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Abstract: In this work we study existence of solutions for an abstract coupled system of nonlinear equations of extensible beams
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1. Introduction

A mathematical model for the transverse deflection of an
extensible beam of length L whose ends are held at fixed
distance apart is equation

utt + αuxxxx +

(
β

∫ L

0

u2
ξ(ξ, t) dξ

)
(−uxx) = 0

which has been proposed by Woinowsky-Krieger [14], where
α is a positive constant, β is a constant, not necessarily
positive, and the nonlinear term represents the change in
the tension of the beam due to its extensibility. The abstract
formulation of this model, that was studied by Medeiros
[8] is the equation

u′′ + αA2u + M(|A1/2u|2Au = 0

where A is a linear operator in a Hilbert space H and M
a real function. We use the standard Lebesgue space and
Sobolev space with their usual notation and properties as
in [6] and in this sense (· , ·) and | · | denote respectively
the inner product and norm in H. The extensible beam or
plate was studied by several authors, like Eisley (1964)
[5], Dickey (1970) [4], Ball (1973)[1], Menzala(1980)[9],
Brito (1984)[3], Biler (1986) [2], Pereira (1989) [11] and
more recently, by Rivera (2008) [12] and Ma (2010) [7].

In this paper we prove the existence, uniqueness and ex-
ponential decay of solutions for an abstract coupled sys-
tem of Woinowsky-Krieger model of nonlinear equations
of the beam. The importance of this work is to present the
abstract formulation of the coupled system and to apply
the Theorem of Nakao to obtain the asymptotic behavior.
In this direction, for δ1 > 0 and δ2 > 0 follows the prob-
lem that we consider here,

K1u
′′ + A2

1u

+M

(∣∣∣A1/2
1 u

∣∣∣2 +
∣∣∣A1/2

2 v
∣∣∣2)A1u + δ1u

′ = 0 (1)

K2v
′′ + A2

2v

+M

(∣∣∣A1/2
1 u

∣∣∣2 +
∣∣∣A1/2

2 v
∣∣∣2)A2v + δ2v

′ = 0 (2)

u(0) = u0, v(0) = v0 (3)

(K1u
′)(0) = K

1/2
1 u1, (K2v

′)(0) = K
1/2
2 v1 (4)

where M ∈ C0[0,+∞), with M(λ) ≥ 0 ∀ λ > 0 and
Ki, i = 1, 2 are symmetrical linear operators in H with
(Kiw,w) > 0, ∀ w ∈ H , Ai, i = 1, 2 are self-adjoint and
positive linear operator, with domain D(Ai) dense in H ,
that is, there exist positive constants mi, i = 1, 2, such that
(A1v, v) ≥ m1|v|2, ∀ v ∈ D(A1), (A2w,w) ≥ m2|w|2,
∀ w ∈ D(A2).
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In section 2 we study the existence of solution by Faedo-
Galerkin’s method and in section 3 we prove the stability
of system by Nakao’s theorem.

2. Existence of solution

In this section, we will prove that for

(u0, v0) ∈ D(A1) ×D(A2) and (u1, v1) ∈ H × H,

there exists a unique solution (u, v) of (1) - (4) in

L∞([0, T ),D(A1)) × L∞([0, T ],D(A2))

where the time T depend only of initial data. We make use
of Faedo-Galerkin approximation to prove the existence of
weak solution and in this direction we consider the follow-
ing result.

Theorem 1.

For (u0, v0) ∈ D(A1) ×D(A2), (u1, v1) ∈ H × H,

there exist functions u, v : R+ −→ H , such that

(u, v) ∈ L∞([0, T ),D(A1)) × L∞([0, T ],D(A2))
(K1u

′,K2v
′) ∈ [L∞([0, T ),H)]2

(u′, v′) ∈ [L2([0, T ),H)]2

satisfying in the sense of D′(R+)
∀ w ∈ D(A1),

d

dt
(K1u

′, w) + (A1u,A1w) +

M

(∣∣∣A 1
2
1 u
∣∣∣2 +

∣∣∣A 1
2
2 v
∣∣∣2) (A1u,w) + δ1(u′, w) = 0, (5)

and ∀ z ∈ D(A2),

d

dt
(K2v

′, z) + (A2v,A2z) +

M

(∣∣∣A 1
2
1 u
∣∣∣2 +

∣∣∣A 1
2
2 v
∣∣∣2) (A2v, z) + δ2(v′, z) = 0, (6)

with initial conditions

(u(0), v(0)) = (u0, v0),

(K1u(0),K2v(0)) =
(
K

1
2
1 u1,K

1
2
2 v1

)
.

Proof.Approximate problem
Let (wν)ν∈N and (zν)ν∈N , Hilbert’s basis of D(A1)

and D(A2) respectively. We take

Vm = [w1, ..., wm] and Wm = [z1, ..., zm]

so we have that

um(t) =
m∑

j=1

gjm(t)wj ∈ Vm

and

vm(t) =
m∑

j=1

hjm(t)zj ∈ Wm

satisfies ∀ w ∈ Vm and ∀ z ∈ Wm

(K1u
′′
m(t), w) + (A1um(t), A1w)

+M

(∣∣∣A 1
2
1 um(t)

∣∣∣2 +
∣∣∣A 1

2
2 vm(t)

∣∣∣2) (A1um(t), w)

+δ1(u′
m(t), w) = 0, (7)

(K2v
′′
m(t), z) + (A2vm(t), A2z)

+M

(∣∣∣A 1
2
1 um(t)

∣∣∣2 +
∣∣∣A 1

2
2 vm(t)

∣∣∣2) (A2vm(t), z) +

δ2(v′
m(t), z) = 0, (8)

and

(um(0), vm(0)) −→ (u0, v0), (9)

(K1u
′
m(0),K2v

′
m(0)) −→

(
K

1
2
1 u1,K

1
2
2 v1

)
, (10)

in D(A1) ×D(A2) and H × H respectively.

Now by the Carathéodory’s theorem, um(t) and vm(t) are
defined just in the interval [0, Tm] with 0 < Tm < T and
we need to prolong for the interval [0, T ], 0 < T < ∞.

Priori estimates
Taking w = u′

m(t) and z = v′m(t) in (7) and (8) we re-
spectively obtain

1
2

d

dt

[
|K 1

2
1 u′

m|2 + |A1um|2
]

+M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2) (A1um, u′
m) (11)

+δ1|u′
m|2 = 0,

1
2

d

dt

[
|K 1

2
2 v′

m|2 + |A2vm|2
]

+M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2) (A2vm, v′
m)

+δ2|v′
m|2 = 0. (12)

Now we observe that

M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2) (A1um, u′
m)

=
1
2
M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2) d

dt
|A 1

2
1 um|2,

and

M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2) (A2vm, v′
m)

=
1
2
M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2) d

dt
|A 1

2
2 vm|2.

Now adding and using M̂(λ) =
∫ λ

0
M(s)ds, follows from

(12), (12) that
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1
2

d

dt

[|K 1
2
1 u′

m|2 + |A1um|2 + |K 1
2
2 v′

m|2

+|A2vm|2 + M̂

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2)]
+δ1|u′

m|2 + δ2|v′
m|2 = 0.

From the equation above, after integration from 0 to t, 0 ≤
t ≤ Tm, we obtain

|K 1
2
1 u′

m|2 + |A1um|2 + |K 1
2
2 v′

m|2 + |A2vm|2

+M̂

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2)
+2
∫ t

0

(δ1|u′
m|2 + δ2|v′

m|2)ds

= |K 1
2
1 u1m|2 + |A1u0m|2 + |K 1

2
2 v1m|2 + |A2v0m|2

+M̂

(∣∣∣A 1
2
1 u0m

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2) ≤ C1,

with C1 > 0, constant independent of m and t. Then we
have(

K
1
2
1 u′

m

)
,
(
K

1
2
2 v′

m

)
limited in L∞([0, T );H), (13)

(um) limited in L∞([0, T );D(A1)), (14)

(vm) limited in L∞([0, T );D(A2)). (15)

Since that K
1
2
i , i = 1, 2, are limited from H in H using

(13) we get

(K1u
′
m), (K2v

′
m) limited in L∞([0, T );H). (16)

Passage to the limit
Using the estimates (14) - (15), we can extract subsequences
of (um)m∈N , (vm)m∈N , (which we denote with the same
symbol) so that

um
�
⇀ u weak star in L∞([0, T );D(A1)) (17)

vm
�
⇀ v weak star in L∞([0, T );D(A2)) (18)

u′
m ⇀ u weak in L∞([0, T );H) (19)

v′
m ⇀ v′ weak in L∞([0, T );H) (20)

K1u
′
m ⇀ K1u

′ weak in L∞([0, T );H) (21)

K2v
′
m ⇀ K2v

′ weak in L∞([0, T );H) (22)

From (17)-(20) and Aubin-Lions’s compacteness theorem,
see [6] follows that

um −→ u strongly in L2([0, T );D(A
1
2
1 )), (23)

vm −→ v strongly in L2([0, T );D(A
1
2
2 )). (24)

By continuity of M we have the following weak conver-
gence in L2([0, T );H),

M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2)A1um

⇀ M

(∣∣∣A 1
2
1 u
∣∣∣2 +

∣∣∣A 1
2
2 v
∣∣∣2)A1u, (25)

M

(∣∣∣A 1
2
1 um

∣∣∣2 +
∣∣∣A 1

2
2 vm

∣∣∣2)A2vm

⇀ M

(∣∣∣A 1
2
1 u
∣∣∣2 +

∣∣∣A 1
2
2 v
∣∣∣2)A2v. (26)

These convergence implies that we can take limits in the
approximate problem (7)-(10) and then we concludes the
existence of weak solution. Finally since that M is lo-
cally Lipschitz, the uniqueness of solution can be proved
as usual, by Ladyzhenskaya’s method [13].

3. Stability of solutions

First we introduce the Nakao’s theorem

Theorem 2.Let E(t) be a nonnegative function on [0,∞)
satisfying

s ∈ [t, t + 1]supE(s) ≤ C0(E(t) − E(t + 1) )

where C0 is a positive constant. Then there exist C positive
constant such that

E(t) ≤ Ce−w t with w =
1

C0 + 1
.

Proof.See page 748 of [10].

Now we will to prove our principal result

Theorem 3.For t ≥ 1 and (u0, v0) ∈ D(A1) × D(A2),
(u1, v1) ∈ H × H , the full energy of (1)-(4) defined by

E(t) =
1
2

[ ∣∣∣K 1
2
1 u′
∣∣∣2 + |A1u|2 +

∣∣∣K 1
2
2 v′
∣∣∣2 + |A2v|2

+M̂
( ∣∣∣A 1

2
1 u
∣∣∣2 +

∣∣∣A 1
2
2 v
∣∣∣2 )]

satisfies
E(t) ≤ C e−wt.

Proof.Using (12) and (12) we obtain after passage to limit

1
2

d

dt

[
|K 1

2
1 u′|2 + |A1u|2 + |K 1

2
2 v′|2 + |A2v|2

+ M̂

(∣∣∣A 1
2
1 u
∣∣∣2 +

∣∣∣A 1
2
2 v
∣∣∣2)]+ δ1|u′|2 + δ2|v′|2 = 0.

Performing integration from t1 to t2, with 0 < t1 < t2 we
get

E(t2) +
∫ t2

t1

[
δ1|u′(s)|2 + δ2|v′(s)|2] ds = E(t1) (27)

and for all t > 0

E(t + 1) +
∫ t+1

t

[
δ1|u′(s)|2 + δ2|v′(s)|2] ds = E(t).

Now, defining C2[E(t) − E(t + 1)] ≡ F 2(t) we obtain∫ t+1

t

[|u′(s)|2 + |v′(s)|2] ds ≤ F 2(t), (28)
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with

C2 =
1

min{δ1, δ2} .

Then, we can choose
t1 ∈ [t, t + 1

4

]
and t2 ∈ [t + 3

4 , t + 1
]
, such that

|u′(t1)|2 + |v′(t1)|2 ≤ 4F 2(t),

and so

|u′(t1)| + |v′(t1)| ≤ 4F (t). (29)

Similarly we get

|u′(t2)| + |v′(t2)| ≤ 4F (t). (30)

Making w = u(t) and z = v(t) in (7) and (8) we obtain
respectively

(K1u
′′(t), u(t)) + |A1u(t)|2

+M

(∣∣∣A 1
2
1 u(t)

∣∣∣2 +
∣∣∣A 1

2
2 v(t)

∣∣∣2) ∣∣∣A 1
2
1 u(t)

∣∣∣2
+δ1(u′(t), u(t)) = 0,

(K2v
′′(t), v(t)) + |A2v(t)|2 +

M

(∣∣∣A 1
2
1 u(t)

∣∣∣2 +
∣∣∣A 1

2
2 v(t)

∣∣∣2) ∣∣∣A 1
2
2 v(t)

∣∣∣2
+δ2(v′(t), v(t)) = 0,

and adding

d

dt
(K1u

′(t), u(t)) −
∣∣∣K 1

2
1 u′(t)

∣∣∣2 + |A1u(t)|2

+M

(∣∣∣A 1
2
1 u(t)

∣∣∣2 +
∣∣∣A 1

2
2 v(t)

∣∣∣2) ∣∣∣A 1
2
1 u(t)

∣∣∣2
+

d

dt
(K2v

′(t), v(t)) −
∣∣∣K 1

2
2 v′(t)

∣∣∣2 + +|A2v(t)|2

+M

(∣∣∣A 1
2
1 u(t)

∣∣∣2 +
∣∣∣A 1

2
2 v(t)

∣∣∣2) ∣∣∣A 1
2
2 v(t)

∣∣∣2
+δ1(u′(t), u(t)) + δ2(v′(t), v(t)) = 0.

Integrating from t1 to t2 we have∫ t2

t1

[
|A1u(t)|2 + |A2v(t)|2

+M

(∣∣∣A 1
2
1 u(t)

∣∣∣2 +
∣∣∣A 1

2
2 v(t)

∣∣∣2) ∣∣∣A1/2
1 u(t)

∣∣∣2
+M

(∣∣∣A 1
2
1 u(t)

∣∣∣2 +
∣∣∣A1/2

2 v(t)
∣∣∣2) ∣∣∣A 1

2
2 v(t)

∣∣∣2 ]dt

= (K1u
′(t1), u(t1)) − (K1u

′(t2), u(t2)
+(K2v

′(t1), v(t1)) − (K2v
′(t2), v(t2))

+
∫ t2

t1

[∣∣∣K1u
′(t)
∣∣∣2 +

∣∣∣K2v
′(t)
∣∣∣2

−δ1(u′(t), u(t)) − δ2(v′(t), v(t))
]
dt.

Using M ∈ C0[0,+∞), with M(λ) ≥ 0 we get∫ t2

t1

|A1u(t)|2 + |A2v(t)|2dtq

≤ M1

∫ t2

t1

|u′(t)|2dt + M2

∫ t2

t1

|v′(t)|2dt

+C3δ1

∫ t2

t1

|u′(t)||A1u(t)|dt + C4δ2

∫ t2

t1

|v′(t)||A2v(t)|dt

+M1|u′(t1)||u(t1)| + M1|u′(t2)||u(t2)|
+M2|v′(t1)||v(t1)| + M2|v′(t2)||v(t2)|,

where Mi = ‖Ki‖L(H), i = 1, 2 and C3, C4 are constants
such that |u(t)| ≤ C3|A1u(t)| and |v(t)| ≤ C4|A2v(t)|.

Using (29) and (30) we obtain for s ∈ [t, t + 1]∫ t2

t1

[|A1u(t)|2 + |A2v(t)|2] dt ≤ M1F
2(t) + M2F

2(t)

+
C2

3δ2
1

2

∫ t2

t1

|u′(t)|2dt +
1
2

∫ t2

t1

|A1u(t)|2dt

+
C2

4δ2
2

2

∫ t2

t1

|v′(t)|2dt +
1
2

∫ t2

t1

|A2v(t)|2dt

+M1C3 sup |A1u(s)|(|u′(t1)| + |u′(t2)|)
+M2C4 sup |A2v(s)|(|v′(t1)| + |v′(t2)|).

Defining

C4[F 2(t) + sup |A1u(s)|(|u′(t1)| + |u′(t2)|)
+ sup |A2v(s)|(|v′(t1)| + |v′(t2)|)] ≡ G2(t)

we get∫ t2

t1

[
|A1u(t)|2 + |A2v(t)|2

]
≤ G2(t), (31)

where

C4 = max {2M0, 2M1C3, 2M2C4} ,

with

M0 =
(

M1 + M2 +
C2

3δ2
1

2
+

C2
4δ2

2

2

)
.

From (28) and (31) we obtain

∫ t2

t1

[
(|A1u(t)|2 + |A2v(t)|2)

+δ1|u′(t)|2 + δ2|v′(t)|2] dt ≤ C5F
2(t) + G2(t),

where C5 = δ1 + δ2.

Then, there exist t∗ ∈ [t1, t2] such that

|A1u(t∗)|2 + |A2v(t∗)|2 + δ1|u′(t∗)|2 + δ2|v′(t∗)|2
≤ 2[C5F

2(t) + G2(t)]. (32)

c© 2012 NSP
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Observe that

M̂
(
|A1/2

1 u(t∗)|2 + |A1/2
2 v(t∗)|2

)
=
∫ |A1/2

1 u(t∗)|2+|A1/2
2 v(t∗)|2

0

M(s)ds

≤ m0

(
|A1/2

1 u(t∗)|2 + |A1/2
2 v(t∗)|2

)
≤ m0 C6

(|A1u(t∗)|2 + |A2v(t∗)|2) , (33)

where m0 = max M(s) that is finite and C6 is a constant
such that

|A 1
2
1 u(t)|2 ≤ C6|A1u(t)|2 and |A 1

2
2 v(t)|2 ≤ C6|A2v(t)|2.

Now, using the energy functional and (32), (33), we obtain

E(t∗) ≤ C7

[
F 2(t) + G2(t)

]
. (34)

From (27), (28) and (34) we have

E(tt1) = E(t∗) +
∫ t∗

t1

[
δ1|u′(s)|2 + δ2|v′(s)|2] ds,

so

E(t) ≤
∫ t+1

1

[
δ1|u′(s)|2 + δ2|v′(s)|2] ds + E(t∗),

and then for s ∈ [t, t + 1]

sup E(s) ≤ E(t∗) +
∫ t+1

t

[
δ1|u′(s)|2 + δ2|v′(s)|2] ds

≤ C7

[
F 2(t) + G2(t)

]
+ C5F

2(t),

so we obtain

supE(s) ≤ C8F
2(t) +

1
2

supE(s).

From last inequality we have

supE(s) ≤ 2C8F
2(t) = C0 [E(t) − E(t + 1)] ,

and then

E(t) ≤ C0 [E(t) − E(t + 1)] .

Finally, by theorem 3.1 we concludes that

E(t) ≤ Ce−w t with w =
1

C0 + 1
.

4. Conclusion

In this paper, we employed the Nakao’s method to analyze
the asymptotic behaviour for an abstract coupled system of
nonlinear equations of extensible beams models. We prove
that when the time t goes to infinity the system has a ex-
ponential decay.
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