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Abstract: In this paper, we derive a class of extended one-step metifadderm for solving delay-differential equations. This class
includes methods of fourth and fifth order of accuracy. Athe,class of these methods depends on two free parametesavérgence
theorem and convergence factor of these methods are gitarility regions for such methods are determined in terntb®time-lag

7. Some numerical examples are given to illustrate the éffmoess of the numerical schemes.
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1 Introduction methods. The retarded argument is approximated by an
appropriate Hermite interpolation. The same methods are
Delay differential equations (DDEs) have a wide range ofused by Arndt 2] with a different stepsize control
applications in science and engineering: for examplesnechanism. Bellen and Zennadp[developed a class of
population dynamics, chemical kinetics, physiological numerical methods to approximate solution of DDEs.
and pharmaceutical kinetics. For example, one may thinklhese methods are based on implicit Runge-Kutta
of modelling the growth of a population where the methods. Paul and Baket9| used explicit Runge-Kutta
self-regulatory reaction in case of overcrowding respondsgnethod for the numerical solution of singular DDEs.
after some time lag. More examples are discussed inforelli and Vermiglio RO considered continuous
Driver [7], Gopalsamy28 and Kuangd. First order = numerical methods for differential equations with several

DDE can be written as constant delays. These methods are based on continuous
quadrature rule. Hayashi 1{] used continuous
yr(x) = f(x,y(x),y(a(x))), a<x<hb, (1) Runge-Kutta methods for the numerical solution of
y(X) = g(x), v<x<a retarded and neutral DDEs. Engelborghs et &] |

presented collocation methods for the computation of

Here f , a andg denote given functions witl (x) < x periodic solution of DDEs. Hu and Cahlonld]
for x > a, the functiona is usually called the delay or lag considered the numerical solution of initial-value
function andyis unknown solution fox > a. Ifthe delay is  discrete- delay systems.
a constant, it is called the constant delay, if it is a funttio The most obvious of the above methods for solving
of only time, then it is called the time dependent delay, if it problem (1) numerically is that the— Runge-Kutta
is a function of time and the solutiorix), then itis called methods witho (x) = x— T in the form
the state dependent delay.

Many methods have been proposed for the numerical Yai1=Yn+ hZa” (X + CJh7Yn+1’ Y(*a+cjh—1)),
approximation of problem (1). Oberle and Pesd][
introduced a class of numerical methods for the treatment _ _ _
of DDEs based on the well-known Runge-Kutta-Fehlberg Y1 =Yn+th3 B0+ h’Y”“’y(Xn +eh=1)
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i =1,2...,s Thebj are often referred to as the weights methods of ordem for solving DDEs. We start with the
of the method, while the; are referred to abscissae, they following discretization for solving problen?):
belong to[0, 1] and satisfy the conditions:

S Yn+1=Yn
=Y aj. m-1
' Jza” +h[ aofn+ a1 fys+ %O{jfnﬂ],nzo,l,...,N—L
J:
There are many concepts of stability of numerical methods A . (4)
for DDEs based on different test equation as well as theVhere  fnij = f(%n+i,9nri Y (@(Xnr)))  and

delay term. §] has considered the below scalar equationdj> | = 2,3,...m—1 are real coefficients. The function
for A = 0 andy € C and also considered the case, whereY" is computed from
A andu are complex using the linear DDEs

, Y =g(x) for x<a
y(x) = ’; zg);g;é)(/)(’x —_rT) g z i 8 ) Y'(X) = Bjoyk+ B,-jl_ylk+1 +hl yiof o
Itis known that from ] that if g(x) is continuous and if + Vi + iZZ Vi ficti]
U] < —ReA), (3) X <X<X1 k=0,1,...
then the soultiory(x) of (2) tends to zero ag— oo. whereBjo, Bj1, Yjo, ¥j1 andy; are real coefficients.

The functionyn j are computed from5) whenx = X .
In this paper, we will use ~ for the coefficients wf,j as

It is well known that the maximum order of an A-stable in the following form :

linear multistep methods (LMMSs) is two. This difficulty
has been solved by coupling two LMMS to give an ~ ~

A-stable extended one step method of order three , whichVn+i = Bio¥n+ Bjt¥n+1

had constructed by Usmani and Agarw@7]. After . . -1

noting that the maximum order of extended one step +h[ Hiofa+ Vi fnia+ ZVJi fsi]
methos is three, Kondrat and Jacqu#d [gave extended = ©6)
two-step fourth order A-stable methods for solving . : :
ordinary differential equations. Later Chawla et &@5| Wﬁ d|§pla_|3_/ tg‘l's class of extended one-step methods in the
had constructed a class of extended one-step methng owing fable.
generalizing the method of Usmani and Agrawaif][and

the maximum attainable order for methods of this class is

y . ao ay a2 Om-1
five which are A- and or L-stable. %o | B ™

The purpose of this paper is to study an extension the Bao | PBar Y31 Y32

work of Chawla et al. 23,25] for solving DDEs. This

class includes methods of fourth and fifth order of P10 | Bm-10 | Ym-10 | Ym-12 Ym-1m-2

accuracy. Furthermore there exists two-parameter
sub-family of these methods which are P-stable.

The paper is organized as follows: In the following
section 2, we explain the general approach for solving
DDEs. The details of the computations for different value L
of m will be described in Section 3. The Analysis of 3 Derivation of some methods fom = 4,5

stability regions for these methods presents in section 4.

For three representative examples, section 5 contains g this section, we describe derivations of some methods
documentation of numerical results illustrating the for various values ofn .

performance of our methods. Some concluding remarks

are given in the final section 6.

3.1Casel,m=4

2 The general approach

In this case, we describe the derivation of the present
In this section, we extend the work of Chawla et al. methods of fourth order of accuracy. In order to determine
(1994,1995) to derive a class of extended one-stefihe coefficientsig, a1 anda; , we rewrite @) in the exact
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form
Y(Xn11) = Y(%a) +h[aof (X, Y(Xn), Y(a (X))
+ a1t (Xny1, Y%n11), Y(A (Xns1)))
m-1
+ % oy f (Xt 5, Y1), Y( (Xn4§)))] +t(Xnp).-
=

(7)
We expand the left and right side of)(in the Taylor

series about the point,. 1, equate the coefficients up to

&H(X) = £(X—Xir1), or X < X < Xer1, X= Q(Xns3), K=
0,1,....

The approximationg,’ > andy; 3 is determined from&g)
and the coefficients in this case take the form

the terms O(h*) and solve the resulting system of With V20 free, where

equations, we obtain
3 19 5 1

Qo=7g, O1= 7, 02=—5, 03= (8)
and 19
(1) = —551%Y Oara). 9

By the same way, in order to determine the coefficients

Bijo, Bj1. Yjo. ¥j1 andyji, i = 0,1,...j — 1, we rewrite §) in
the exact form
Y(X) = Bjoy(X«) + Bjzy(Xc+1) + [ Vo f (%, Y(x«), (@ (%)))
+¥ia f (K1, Y1), V(A (% 1))
-1
+ % Vi f (s 5 Y 1, V(0 (s )))] 41 (4e2)-
i=
(10)
We expand the left and right side of() in the Taylor

series about the point,, 1, equate the coefficients up to
the terms O(h®) and solve the resulting system of

equations, we obtain
B20 = 2ys0+ 87(X)
Bo1=1— 37(X) — 2y20
Vo1 = o0+ O1(X) + 87 (X)
with y»q free, where

(11)

3
tae1) = (809 + 8209~ 120y 4c,1)
h4

t2a

(87(%) = 82(X) + 20)y" Y (X441, for j =2,
(12)
heredy (x) = £(X—Xir1), for X < X < X1, X= 0 (Xn12),
k=0,1,....
and
Bso = 2ys1+ 4ys2 — 28(X) — 82(X)
Ba1= 1+ 28,(X) + 85(X) — 281 — 4ys2
Y30 = —%2(X) — 35(X) + ya1+ 3)32
with Va1, y32 free where

(13)

3
ts02) = = (3309 + 28800) + () — yar

h4
—8ya2)y® (X 1) + ﬂ(éﬁl (X) — 385(x)
— 262(X) + a1+ 4ya2)Y' Y (Xc11), for j =3,

Boo = 1+ 20
Bo1= 2o (14)
o1 =2+ Va0
3
t2(Xni1) = 3(2— 0¥ (Xn41)

4 ~ .

+ ooy (xns1) for j =2,

and .
Bso = —8+2¥1+ 42
Ba1 =9 2f1 — 42 (15)

a0 = —6+ 51+ 352
with a1, V5, free, where

1. 4,
ts(ni1) = B—5hi—3 Ps2)h%y® (Xq41)

1. 1. .
+ (et EV32)h4y‘4> (Xni1) for j =3.

and consider the discretizatiof) for m= 4 made into one
step defined by

Yni1=Yn+h[ dofn+ a1 fne1+ a2 fniz+ asfogs] + Tr(1+1-)

16
To calculate the local truncation error ibg) from (7) and
(16) we have

Tni1 = t(Xnr1) +hlo2(f (Xni2, Y(Xni2), V(O (Xn12)))
—for2) + a3(f (Xai3, Y% 13), Y(A (%a13)) — fry3)]
17)
It can be shown from (17) (we omit details) that
Tni1 =t(Xn11)

4
+ m[ (8+5y20— Y1 — 8Y52)01 (%ns1) + (—587(X)

—583(X) + 5§20+ B3(X) + &(X) + 283(X) — P
5
—8ff2)W1 (X 1)] Y& (X 1) + {%{ (26— 5§h0— 2§a1
— 16§2)g (¥n41) + (—58Z(X) — 585 (X) + 5ya0+ 283(X)
+485(X) + 282(X) — 2y51 — 16y52)Wa (Xn 1) + Pa2(2
— 150)G3(Xn+1) + V52(2 — Fo0)G1 (Xns 1)W1 (Xn+1) + Ya2( 85(X) + B2(X)
— YooWZ (%n:1)] 5Y (Xns1) + [ (— 100+ Ya1 + Fa1)91 (X 1)
+ (85— 385(X) — 255(X) — &7 + 5F(X) + 2y81+ 432 — 10y20) W1 (X4 1)

+ 452(83(X) + 82(X) — Y20) 91 (X 1)W1 (Xn41)] Zy@ (%n+1) }7

where we have set

af(xy(x),y(a(x)))
ay(x)

O1(Xn+1) = )1

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

596 %N = P)

. Ibrahim et. al.: A Class of Extended One-Step Methods &iviSg...

and
df(xy(x),y(a(x)))
ay(a(x))

In order thafT, 1 in (??) be O(h®), we must have

Wi (Xn+1) = M-

a1 = 8+ 5y»0— 8yso,
¥a1 =50+ 523(‘7(Xn+3)) +&%(a(Xni3))

with ys, free, where
ta(1) = 24<65‘<> 283(0) + B (%) — 12932)y“ (Xe1)

+ 1—20(525 (%) — 383 (x) + 283 (X) — 52y82)y"® (X 11),
for j =3,

+282(a (%1 3)) — 8Ya2— 567(a (Xn12)) &(X) = (X —Xc1), for x = a(Xns3); k=0,1,.

5530 (Xn2)). and . )
By consider foo = yo0 and §s = ys», we have a Bao=253(x) — 305(x) — 12ya2— 363+ 1
two-parameter family of extended one-step fourth order 41 = 362(X) — 285(X) + 12ya2+ 36ya3 22)
methods given, which we will refer it b Ms(y»0, ¥52)- Vao = 53(X) — 282(X) + &3(X) — Syaz — 16ya3

yar = 83 (X) — 05(X) — Byaz — 21ya3

3.2 Casell, m=5 with yao, Va3 free, where
We describe the derivation of a scheme of the fifth order h 5 ,
of accuracy. As in case |, we rewritd)(in the exact form  ta(X:1) = ﬂ(53 (X) — 285 (X) + 05 (X) — 12ya2
and expand the left and right sides of this equation in the
Taylor series about the poirf, 1, equate the coefficients _ 60y43)y( >(Xk+1) + 1_20(5§>( )+ 282(X) — 353(X)

up to the termgO(h°) and solve the resulting system of

equations, we obtain — 52y42— 336y43)y"® (X11),

720 360 30 360 720 The approximationg,’ 2, ¥n+3 andyn+4 determmed from
18 " S thi
and ( (5) and the coefficients in this case take the form
t(Xnr1) = 160h V) (n41). (19) B20="5, o1 = —4, oo=2, yo0=4,

By the same way, in order to determine the coe1‘f|C|entsWhere

Bjo.Bj1 and yji, i = 0,1,...j — 1, we rewrite §) in the
exact form and expand the left and right sides of this
equation in the Taylor series about the poigt;, equate

1 2 .
tans2) = 5 Oxni2) + 7Y (i) for | =2

the coefficients up to the term®(h*) and solve the B0 = 28— 127
resulting system of equations, we obtain le — 274 120 (23)
B2o = 257 (x) — 357 (x) +1 ¥ao=12— 5@
Bo1 = 337 (x) — 257 (X) 0o Ja1 = 18— 84
Yoo = 513()() _ 2512()() (X with a2 freeéwhfre .
Yor= 87 (X) — 87(X) ta(¥ns1) = (5 — 5%2)h4y(4) (n+1) + (5 — 3g¥82 2)h°y® (Xq41)
where +O(h®) for | =3
h4
to(X :—64x—263x+62x 4 (x and .
2(Xr1) 5( 1 (X) — 207(X) + 01 (%)Y (Xit-1) Bao— 81— 1271 3674
h ~ - ~
+ ﬁ)( (%) — 387 (X) + 287 (%)Y (X 1) Ba1 = —80+12ys2+ 36¥s3 (24)
for j=2 Yao = 36— 512 — 16¥s3
L ’ Ya1 = 48— 8jn2— 213
51%‘) = 5 (X—=Xr1), forx=a(xni2); k=0,1,. with Vo, Va3 free, where
an
= 283(x) — 382(x) — 1. 5.
e 1?3” ' tan2) = (6 Sz STy 00
Par = 12150 =255 (9 +3% (%) 21) 36 13. 14
Y30 = B5(X) — 282(X) + (X) — 5ya2 (5 —3g%2— —V43)h Y (Xnr1)
Vo1 = 5(X) — 85 (X) — By +o(h%) for j=
(@© 2015 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 593-602 (2015)www.naturalspublishing.com/Journals.asp NS = 597

By the same way as in case |, we can prove that the global Itis clear thatX,Y) € S if and only if all roots of the
error of fifth order. Thus, with considés, = y3, andy,z = polynomialsW, are inside the unit disc fan=1,2,....
ya3, we have a two-parameter family of extended one-stef_et

fifth order methods, which will refer it blPMs = (52, ya3). P(2) = [24_ X(1+ ya) + 2X2(1+ Aot ysayh0)

— X3y52(2+ yo0) | 2™ — [24+ 12X (1 ys)

+ 2X%(1— 2ys2+ Ys2)00) + X3ys2Y00] 27,
The stability investigations are based on the linear Q(z) := —Y[9+X(2— 5y52) + X?ya2160
equation (4) and the concept Bfstability introduced by

4 Stability definitions and results

Barwell [3] + (19— 2X(1+ 4ys0) + X?y32(2+ 0))Z
Definition 1.1. (P-stability region) Given a numerical —(5—Xy32)22+z3],

method for solving (2), theP-stability region of the (28)
method is the set S of the pairs and z* denotes the only nonzero root &f(z). It

(X,Y), X = Ah andY = ph, such that the numerical follows from Rouche’s theorem, see Mardeh/]| that
solution of (2) asymptotically vanishes for step-lengths (X,Y) € S if [z'] <1 and|P(z)| > [Q(z)| on the unit

satisfying circle. Furthermore, on the unit circle we have
T
h=— (25) P(2)] >|[24— 12X(1+ ys2) + 2X2(1+ 4ys2+ Va2Ve0)
with mis positive integer. — X3Ys2(2+ yo0)| — [24+ 12X (1 - y30)
Definition 1.2. (P-stability) A numerical method for (2) is + 2X2(1— 2y52+ YaoYbo) + X3yaa¥e0 |,
said to beP-stable if )
1Q(2)| <[YI(|9+X(2—5ys2) + X“yz2y20]
*2R 119 2X(1+ dysg) + X2yaa(2+ yeo)|
where | —5+Xysa +1).
R={(X,Y):Y < —X}. (29)
Therefore(X,Y) € S if the following set of inequalities
is satisfied

4.1Casel, m=4 1124~ 12X(1+ ya2) + 2X2(1 + 4ysa+ Va2)50)

In order to solve the Problerg), the present methods with —X3y52(2+ yo0)| — 24+ 12X(1— ys2)
m = 4 are written as follows

, +2X?(1— 2ys2+ Ya2Ye0) + X3ya2)e0|| >

24— 12AN(1+ ys2) + 2(AN)*(1+ 4ys2 IY[(]9+ X (2 5y52) + X?ys2)o0+ 19— 2X (1 + dys)

+¥a220) — V32(AN)* (24 Y20) | Y1 = +X2y52(2+ yo0)| + | — 5+ Xysa] + 1),

[24+ 122 (1 ys2) + 2(Ah)?(1— 252+ Ya2¥00) (30)
d
+ya2v0(AN)3]yn+ ph[(9+ Ah(2—Bysy)  (26) & 2 3
+152Y20(A) )y (X — T) 4 (19— 2A (1 + 4ys)) 24+12X(1—ysp) +2X°(1-2yap+ Va2¥00) + X ¥aolo0 | 1

24— 12X (1+y32) +2X2(1+4y32+ Va2Y00) — X3 Y322+ ¥20)

~—

+V52(AN)?(2+ y20) )y (¥n+1 — T Cean b e < S where S is the Astal
e B B can be seen € Sy Where Sy is the A-stability
(5—Ahys2)y(Xnt2— T) +Y(Xns3—T)] region of the present methods for solving ordinary
with a constant step sizk satisfying the constraint differential equation if and only if31) is satisfied, we
(25). The characteristic polynomial associated wi6)( refer to Hairer et al. 9] for more details concerning the

takes the form A-stability concept. It is easy to see thai) is satisfied if
1. y32 =0, with y»q free to choose or
Win(2) = [24— 12X(1+ ys2) + 2X3(1+ 4ys2 2. ys2>0andyy > —1

Moreover, theP-stability region for various values of free

3 1
 Ya2Vz0) = X a2 24 Vo) 2™ parameters is determined by solving the system of

— [24+12X(1— ya2) + 2X2(1 - 2y32+ Ya220) inequalities 80) and @1). Thus we establish the
+XYs2100] 7" — Y [94+ X (2 — By2) + X?yaa0 following.
+ (19— 2X (+4y50) + X2y52(2 + yo0))Z Theorem 1. For the present methods, the region of P-

stability satisfies the relation

(27) SNR={(X,Y): Y| < =X and|Y| < @(X)}

—(5-Xy)Z+2] =0, m=1.2,...

(@© 2015 NSP
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where
—12X

17
—6X
4—-X
for y3, =0 and y,o free to choose.

@(X)

Proof. The proof follows immediately from inequali8Qj.
From among values for the case (2), the chaige=0and
Va2 = % give the large stability region, so we will present

only the theorem of this choice as the following:

Theorem2.  For the present methods the region
stability satisfies the relation

SNR={(X,Y):Y < —Xand|Y| < ¢(X)},

where
_oy3 2
2X3— 12X +4218x’ it X4
o(x) 68— 14X +X
—2CHI2X2-24X+96 .,
68— 14X +X2 ’

for yo0=0 and ys> = 3.
Proof. The proof follows immediately from inequality
(27).
The Fig. 1 shows the different regions of tHe-stability
with respect to different values gbo and yso.

4.2 Casell, m=5

By the same way for m=5, we obtain the following
characteristic polynomial

Win(2) = [720— 8X(48+ 57ys3) + 4X?(21+ 57ys3
+57ya3ys2) — 2X3(4+ 1943+ L1yasys2)
+ 76X agys2] 2 — [720+ 12X (28— 38ysg)
+ 6X?(10— 38y43+ 38yaays2) + 2X3(2— 19y43)
— 38X*y52y43) 2" — Y [251+ X (50— 171ys3)
+ X2(4 — 38y43+ 95)43y32) + (646— X (764 361y43)
+ 2X2(4+ 1943+ T6yazys2) — 76X3ya3y80)2
— (264— X (2 + 95y43) + 19X?y43y52)Z + (106
—19Xys)Z — 197" =0, m=1,2,...

of P-

(32)
Itis clear thatX,Y) € Sp if and only if all roots of the
polynomialsW, are inside the unit disc fon=1,2,....
Let

P(z) :=[720— 8X(48+ 57ys3) + 4X?(21+ 57ys3
+57ya3ys2) — 2X3(4+ 1943+ 11yssys2)
+ 76X agys0| 2™ — [720+ 12X (28
— 38yy3) + 6X*(10— 38y43-+ 38y4sys2)
+2X3(2— 19y43) — 38X *yaoya) 2"

Q(2) ==~ Y[251+ X (50— 171ys3) + X?(4 — 38ys3 (33)
+ 95V43V32) + (646— X (76—|— 361y43)
+ 2X2(4+ 19y43+ T6ys3y52)
— 76X%Y43)82)2— (264— X (2+ 95)43)
+ 19X?y43y30)Z + (106 — 19X y43)Z

—197']

and z* denotes the only nonzero root &¥(z). It
follows from Rouche’s theorem, see Mardeti]| that
(X,Y) € S if [Z] <1 and|P(z)| > |Q(2)| on the unit

circle. Furthermore, on the unit circle we have
|P(2)| >||720— 8X(48+ 57y43) + 4X?(21+ 57ys3

+ 57ya3y32) — 2X3(4 + 19y43+ 11ya3y30)
+ 76X*y43y82| — | 720+ 12X (28— 38y43)

Su
1 < T + 6X%(10— 38y43+ 38yu3ys2) + 2X3(2
m — 19y43) — 38X 243
. w 1Q(2)] <|Y|(]251+ X (50— 171y43) + X?(4— 38y43
N + 95y43y52)| + |(646— X (764 361ys3) + 2X2(4
+19y43+ 76 —76%3 +|—264
Fig. 1: The P-stability region forPMj4(0, %) and PMy(—1,1) vas Vaaez) Vaaysz)| +|

(Top-Bottom).

+X(2+ 9543) — 19X%y43ys2)| + 106

—19Xys3 +19)
(34)

(@© 2015 NSP
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Therefore(X,Y) € S if the following set of inequalities
are satisfied

||720— 8X(48+ 57y43) 4 4X2(21+ 57ya3+ 5Tya3y52)
—2X3(4+ 1943+ 11yasys2) + 76X yazysz| — 720
+12X (28— 38y43) + 6X?(10— 38y43-+ 38y43y52)
+2X3(2— 19y43) — 38X *ys2ya3|| >

[Y[(|2514 X (50— 171ys3) + X?(4 — 38y43+ 95yazyso) |
+|(646— X(76+ 361y43) + 2X2(4+ 19y43+ 76y43ys2)

—76X%yu3ys2)| + | — 264+ X (2+ 95y43) — 19X ?ya3ys0) |

+]106— 19X a3+ 19)
(35)
and

(36)

where
A1 = 720+ 12X (28— 38yy3) + 6X%(10— 38y43-+ 38y43)42)
+2X3(2 - 19ys3) — 38X Y3213
and
Ay = 720— 8X(484-57y43) + 4X%(21+ 57ys3+ 57yazy52)
—2X3(4+ 19y43+ 11yasys2) + 76X 4yazysz
It can be seen thaX € Sy where Sy is the A-stability

region of the present methods for solving ordinary-l-heorem 4

differential equation if and only if36) is satisfied, we
refer to Hairer et al. 9] for more details concerning the
A-stability concept. It is easy to see thab| is satisfied if

1. 3= 0, with y5, free to choose or
2. y32=0andyy3 > E—é .

Moreover, theP-stability region for various values of free

parameters is determined by solving the system o

inequalities85) and (36).
following.

Thus we establish the

Theorem 3. For the present methods, the region of P-
stability satisfies the relation

SNR={(X,Y): Y| < =X and|Y| < @(X)}

40 80 -40

Fig. 2: The P-stability region forPMs(0, %) and PMs(0, 1—%)
(Top-Bottom).

Let y, be obtained by the method§)((5)
and ). Then, at each mesh poin{, xve have the following
error estimate:

& = [y(Xn) — Y| < C1h™,

n=12... (37)

where m=4,5and G is independentof nand h .

fProof. see (Ibrahim et al.Z4] )

5 Numerical tests

In this section, we present some numerical results using
PMa(y20, ¥a2) and PMs(Vs2, yaz) with different values of

free parameters and also compare the results with
Runge-Kutta method. We apply these methods to three

where examples for each = ﬁ whereN = 4,8,16,32,64 and
—3X3+6X%2-720 or X> 6 128.
P(X) = 3XZ_7x1319 O "7 Example 1
—X34+36X% - 12X +360 for X< _6 1 w1
3X2-7X+319 yI(X) = Eeﬁy(§)+§y(x) 0<x<1
for y43=0 and 3, free to choose. y(0) =1
Proof. The proof follows immediately from inequality
(39). The exact solution ig(x) = €.
The Fig. 2 shows the different regions of the-stability Example 2
with respect to different values ofy3 and ys,. In the next
part of this section, we state the error estimate for the a2 X
present methods4, (5) and ). Our error estimate is yx) =1 yz(z) O=x=1
given by the following theorem: y(0)=0
(@© 2015 NSP
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The exact solution ig(x) = sin(x).
Example 3 Paul 26|

Table 3: Comparison of class extended one-step methods with
Runge-Kutta method for Example 3.

Runge-Kutta method wite= 3

Y/(X) = Y1(X—1) +y2(x), x>0 Nyl(x> | zz(x) |
_ N E R E R
y2!(x) =y1(x) ~ya(x—1) 4 6.99E-03 5.87E-03
yi(x) = ex, =0 8 0.63E-04 2.86 8.14E-04 2.85
y2(0)=1—e? 16 1.26E-04 293 1.07E-04 2.93
32 1.62E-05 2.96 1.37E-05 2.96
The exactsolutionis 64 2.05E-06 298 1.74E-06 2.98
Y1(X) = €, y2(x) = € — €%, x> 0. 128 2.57E-07 2.99 2.19E-07 2.99
Fourth order metho&8Ma (0, )
y1(X) y2(X)
N EN RN EN RN
Table 1: Comparison of class extended one-step methods with 4 2.41E-04 2.30E-05
Runge-Kutta method for Example 1. 8 1.41E-05 4.10 1.20E-06 4.26
Runge-Kutta method 16 8.49E-07 4.05 6.82E-08 4.14
s=2 s=3 32 5.21E-08 4.02 4.05E-09 4.07
N EN RN EN RN 64 3.23E-09 4.01 247E-10 4.04
4 7.80E-02 3.83E-03 128 2.01E-10 4.01 1.53E-11 4.02
8 2.29E-02 1.77 5.19E-04 2.88 PM5(0, &)
16 6.28E-03 1.87 6.81E-05 2.93 y1(X) y2(X)
32 1.64E-03 1.93 8.73E-06 2.96 N EN RN EN RN
64 42E-04 197 1.11E-06 2.98 4 3.19E-05 3.54E-05
128 1.06E-04 198 1.39E-07 2.99 8 8.57E-07 5.22 9.62E-07 5.20
A class of extended one-step methods 16 2.48E-08 5.11 2.80E-08 5.10
PM,(0, 3) PMs(0, &) 32 7.46E-10 5.06 8.46E-10 5.05
N EN RN EN RN 64 2.29E-11 5.03 2.60E-11 5.03
4 1.04E-05 1.39E-06 128 7.14E-13 5.00 8.00E-13 5.02
8 6.06E-07 4.11 4.05E-08 5.10
16 3.66E-08 4.05 1.23E-09 5.05
32 2.25E-09 4.03 3.77E-11 5.02 ] _
84 1.39E-10 4.01 1.17E-12 5.01 6 Conclusion and perspective
128 8.66E-12 4.01 4.06E-14 4.85

we have described a class of numerical methods of order
four and five for solving delay differential equation by
extending the work of Chawla et all. (1994, 1995). These
methods depended on two free parameters, so we can

Table 2: Comparison of class extended one-step methods witOPtain for every method on a family of methods for
Runge-Kutta method for Example 2.

Runge-Kutta method

s=2 s=3
N EN RN EN R\
4  4.95E-03 1.64E-03
8 1.21E-03 2.03 1.91E-04 3.10
16 3.38E-04 1.84 2.30E-05 3.05
32 9.17E-05 1.88 2.80E-06 3.04
64 2.35E-05 1.96 3.45E-07 3.02
128 5.94E-06 1.99 4.28E-08 3.01
A class of extended one-step methods
PM4(0 %) PM5(07 ]_29)
N EN RN EN RN
4 3.46E-06 2.77TE-07
8 2.23E-07 396 7.88E-09 5.13
16 1.42E-08 3.98 2.35E-10 5.07
32 8.92E-10 3.99 7.18E-12 5.03
84 559E-11 3.99 2.22E-13 5.02
128 3.50E-12 4.00 7.10E-15 4.96

different value of a free parameters. The region of
P-stability for the present methods have been investigated
for different values of a free parameters. The large
-stability region for the present method of order four
occurs aty = 0 and y5, = 3, see Fig. 1, further the
largeP -stability region for the J)resent method of order
five occurs atz, = 0 andysz = see Fig. 2. In the last
cases, the present methods arestable for solving
ordinary differential equations. All the obtained

numerical results clearly indicate the effectiveness of ou
methods.

References

[1] Al-Mutib, A. N. Stability properties of numerical meths for
solving delay differential equations, Comput. Appl. Math.
10, 71-79 (1984)

[2] Arndt, H., Numerical solution of retarded initial value

problems: local and global error and step size contiol,
Numer. Math43, 71-79 (1984).

@© 2015 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 593-602 (2015)www.naturalspublishing.com/Journals.asp %NS ‘P)ﬂ 601

[3] Barwell, V. K., Special stability problems for functiah [23] Chawla, M.M. , Al-Zannaidi, M. A. and Al- Sahhar, M. S.,

differential equationsBIT 15, 130-135 (1975). Stabilized fourth order extended methods for the numerical
[4] Bellen, A. and Zennaro, M., Numerical solution of delay solution of ODEs,Computers Maths. Intern. J. Computer.
differential equations by uniform corrections to an imjtlic Math.52, 99-107 (1994)
Runge-Kutta method, Numer. Mat7, 301-316 (1985) . [24] Shigui Ruany and Junjie Weiz, On the zeros of
[5] Calvo, M. and Grande, T., On the asymptotic stability fué t transcendental functions with applications to stabiliy o
6-methods for delay differential equations, Numer. M&t. delay differential equations with two delays, Dynamics
257-269 (1988). of Continuous, Discrete and Impulsive Systems Series A:
[6] Engelborghs , K., Luzyanina, T., In't Hout, K.J., and Reo Mathematical Analysi40, 863-874 (2003).
D., Collocation methods for the computation of periodic [25] Chawla, M.M. , Al-Zannaidi, M. A. and Al- Sahhar, M.
solutions of delay differential equations, SIAM J. Sci. S., A class of stabilized extended one-step methods for the
Comput.22, 1593-1609 (2000). numerical solution of ODEsComputers Math. Applic29,
[7] Driver R. D., Ordinary and Delay Differential equations 79-84 (1995)
Springer-Verlag, New York, 1977. [26] C.A.H. Paul, Runge-Kutta Methods for Functional Di.
[8] Guglielmi, N., Delay dependent stability regions & Eqns., Ph.D. thesis, Math. Dept., Manchester Univ. (1992).
methods for delay differential equation§]A J. Numer. Anal.  [27] Usmani, R .A. and Agarwal, R .P., AA-stable extended
18, 399-418 (1998). trapezoidal rule for numerical integration of ordinary
[9] Hairer, E., NOresett, S.P. and Wanner, Golving Ordinary equationsComputers Maths. Applid.1, 1183-1191 (1985)
Differential equations I, Non stiff ProblemSpringer-Verlag, ~ [28] Gopalsamy, K., Stability and oscillations in delay
New York, 1993, differential equations of population dynamicsulwer

[10] Hayashi, H.,Numerical Solution of Retarded and Nutral Academic publishers, Londp(1992) _ o
Delay Differential Delay Differential Equations using [29]Kuang,Y., Delay differential equations with appliwats in
continuous Runge-Kutta Methqd3hD Thesis, University of population dynamicsicademic Press, Londp(1993)
Toronto 1996.

[11] Henrici, P., Discrete variable methods in ordinary
Differential equationsJohn Willey, New York, 1962.

[12] Hu, G. -D. and Cahlon, B., The numerical solution
of discrete-delay systemippl. Math Comput.124, 403-
411(2001).

[13] In't Hout, K. J. and Spijker, M. N., Stability analysisf o
numerical methods for delay differential equatiohsjmer.
Math.59, 807-814 (1991).

[14] Jacques, I. B., Extende one-step methods for the naaleri
solution of ordinary differential equationsintern. J.
Computer Math29, 247-255 (1989)

[15] Kondrat, D. M. and Jacques, |. B., Extenddédstable
two-step methods for the numerical solution of ordinary
differential equationdntern. J. Computer Mathi2, 117-154
(1985).

[16] Liu, M. Z. and Spijker, M. N., The stability of-methods in
the numerical solution of delay differential equatioldA J.
Numer. Anall10, 31-48 (1990).

[17] Marden, M.,The Geometry of the zeros of polynomial in a
complex variableAmerican Math Society, New York1949.

[18] Oberle, H. J. and Pesch, H. J., Numerical treatment lafyde
differential equations by Hermite interpolatiodumer. Math.
37, 235-255 (1981). (PDEs), ordinary differential

[19] Paul, C. A. and Baker, C. T. H., Explicit Runge-Kutta ‘ equation (ODE) and delay
methods for numerical solutions of singular delay diffeian differential equations(DDES)
equationsMA Report MCCM report N&12 University of
Manchester (1992).

[20] Torelli, L. and Vermiglio, L., On the stability of contuous
quadrature rules for differential equations with several
constant delaydMA. J. Numer. Anall3, 291-302 (1993)

[21] Van Den Heuvel, E. G., New stability for Runge-Kutta
methods adapted to delay differential equati@xpl. Numer.

Math. 34, 293-302 (2000).

[22] Van Den Heuvel, E. G., Using resolvent conditions tcaiit
new stability results for8-methods for delay differential
equation]MA J. Numer. Anall21, 421-438 (2001)

Fatma Ibrahim recived
her Ph.D at Department
of Mathematics, Augsburg
university. Her main focus
are numerical techniques
for optimal control problems
and delay differential
equations (DDES)

Abdelhay A. Salama
is a Professor at Department
of Mathematics, Faculty
of Science, Assiut University.
His main focus are numerical
techniques for partial
differential equations

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

F. Ibrahim et. al.: A Class of Extended One-Step Methods @iviSg...

Stefan Turek is a
Professor at TU Dortmund
and Dean of Department
of Mathematics, TU
Dortmund. He helds
the chair of Applied
Mathematics and Numerics
(LS3) at the Department
of Mathematics of the TU
Dortmund. His main focus
are numerical techniques for partial differential equadio
(PDEs), high performance computing and scientific
computing with respect to engineering sciences (fluid and
structural mechanics). Prof. Dr. Stefan Turek main
research topics include finite element discretizations,
enhanced and adapted to the special characteristics of
convection-diffusion equations and saddle point problems
like the Navier-Stokes equations. He is also interested in
the design and implementation of fast multigrid and
domain decomposition solvers which combine and
supersede his ouwn solver variant ScaRC (Scalable
Recursive Clustering). Exceeding these mathematical
aspects he focus on (numerically and implementationally)
efficient FEM software, in particular by pursuing
hardware-oriented approaches. While maintaining and
steadily improving the legacy FEM software packages
FEAT2D/3D and FEATFLOW, he is currently working on
the successor packages as a part of the FEAST project
which will yield a high performance FEM toolbox. His
software is used worldwide to solve complex problems in
the field of fluid mechanics that have an industrial
background. Models are usually based on variants of
incompressible Navier-Stokes equations with extensions
like non-linear viscosity (granular flow, non-Newtonian
flow, viscoelasticity), fluid-structure-interaction,
multiphase flows with chemical reactions, and free
boundary value problems emerging in solidification
processes. Typically, some of them are put to use in
industrial projects as well.

(@© 2015 NSP
Natural Sciences Publishing Cor.



	Introduction
	The general approach
	Derivation of some methods for m=4,5
	Stability definitions and results
	Numerical tests
	Conclusion and perspective

