0.
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Thus on the center manifoldv = 0 we have the
following map

P(u) =−1+e−2u(1+u).

Calculations show thatP′(0) = −1 and Schwarzian
derivative of the mapP at the origin is− 4

3 < 0.
Hence, the exclusion fixed point(1,0) is locally
asymptotically stable (See Figure1).

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6
8u, P<

Fig. 1: The mapP on the center manifoldv= h(u), wherer = 2

4 Stable and Unstable Manifolds of the
Extinction and Exclusion Fixed Points

For the point(0,0), since|λ1| = er > 1 and|λ2| = 0< 1,
the extinction fixed point is saddle for any values of
parametersr andm. For this point, thex-axis is unstable
and they-axis is stable.
Now, let us focus on the exclusion fixed point(1,0): By
using the similar procedure that is used for the center
manifold in the proof of Theorem3, we obtain the stable
and unstable manifolds. In model (⋆) the saddle scenario
for the exclusion fixed point occurs whenr > 2. Shifting
the exclusion fixed point from(1,0) to (0,0), we have the
following Jacobian matrix:

J̃G(0,0) =

(

1− r −1
0 0

)

.

We can write the equations in system (8) as

ut+1 = (1− r)ut − vt + f̃ (ut ,vt),

vt+1 = g̃(ut ,vt),
(11)

where

f̃ (u,v) =−1+(−1+ r)u+e−ru−v(1+u)+ v

and

g̃(ut ,vt) =
(1−e−v)m(1+u)v

B+ v
.

The eigenvalues of the Jacobian matrixJ̃G(0,0) are
λ1 = 1− r andλ2 = 0. Thus, at the fixed point(1,0), the
unstable and stable manifold must be tangent to the

eigenvectors

(

1
0

)

and

(

1
1− r

)

, respectively.

In order to find the unstable manifold for the exclusion
fixed point, we assume that the mapv = h(u) takes the
form

h(u) = αu2+βu3+O(u4), α,β ∈ R.

The maph must satisfy the following center manifold
equation

h
(

(1− r)u−h(u)+ f̃(u,h(u))
)

− g̃(u,h(u)) = 0.

The Taylor expansion at the point(0,0) yields
α(−1+ r)2u2− (−1+ r)

(

−2α2+β (−1+ r)2+α(−2+ r)r
)

u3+O[u]4 = 0.

Thus, we obtainα = β = 0. Hence, the unstable
manifold is h(u) = 0 and the map on the unstable
manifold is

Q(u) =−1+e−ru(1+u).

Notice that|Q′(0)|= |1− r|> 1 whenr > 2.

In order to find the stable manifold for the exclusion
fixed point, we assume that maph takes the form

h(v) =
1

1− r
v+αv2+βv3+O(v4), α,β ∈R.

Hence, the center manifold equation is

h(g̃(h(v),v))− (1− r)h(v)+ v− ˜f (h(v),v)= 0.

By using the Taylor series expansion at the point(0,0)
and equating the coefficient of the polynomials to 0, we
obtain

α =
2m+B(−3+ r)

2B(−1+ r)2

and

β =− 6m(−1+r)2+3Bm(−1+r)2+B2(−9+21r−9r2+r3)
6B2(−1+r)4

.

Hence, the map on the center manifold is obtained as

R(v) =
(1−e−v)mv

(

1+ v
1−r +αv2+βv3

)

B+ v
,

and the stable manifold is

h(v) =
v

1− r
+αv2+βv3,

whereα and β are given above. Notice thatR′(0) = 0
which makes the fixed point(1,0) locally asymptotically
stable (See Figure2).
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Fig. 2: Stable and unstable manifolds for the exclusion fixed
point(1,0), wherem= 2.6,B= 0.2, andr = 2.01. The red curves
represent the isoclines and the dashed curve represents thestable
manifold.

5 Conclusion

We investigate the stability and bifurcation of Beddington
model with Allee effect. The condition for the existence
of the fixed points are found. We also obtained the
invariant manifolds for extinction and exclusion fixed
points. In the future study, we will examine the
host-parasite models with Allee effects for both host and
parasite using the Ricker, the logistic, and Hassell models.
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