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is interesting. However, their solution procedure and sometheoretical results may not be generally true. In this paper, we propose an
analytical solution procedure free from using convexity tocorrect and improve on Kim and Ha’s model. Some flaws shown in Kim
and Ha’s paper are also corrected. This paper further presents sufficient conditions to illustrate when the single-setup-multiple-delivery
(SSMD) policy is more beneficial over the single-delivery policy. Furthermore, this paper finds the minimum order quantity Qmin that
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1 Introduction

Numerous studies have revealed that many manufacturing
processes have greater improvements in performance due
to the implementation of the Just-in-Time (JIT) policy.
One of the most important means to assure that JIT is
successfully implemented is the integrated inventory
policy. Goyal [11] was a pioneer in the study of the
integrated joint optimization inventory models consisting
of a single supplier and a single buyer. Subsequently,
many excellent researchers (for example, Joglekar [17],
Yang and Wee [28] and Lin and Yeh [21]) employed their
ideas into such different scenarios as (for example)
deteriorating items, imperfect items,et cetera. An
up-to-date review of the integrated inventory model for a
lot with equal- and/or unequal-sized shipments has been
provided by Zavanella and Zanoni [30], Hoque [13], and
Glock [10], respectively. Ben-Dayaet al. [2] dealt with a
three-layer supply chain model in which the system

consisted of a single supplier, a single manufacturer and
multiple retailers. They employed a derivative-free
solution procedure to derive a near optimal solution to the
model at hand. Jaberet al. [16] investigated a three-layer
supply chain (supplier-manufacturer-retailer) where the
manufacturing operations undergo a learning-based
consideration improvement process. In their work,
mathematical models achieving chain-wide lot-sizing
integration were developed allowing the manufacturer to
justify a policy based on more frequent, smaller lot size
production. Hoque [12] developed a generalized
single-vendor multi-buyer integrated supply chain model
considering production flow synchronization. They
employed general differentiation and Lagrange multiplier
techniques to obtain minimal cost solutions and showed
single-vendor single-buyer as well as the single-vendor
multiple-buyer models as their special cases. Many other
closely-related recent investigations on the subject of this
paper can be found in (for example) [4] to [8] (and also in
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many of the references to earlier works cited in each of
these recent publications).

Recently, Kim and Ha [18] developed a JIT
lot-splitting model that dealt with single-buyer
single-supplier coordination. They explored the effects of
a JIT lot-splitting strategy on the joint total relevant costs
by examining the optimal order quantity, the number of
shipments and the delivery size over a finite planning
horizon. Some recent works demonstrated Kim and Ha’s
idea still received researcher’s attention. Huang [14]
expanded Kim and Ha’s model to the imperfect nature of
items by employing the concept of Salameh and Jaber
[25]. Rau and OuYang [24] presented an integrated
production-inventory policy under a finite planning
horizon and a linear trend in demand in which the vendor
supplies a single product to a buyer with a non-periodic
and the JIT (Just-in-Time) replenishment policy in a
supply chain environment. Huanget al. [15] and Chen
and Kang [3] take the issue of trade credit into JIT
implement account. Yanet al. [27] developed an
integrated single-supplier and single-buyer inventory
model for a deteriorating item in a JIT environment. Cost
functions for the supplier, the buyer and the integrated
supply chain are derived. Lin [20] integrated overlapped
delivery and imperfect items into the
production-distribution model and observed that Kim and
Ha’s work is a special case of his model. Omaret al. [22]
considered a three-stage production-distribution model,
under a JIT manufacturing environment, where the
manufacturer must deliver the products in small quantity
to minimize the suppliers as well as the buyers holding
cost. Lee and Kim [19] mentioned that JIT still has a
certain level of dominance in spite of the Toyota recall
shock in 2009 and 2010, due to the effect of its
contributions and improvement on the global economics
ever since its emergence. Moreover, Deloof [9],
Ramachandran and Jankiraman [23], Yıldız and Ustaoğlu
[29] focusing on Belgian, Indian, and Turkish companies,
respectively, have demonstrated that JIT had a positive
influence on business performance. The above
discussions illustrate the fact that Kim and Ha’s model
still received many attentions in recent years. In Kim and
Ha’s work the integrated total relevant costTC(Q,N) is
treated as a function of two decision variablesN (the
number of deliveries per batch cycle from the supplier to
the buyer) andQ (the order quantity for the buyer). Their
model is correct and interesting. However, as we have
pointed out in our present investigation, their solution
procedures and theoretical results may not be generally
true. From the academic viewpoint, we do need to remove
Kim and Ha’s flaws in [18] and thus to help managers
making his decision correctly. Therefore, the purpose of
this paper is six-fold as indicated below:

(A)Kim and Ha [18, p. 5] indicated that the integrated
total relevant costTC(Q,N) is convex. However, this

paper reveals thatTC(Q,N) is generally not
necessarily convex.

(B)This paper gives some sufficient conditions to
illustrate when the single-setup-multiple-delivery
(SSMD) policy is more beneficial over the
single-delivery policy.

(C)This paper finds the minimum order quantityQmin that
makes the SSMD policy favorable over the
single-delivery policy.

(D)This paper shows that Fact 1(b) in Kim and Ha [18, p.
6] is not necessarily true.

(E)This paper reveals that Theorem 1 and Corollary 1 in
Kim and Ha [18, p. 7] are not necessarily true.

(F)This paper develops an analytical solution procedure
free of using the convexity to correct and improve Kim
and Ha [18].

Numerical examples are also provided to illustrate the
above results.

2 Formulation of the Mathematical Model

The notations and assumptions adopted by this paper are
the same as those in Kim and Ha [18].
Notations:

A = Ordering cost for buyer

D = Annual demand rate for buyer

F = Fixed transportation cost per trip

C = Supplier’s hourly setup cost

HB = Holding cost/unit/year for buyer

HS = Holding cost/unit/year for supplier

N = Number of deliveries per batch cycle (integer value)

P = Annual production rate for supplier,P > D

Q = Order quantity for buyer

q = Delivery size per trip,q = Q/N

S = Setup time/set up for supplier

V = Unit variable cost for order handling and receiving

Assumptions:

(1) Supply chain system consists of a single supplier and
a single buyer

(2) Demand for the item is constant over time
(3) Production rate is uniform and finite
(4) Delivery times is constant
(5) Transportation and order handling costs are paid by

the buyer in order to facilitate frequent deliveries
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(6) The supplier splits the order quantity into small lot
sizes and deliveries them over multiple periods

(7) No quantity discounts
(8) Shortages are not allowed

Kim and Ha [18, p. 3] assume thatHB > HS. However,
in this paper, we do not need this assumption to generalize
and improve the work of Kim and Ha [18]. Based upon the
above notations and assumptions, Kim and Ha [18, p. 5]
obtain the integrated total relevant cost functionTC(Q,N)
for buyer and supplier as follows:

TC(Q,N) =
D
Q
(A+CS)

+
Q
2N

[

HB +HS

(

(2−N)D
P

+N −1

)]

+
DNF

Q
+DV. (1)

3 The Convexity ofTC(Q,N)

Equation (1) yields the first-order and second-order partial
derivatives with respect toQ and N as follows (see, for
example, [26]):

∂TC(Q,N)

∂N
=

Q[−HB +HS(1−2D/P)]
2N2 +

DF
Q

, (2)

∂TC(Q,N)

∂Q
=

−D(A+CS+NF)
Q2

+
[HB −HS(1−2D/P)]/N+(1−D/P)HS

2
,

(3)

∂ 2TC(Q,N)

∂N2 =
Q[HB −HS(1−2D/P)]

N3 , (4)

∂ 2TC(Q,N)

∂Q2 =
2D(A+CS+NF)

Q3 , (5)

∂TC(Q,N)

∂N∂Q
=

[−HB +HS(1−2D/P)]
2N2 −

DF
Q2 (6)

and
(

∂ 2TC(Q,N)

∂N2

)(

∂ 2TC(Q,N)

∂Q2

)

−

(

∂ 2TC(Q,N)

∂N∂Q

)2

=
1

4N4Q4

[

8DNQ2(A+CS+NF)[HB −HS(1−2D/P)]

−
{

−Q2[HB −HS(1−2D/P)]−2N2DF
}2

]

. (7)

Theorem 4.30 of Avriel [1, p. 91] demonstrates that
TC(Q,N) is convex if and only if

∂ 2TC(Q,N)

∂Q2 > 0, (8)

∂ 2TC(Q,N)

∂N2 > 0 (9)

and
(

∂ 2TC(Q,N)

∂N2

)(

∂ 2TC(Q,N)

∂Q2

)

−

(

∂ 2TC(Q,N)

∂N∂Q

)2

> 0

(10)
for all N ≧ 1 andQ > 0.

Kim and Ha [18, p. 5] indicate that the Hessian matrix
of the equation (1) is positive definite and ensures that the
total cost function in the equation (1) is jointly convex.
The following example shows that the declaration of Kim
and Ha [18] may not necessarily be true.

Example 1.Let A = 10,C = 10, S = 5, N = 5, Q = 1000,
HB = 5, HS = 3, P = 10000,D = 5000 andF = 100. Both
the equations (8) and (9) then hold true. However,
(

∂ 2TC(Q,N)
∂N2

)(

∂ 2TC(Q,N)
∂Q2

)

−
(

∂ 2TC(Q,N)
∂N∂Q

)2
=−0.188224< 0.

(11)

Equation (11) illustrates the following two things:

(A) The Hessian matrix of the equation (1) is not positive
definite, and

(B) The total cost function in the equation (1) is not
jointly convex.

However, the solution procedure presented in Kim and Ha
[18] is based on the convexity ofTC(Q,N). Both (A) and
(B) reveal that the validity of the solution procedure in Kim
and Ha [18] is questionable. Naturally, therefore, we try to
develop an alternative solution procedure free from using
convexity to overcome the shortcomings occurring in Kim
and Ha’s solution procedure [18].

4 The Solution Procedure

Consider both of the following equations:

∂TC(Q,N)

∂N
= 0 (12)

and
∂TC(Q,N)

∂Q
= 0. (13)

Solving the equations (12) and (13) simultaneously, we
obtain their solution(N∗

,Q
∗
) as follows:

N
∗
=

√

(A+CS){P(HB−HS)+2DHS}

F(P−D)HS
(14)

and

Q
∗
= N

∗
=

√

2DFP
(HB −HS)P+2DHS

. (15)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


586 K.-J. Chunget al.: An Alternative Solution Technique of the JIT ...

Substituting the equation (14) into the equation (15), we
get

Q
∗
=

√

2D(A+CS)
HS(1−D/P)

. (16)

If N
∗ in equation (14) is an integer, Kim and Ha [18] take

(Q∗,N∗) = (Q
∗
,N

∗
) and the equations (12) and (13) are

satisfied at(Q∗,N∗). However, ifN
∗

in the equation (14)
is not an integer, Kim and Ha [18, p. 5] choose(Q∗,N∗)
such that

TC(Q∗,N∗) = min
{

TC(Q
∗
,N+),TC(Q

∗
,N−)

}

, (17)

whereN+ andN− represent the nearest integers larger and
smaller than the optimalN∗. Equation (17) implies that

(Q∗,N∗) = (Q
∗
,N+) or (Q

∗
,N−).

Under these circumstances, both(Q
∗
,N+) and (Q

∗
,N−)

do not satisfy the equations (12) and (13) simultaneously.
Therefore, it is not appropriate that solving the equations
(12) and (13) simultaneously is in order to locate the
optimal solution(Q∗,N∗) of TC(Q,N). To overcome the
shortcoming in Kim and Ha [18], let us solve the equation
(13) whenN is fixed. We have

Q∗(N) =

√

2DN(A+CS+NF)
[N(1−D/P)+ (2D/P−1)]HS +HB

, (18)

Substituting the equation (18) into the equation (1), we can
obtain

TC(Q∗(N),N)

=

√

2D(A+CS+NF){HB +HS[2D/P−1+N(1−D/P)]}
N

+DV. (19)

Ignoring the constant terms in the equation (19), from the
number under the radical, we find that minimizing
TC(Q∗(N),N) in the equation (19) is equivalent to
minimizing the following expression:

Z(N)=FHSN(1−D/P)+
(A+CS)[HS(2D/P−1)+HB]

N
.

(20)
Then the equation (20) yields the first-order derivative with
respect toN as follows:

dZ(N)

dN
=FHS(1−D/P)−

(A+CS)[HS(2D/P−1)+HB]

N2 .

(21)
There are the following two cases that occur:

Case 1. HB +HS
(2D

P −1
)

> 0.
Let

Ω =

√

(A+CS)[HB+HS(2D/P−1)]
FHS(1−D/P)

. (22)

Then, clearly, Case1 implies that

dZ(N)

dN







< 0 (0< N < Ω) (23a)

= 0 N = Ω (23b)

> 0 (N > Ω). (23c)

Equations (23a) to (23c) show thatZ(N) is decreasing on
(0,Ω ] and increasing on[Ω ,∞). Let

N∗
1 = ⌊Ω⌋= the greatest integer≦ Ω . (24)

Consequently, we have

Z(N∗) = min{Z(N∗
1),Z(N

∗
1 +1)} . (25)

Then

Q∗ = Q∗(N∗),

which is determined by the equation (18).
If N

∗ in the equation (14) is not an integer, Kim and Ha
[18] do not illustrate why they take

N∗ = N−(N∗
1) or N∗ = N+(N∗

1 +1).

Equations (23a) to (23c), (24) and (25) give us the
concrete reason.

Case 2. HB +HS
(2D

P −1
)

≦ 0.
Under this circumstance, the equation (20) implies that

dZ(N)

dN
> 0. (26)

Equation (26) shows thatZ(N) is increasing on[1,∞). The
optimal solution(Q∗,N∗) of TC(Q,N) will be N∗ = 1 and
Q∗ = Q∗(1).

Combining Cases1 and2, we have the following results.

Theorem 1.(A) If HB + HS
(2D

P −1
)

> 0, the optimal
solution (Q∗,N∗) for TC(Q,N) can then be expressed
as follows:
N∗ = N∗

1 or N∗
1 + 1 according to the equations (24)

and (25),
and
Q∗ = Q∗(N∗) which is determined by the equations
(18).

(B) If HB +HS
(

2D
P −1

)

≦ 0, then the optimal solution of
TC(Q,N) can be expressed as follows:
N∗ = 1
and
Q∗ = Q∗(1) which is determined by the equation (18).

Kim and Ha [18, p. 3] always assumed that the buyer’s
holding cost HB would be greater than the supplier’s
holding costHS. However, if technology advances in the
future, from the point of actual practice, three cases may
occur as follows:
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Case 3. HB > HS;

Case 4. HB = HS;

Case 5. HB < HS.

Kim and Ha [18] only discussed Case (3). Cases4 and5
were not discussed by Kim and Ha [18]. This paper
explores all of the Cases3 to 5 in order to generalize and
enlarge the applications of Kim and Ha [18].

5 The Single-Setup-Multiple-Delivery
(SSMD) Model

Under the single-setup-multiple-delivery (SSMD) model,
the buyer’s order quantity is manufactured at one setup
and shipped in equal amounts over multiple deliveries.
Kim and Ha [18, p. 3] indicated that splitting the order
quantity into multiple small lots is consistent with JIT
implementation. This section will explore when the
SSMD policy is more beneficial than the single-delivery
policy.

Theorem 2.(A) If

(A+CS)

[

HB +HS

(

2D
P

−1

)]

< FHS

(

1−
D
P

)

,

then N∗ = 1 and the single-delivery policy is better.
(B) If

FHS

(

1−
D

P

)

≦ (A+CS)

[

HB +HS

(

2D

P
−1

)]

< 2FHS

(

1−
D

P

)

,

then N∗ = 1 and the single-delivery policy is better.
(C) If

(A+CS)

[

HB +HS

(

2D
P

−1

)]

= 2FHS

(

1−
D
P

)

,

then N∗ = 1 or 2 and the single-delivery policy and
SSMD policy are undifferentiated.

(D) If

2FHS

(

1−
D
P

)

< (A+CS)

[

HB +HS

(

2D
P

−1

)]

< 4FHS

(

1−
D
P

)

,

then N∗ = 2 and the SSMD policy is better.
(E) If

4FHS

(

1−
D
P

)

≦ (A+CS)

[

HB +HS

(

2D
P

−1

)]

,

then N∗ ≧ 2 and the SSMD policy is better.

Proof.(A) If

(A+CS)

[

HB +HS

(

2D
P

−1

)]

< FHS

(

1−
D
P

)

,

there are two cases to occur as follows:

(1) If
[

HB +HS

(

2D
P

−1

)]

≦ 0,

then Theorem1(B) implies thatN∗ = 1.
(2) If

[

HB +HS

(

2D
P

−1

)]

> 0,

then the equations (20), (22), (24) and (25) imply
that

Ω < 1, N∗
1 = 0, Z(1)< Z(0) = ∞

and

Z(N∗) = min{Z(0),Z(1)} = Z(1).

So, obviously, we haveN∗ = 1.
By combining (A1) and (A2), we haveN∗ = 1. So, the
single-delivery policy is better.

(B) If

FHS

(

1−
D
P

)

≦ (A+CS)

[

HB +HS

(

2D
P

−1

)]

< 2FHS

(

1−
D
P

)

,

the equations (20), (21), (24) and (25) imply that

1≦ Ω < 2, N∗
1 = 1, Z(1)< Z(2)

and
Z(N∗) = min{Z(1),Z(2)}= Z(1).

So,N∗ = 1 and the single-delivery policy is better.
(C) If

(A+CS)

[

HB +HS

(

2D
P

−1

)]

= 2FHS

(

1−
D
P

)

,

the equations (20), (22), (24) and (25) imply that

1≦ Ω < 2, N∗
1 = 1, Z(1)< Z(2)

and

Z(N∗) = min{Z(1),Z(2)}= Z(1) = Z(2).

So, we haveN∗ = 1 or 2. Both the single-delivery
policy and the SSMD policy are undifferentiated.

(D) If

2FHS

(

1−
D
P

)

< (A+CS)

[

HB +HS

(

2D
P

−1

)]

< 4FHS

(

1−
D
P

)

,

the equations (20), (22), (24) and (25) imply that

1≦ Ω < 2, N∗
1 = 1, Z(1)> Z(2)

and
Z(N∗) = min{Z(1),Z(2)}= Z(2).

So, clearly,N∗ = 2 and the SSMD policy is better.
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(E) If

4FHS

(

1−
D
P

)

≦ (A+CS)

[

HB +HS

(

2D
P

−1

)]

,

then the equations (22), (24), and (25) imply that

2≦ Ω , N∗
1 ≧ 2

and
Z(N∗) = min{Z(N∗

1),Z(N
∗
1 +1)} .

So, we getN∗ ≧ 2 and the SSMD policy is better.
Again, by combining the arguments in (A) to (E), we

complete the proof of Theorem2.

If

HB +HS

(

2D
P

−1

)

> 0,

then the equation (18) yields

dQ∗(N)

dN
=

{FHS(1−D/P)N2+[HB +HS(2D/P−1)](A+CS+2FN)}

{[N(1−D/P)+(2D/P−1)]HS +HB}2

> 0. (27)

Equation (27) illustrates thatQ∗(N) is increasing on[1,∞).
Hence, clearly, Theorem2 and the equation (27) reveal the
following result.

Theorem 3. Suppose that HB +HS
(

2D
P −1

)

> 0. Then

(A) Q∗(N) is increasing with respect to N ≧ 1.
(B) Qmin = Q∗(2) is the minimum order quantity that

makes the SSMD policy favorable over the
single-delivery policy.

Comparing Fact 1 in Kim and Ha [18, p. 6] and Theorem
3 in this paper, we have the following observations:

(O1) Example4 in Section7 demonstrates that Fact 1(b)
in Kim and Ha [18, p. 6] is not necessary true, in
general.

(O2) Let

Qmin =

√

2DFN
HB +HS(2D/P−1)

. (28)

Kim and Ha [18, p. 6] takeQmin as the minimum
order quantity such that the SSMD policy is
favorable over the single-delivery policy ifQ ≧ Qmin.
However, the equation (28) reveals thatQmin is a
function of N. In fact, it is a variable, but not a
constant. However, this paper presents a
deterministic minimum order quantity from a
different point of view:

Qmin =

√

4D(A+CS+2F)
HB +HS

, (29)

such that the SSMD policy is favorable over the
single-delivery policy.

(O3)If more frequent deliveries occur, the corresponding
optimal minimal order quantity warrants more.

6 The Convergence of the Delivery Size

In Kim and Ha [18, p. 6], the optimal delivery sizeq∗ is
obtained by dividingQ

∗
by N

∗
from the equations (14)

and (15) as follows:

q∗ =
Q
∗

N
∗ =

√

2DFP
(HB −HS)P+2DHS

. (30)

However, if N
∗ is not an integer, the definition of the

optimal delivery sizeq∗ is not appropriate. The correct
definition of the optimal delivery size should be expressed
as follows:

q(N) = The optimal delivery size when the number of deliveries isN

=
The optimal order quantity when the number of deliveries isN

N

=
Q∗(N)

N

=

√

2DN(A+CS+NF)
N2{[N(1−D/P)+(2D/P−1)]HS +HB}

. (31)

Equation (31) shows thatq(N) is a function ofN and

lim
N→∞

{q(N)}= 0. (32)

Equation (32) demonstrates that Theorem 1 and Corollary
1 in Kim and Ha [18, p. 7] are wrong.

7 A Set of Numerical Examples

Example 2.Demand rate,D = 4800 units/year; Production
rate,P = $19200 units/year; Ordering cost,A = $25/cycle;
Setup cost,CS= $600/cycle; Transportation,F = $50/trip;
Handling and receiving cost isV = $1/unit; Holding cost
for buyer isHB = $7/unit/year; Holding cost for supplier
is HS = $6/unit/year.
Therefore, we have

HB −HS(1−2D/P) = 4> 0

and Theorem1(A) is applied. We haveΩ = 3.33,
N∗

1 = ⌊Ω⌋ = 3, Z(3) = 1508.33 < 1525= Z(4) and
q∗ = 346.410. Equations (17) and (24) reveal N∗ = 3,
Q∗ = Q∗(N∗) = 1129 and TC(1129,3) = 11387.86.
However, by applying the procedure developed in Section
3.1 of Kim and Ha [18], we obtainN∗ = 3, Q∗ = 1155
andTC(1155,3) = 11389.53> 11387.86. Therefore, the
optimal solution obtained by this paper is better than that
of Kim and Ha [18]. Furthermore, the equations (2) and
(3) yield

∂TC(1155,3)
∂N

=−48.88 6= 0 (33)

and
∂TC(1155,3)

∂Q
= 0.128 6= 0. (34)
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Equations (33) and (34) indicate that the equations (12)
and (13) are not satisfied by Kim and Ha’s optimum
solution (1155,3). It is not appropriate to locate the
optimal solution(Q∗,N∗) by solving the equations (12)
and (13) simultaneously. Furthermore, since

4FHS

(

1−
D
P

)

≦ (A+CS)

[

HB +HS

(

2D
P

−1

)]

,

Theorem2(E) implies that the SSMD policy is better. It
matches the above result (N∗ = 3). Table1 illustrates the
theoretical results of Theorem3 and Section6 in this
paper.

Table 1: Theoretical Results of Theorem3 and Section6 for
Example 2

N 1 2 3 4 . . . 100 . . . 200000

Q∗(N) 873 1034 1129 1200 . . . 3449 . . . 146064
q(N) 873 517 376 300 . . . 34.49 . . . 0.73
TC(Q∗(N),N) 12222 11526 11387 11400 . . . 20458 . . . 662089

Example 3. If the values ofHS andD are changed from 6
and 4800 into 8.5 and 1200, respectively, the values for
other parameters in Example1 remain unchanged. So,
HB + HS(2D/P − 1) = −0.4375< 0 and q∗ does not
exist. Theorem1(B) is applied. We haveN∗ = 1,
Q∗ = Q∗(N∗) = 464, TC(464,1) = 4692.94. Since
HB < HS, the solution procedure described in Section 3.1
of Kim and Ha [18] cannot be applied to search for the
optimal solution(Q∗,N∗). Since

(A+CS)

[

HB +HS

(

2D
P

−1

)]

< FHS

(

1−
D
P

)

,

Theorem2(A) implies that the single-delivery policy is
better. It matches the above result (N∗ = 1). Table 2
illustrates the theoretical results of Theorem3 and
Section6 in this paper.

Table 2: Theoretical Results of Theorem3 and Section6 for
Example 3

N 1 2 3 4 . . . 100 . . . 200000

Q∗(N) 464 474 488 502 . . . 1301 . . . 54881
q(N) 464 237 163 125.5 . . . 13.01 . . . 0.27
TC(Q∗(N),N) 4693 4872 5015 5144.8 . . . 11569 . . . 438534

Example 4. If the values ofHB andF are changed from 7
and 50 into 6.1 and 220, respectively, those of the other
parameters in Example1 remain unchanged. So,
HB − HS(2D/P − 1) = 3.1 > 0 and Theorem1(A) is
applied. We have Ω = 1.4, N∗

1 = ⌊Ω⌋ = 1,
Z(1) = 2927.5 < 2948.75 = Z(2) and q∗ = 825.403.
Equations (17) and (24) reveal N∗ = 1,

Q∗ = Q∗(1) = 1033, and TC(1033,1) = 12651.83.
However, applying the procedure developed in Section
3.1 of Kim and Ha [18], we obtainQ∗ = 1155,N∗ = 1
andTC(1155,1) = 12701.69> 12651.83. Therefore, the
optimal solution obtained by this paper is better. Since

FHS

(

1−
D
P

)

≦ (A+CS)

[

HB +HS

(

2D
P

−1

)]

< 2FHS

(

1−
D
P

)

,

Theorem2(B) implies that the single-delivery policy is
better. It matches the above result (N∗ = 1). Since
HB > HS andN∗ = 1, this example demonstrates that Fact
1(b) in Kim and Ha [18, p. 6] is not necessarily true.
Table3 illustrates the theoretical results of Theorem3 and
Section6 in this paper.

Table 3: Theoretical Results of Theorem3 and Section6 for
Example 4

N 1 2 3 4 . . . 100 . . . 200000

Q∗(N) 1033 1300 1494 1655 . . . 6924 . . . 306378
q(N) 1033 650 498 414 . . . 69.24 . . . 1.5
TC(Q∗(N),N) 12651 12665 13062 13530 . . . 36170 . . . 1383507

8 Concluding Remarks and Observations

An inventory problem consists of two parts: (1) the
modeling and (2) the solution procedure.

(A) In modeling, Kim and Ha [18, p. 3] assumed that
HB > HS. However, this paper does not need this
assumption. This paper has enlarged the applications
of Kim and Ha’s inventory model in [18].

(B) In the solution procedure Kim and Ha [18] based
their approach on the convexity ofTC(Q,N).
However, in fact, this paper shows thatTC(Q,N) is
not necessarily convex, such that the validity of Kim
and Ha’s solution procedure in [18] is questionable
from the mathematical viewpoint. Hence, this paper
developed an analytical solution procedure free of
using convexity to correct and improve Kim and Ha’s
approach in [18].

In addition, Kim and Ha [18] showed that the optimal
delivery size is unique and the delivery sizeq converges
to the unique delivery sizeq∗ > 0 as N approaches
infinity. However, Section6 in this paper demonstrates
that the delivery sizeq(N) is a function of N and
converges to zero. This observation will contradict Kim
and Ha’s conclusion that the convergence in delivery size
can offer insights on the standardization of transportation
vehicle size issue. Furthermore, this paper gives sufficient
conditions and the minimum order quantityQmin that
make the SSMD policy favorable over the single-delivery
policy. Incorporating the above arguments, we conclude
that this paper improves on Kim and Ha’s approach in
[18].
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