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Abstract: In this paper, a nonlinear free vibration of strongly nonlinear oscillators is studied. To this end, we propose a novel technique
using He’s frequency-amplitude formulation and He’s energy balance method called iteration perturbation procedure.A novel technique
called iteration perturbation procedure and variational iteration method are presented to obtain the relationship between amplitude and
angular frequency. The obtained results are compared with the numerical solution obtained by using the Runge–Kutta method and
shown in graphs indicating the effectiveness and convenience of the analytical approximate solutions. These approaches are very
effective and simple and with only one iteration leads to high accuracy of the solutions. It is predicted that those methods can be found
wide applications in engineering problems, as indicated inthis paper.
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1 Introduction

Nonlinear phenomena play a crucial role in applied
mechanics and physics and have a significant importance
in mechanical and structural dynamics for the
comprehensive understanding and accurate prediction of
motion. Most of real systems are modeled by nonlinear
differential equations which are important issues in
mechanical structures, mathematical physics and
engineering. It is very interesting for the scientific
community to use applied mathematics to solve dynamic
problems. In recent years, much attention has been
devoted to the advanced techniques to investigate the
nonlinear systems such as frequency-amplitude
formulation (FAF) [1,2,3], energy balance method
(EBM) [4,5,6,7], variational iteration method (VIM) [8,
9,10,11], homotopy perturbation method (HPM) [12,13,
14], homotopy analysis method (HAM) [15,16],
variational approach (VA) [17,18], max–min approach
(MNA) [ 19] and which are introduced for nonlinear
oscillatory systems.

In the following section of this paper, the iteration
perturbation procedure and the variational iteration
method are applied to an important and interesting
problems in nonlinear vibration systems.

2 Methods of solution

2.1 Description of the iteration perturbation
procedure

We consider a generalized nonlinear oscillator in the form:

ü+ f (u, u̇, ü) = 0, u(0) = A, u̇(0) = 0. (1)

Introducing the following new functionH(t) in the form:

H(t)=
∫ T

0
(ü+ f (u, u̇, ü))cos(ωt)dt = 0, T =

2π
ω

. (2)

We begin the procedure with the simplest trial function to
determine the angular frequencyω :

u = Acosωt. (3)

Substituting the above trial functions into Eq. (2) results
in, the following residual

H(t) =
∫ 2π/ω

0

[

−Aω2cosωt + f (Acosωt,−Aω sinωt,
−Aω2cosωt

)

cos(ωt)
]

dt = 0.
(4)

Solving the above equation, the relationship between the
amplitude and frequency of the oscillator can be obtained:
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2.2 Description of the variational iteration
method

To illustrate its basic concepts of the variational iteration
method, we consider the following general differential
equation [8]:

Lu+Nu = g(x), (5)

where,L is a linear operator, andN a nonlinear operator,
g(x) an inhomogeneous or forcing term. According to the
variational iteration method, we can construct a correct
functional as follows:

u(n+1)(t) = un(t)+
∫ t

0
λ [Lun(τ)+Nũn(τ)− g(τ)]dτ,

(6)
whereλ is a general Lagrange multiplier, which can be
identified optimally via the variational theory, the subscript
n denotes then-th approximation, ˜un is considered as a
restricted variation, i.e.δ ũn = 0.

In the coming sections of the paper, we clarify the
rigid rood rocks on the circular surface and the nonlinear
free vibration of an oscillator with inertia and static type
cubic nonlinearities by using iteration perturbation
procedure and variational iteration method. Besides
numerical Runge-Kutta method of order 4 will be
compared with the analytical results.

3 Motion of a rocking rigid rod

The motion’s equation of the rigid rod which rocks on the
circular surface without slipping is: (7) where l is rigid
rod’s length,r is radius of circular surface andu is the
function of angle of each time [20,21,22].

The motion equation of the system by applying
Lagrangian [20] can be found as:

(

1
12

l2+ r2u2
)

ü+ r2u u̇2+ r g u cosu = 0, (7)

under the initial conditions:

u(0) = A, u̇(0) = 0.

3.1 Application of iteration perturbation
procedure

As we introducedH(t) in Eq. (2) we have

H(t) =
∫ 2π/ω

0

[( 1
12l2+ r2u2

)

ü+ r2u u̇2

+r g u cosu]cos(ωt)dt = 0.
(8)

Substituting the above trial functions into Eq. (8) results
in, the following residual

H(t)=
Aπ

768ω
[

(192−72A2+5A4)gr−16(l2+6A2r2)ω2]= 0.

(9)

Solving the above equation, the relationship between the
amplitude and frequency of the oscillator can be obtained
as follow:

ω =

√

192g r−72A2g r+5A4g r
16l2+96A2r2 , (10)

Hence, the approximate solution can be readily obtained

u(t) = Acos





√

192g r−72A2g r+5A4g r
16l2+96A2r2 t



 . (11)

3.2 Application of variational iteration method

Assume that the angular frequency of Eq (7) is ω , we have
the following linearized equation:

ü+ω2u = 0. (12)

So we can rewrite Eq. (7) in the form

ü+ω2u+ g(u) = 0. (13)

where

g(u) = r2uu̇2+ rgu(1−
1
2

u2+
1
24

u4)−ω2u (14)

Applying the variational iteration method, the following
iterative formula is formed as:

u(n+1)(t) = un(t)+
∫ t
0 λ

[( 1
12l2+ r2u2

)

ü(τ)
+ω2un(τ)− g(τ)

]

dτ (15)

the stationary conditions can be obtained as follows:

λ ′′(τ)+ω2λ (τ) = 0,
λ (τ)|τ=t = 0,

1− λ ′(τ)|τ=t = 0.







(16)

The Lagrange multiplier, therefore, can be identified as;

λ =
1
ω

sinω (τ − t) (17)

Substituting the identified multiplier into Eq. (15) results
in the following iteration formula:

u(n+1)(t) = un(t)+ 1
ω
∫ t

0 sinω (τ − t)
[( 1

12l2+ r2u2
)

ü(τ)
+r2uu̇2+ rgu

(

1− 1
2u2+ 1

24u4
)]

dτ
(18)

Substitutingu0 = Acosωt. as a trail function into Eq (7)
yields the residual as follows:

R0(t) =
(

−Al2ω2

12 − 3r2A3ω2

4 + r2A3ω2

2 − r2A3ω2

4

+rgA− 3rgA3

8 + 5rgA5

192

)

cosωt −
(

r2A3ω2

4

+ r2A3ω2

8 + rgA3

8 − 5rgA5

384

)

cos3ωt

+ rgA5

384 cos5ωt.

(19)
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Fig. 1: Schematic of the rigid rod rocks on a circular surface
without slipping.

By the formulation (18), we can obtain

u1(t) = Acosωt +
∫ t

0

1
ω

sinω (τ − t)R0(τ)dτ (20)

In order to ensure that no secular terms appear inu1,
resonance must be avoided. To do so, the coefficient of
cos(ωt) in Eq. (19) requires being zero, i.e.,

ω =

√

192g r−72A2g r+5A4g r
16l2+96A2r2 . (21)

Hence, the approximate solution can be readily obtained

u(t) = Acos





√

192g r−72A2g r+5A4g r
16l2+96A2r2 t



 . (22)

To illustrate the validity of the analytical approximate
solutions for this example, the results are compared with
the numerical solution, using fourth order Runge-Kutta
method (R-K) in Fig 2 (a-d).

4 Nonlinear free vibration of systems with
inertia and static type cubic nonlinearities

Consider free vibration of a conservative,
single-degree-of-freedom system with a mass attached to
linear and nonlinear springs in series as shown in Fig 3.
After transformation, the motion is governed by a
nonlinear differential equation of motion [23,24,25,26]
as:

(

1+3εηu2) ü+6εηu u̇2+ω2
0u+ ε ω2

0 u3 = 0, (23)

under the initial conditions:

u(0) = A, u̇ (0) = 0.
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Fig. 2: The comparison between analytical approximate
solutions (- - -) and numerical solution (—).

where

u(t) = y2(t)− y1(t), ε = β/k2, ξ = k2/k1,

η = ξ
1+ξ , ω2

0 = k2
m(1+ξ ) .







In which k1 and k2 are the linear and nonlinear spring
constant, respectively [27]. Parametersε, β , ν, ω0, m and
ξ are perturbation parameter, coefficient of the nonlinear
spring force, deflection of the nonlinear spring, natural
frequency, mass and the ratio of the springs constant.

4.1 Application of iteration perturbation
procedure

Similar to previous example we have

H(t) =
Aπ
4ω

[

ω2
0

(

4+3εA2)−
(

4+3εηA2))ω2]= 0.

(24)
Finally, the frequency amplitude relationship can be
obtained as:

ω =

√

4ω2
0 +3εω2

0A2

4+3εηA2 , (25)

Hence, the approximate solution can be readily obtained

u(t) = Acos





√

4ω2
0 +3εω2

0A2

4+3εηA2 t



 . (26)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


104 M. Abul-Ez et al.: Analytical Solutions for Free Vibration...

Fig. 3: Nonlinear free vibration of a system of mass with serial
linear and nonlinear stiffness on a frictionless contact surface.

4.2 Application of variational iteration method

According to the previous example, the frequency based
on variational iteration method may be expressed as

ω =

√

4ω2
0 +3εω2

0A2

4+3εηA2 . (27)

Hence, the approximate solution can be readily obtained

u(t) = Acos





√

4ω2
0 +3εω2

0A2

4+3εηA2 t



 . (28)

To illustrate the validity of the analytical approximate
solutions for this example, the results are compared with
an accurate numerical solution, using fourth order
Runge-Kutta method (R-K) in Fig 4 (a-d).

5 Conclusion

In this paper, we have shown the effectiveness and
efficiency of the iteration perturbation procedure
introduced in this paper and the variational iteration
method in obtaining analytic approximate solutions to
nonlinear free vibration of strongly nonlinear oscillators.
We compared our results with the exact result obtained
numerically by the use of Runge-Kutta fourth-order
method and our comparison shows that the two methods
considered in this paper give accurate results. Moreover,
the two methods showcased in this paper, are very easy
and simple to handle as they do not involve rigorous
calculation processes as well as complex mathematical
ideas. Though more research is required in the light of
gaining more information as to how these approximate
methods affects real physical systems, this paper presents
a step towards a successful and positive implementation
of the two methods.
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Fig. 4: The comparison between analytical approximate
solutions (- - -) and numerical solution (—).
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