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Abstract: In this paper, we consider the problem of constructing cemnfie interval for the correlation coefficient in a bivariate
normal distribution. For this problem, we found fifteen agaarhes in literatures. Also, we have proposed a generatiaefidence
interval and a parametric bootstrap confidence intervas. ddverage probabilities and expected lengths of thesatsmreapproaches
are evaluated and compared via simulation study. In addlitiobustness of the methods is considered in the comparisprihe
non-normal distributions. Two real examples are givenltsitate the approaches.
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1 Introduction

A certain departure from stochastic independence betwwenrandom variables is assessed by correlation and a
well-known measure of linear association between two ramsariables is the (Pearson product-moment) correlation
coefficient. One can investigate the applications of theatation coefficient in all fields of sciences such as enginge
medicine, psychology, biology and so on.

In a bivariate normal distribution1] proposed two expressions for the exact density functioseofiple correlation
coefficient, and 7] proposed an expression in term of hypergeometric funsti{8} obtained and tabulated the critical
values for the exact test of hypothesis about the corre@labefficient using these expressiodg.drovided an expression
for the distribution of sample correlation coefficient ugsantheorem in linear regression.

The well-known z-transform ofg] is a usual method for inference about the correlation cgefft and constructing
confidence interval for this parameter. After that, manyhatg investigated other approximations and confidence
intervals: P] offered four modifications of Fishers z-transformatiddj.gbtained a simple approximate normalization for
the correlation coefficient in normal samples. For testilipproposed a test statistic, ar§] fleveloped this test statistic.
[8] also obtained a test statistic based on the F distributiohused it to construct a confidence intervé].dave another
form of this confidence interval1[] used method of signed log-likelihood ratio statistic araticed two confidence
intervals. Using the concept of generalized pivotal vdeafll] developed a generalized confidence interval. Using
Cornish-Fisher expansionsld gave two approximate confidence interval$3][ derived an alternative estimator of
Pearsons correlation coefficient in terms of the rangesnThey found an approximate confidence interval for this
parameter and provided a new approximation for the densitgtfon of sample correlation coefficient.

Here, we consider inference about the correlation coeffiggarameter and propose a generalized pivotal variable and
a parametric bootstrap (PB) approach for constructing denfie interval for this parameter. This paper is organized a
follows: In Sectior2, we first review the existing approaches to construct contidénterval for the correlation coefficient
parameter. Then, we derive a generalized pivotal variaideaaPB approach for this problem. Simulation studies are
performed in SectioB to evaluate and compare the coverage probability and exgpéength of these approaches. Two
real examples are given in SectiénThe paper is concluded in Sectibn
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2 Confidence intervals forp

Let (X11,X21)’s ..., (X1n, Xon)" be a random sample from a bivariate normal distribution wigran vectot = (g, p2)’
and variance-covariance matrix
5o 0% po10z
= >4,
pO102 0O
wherep is the correlation coefficient between first and second corapts. The maximum likelihood estimation Bris
S=(Sj) = 371 (Xi — X)(X; — X)', where
1 1
S=5= n n

(Nj—%)Z, =12,  Sp= (xlj—%l)(xz,-—iz),

™M=
™M=

andX, = %2?:1)(”, i = 1,2. Therefore, the maximum likelihood estimationgis R = %
Using the expressions for density function®fgiven by [1] or by [2], one can construct an exact 3Q0- a)%
confidence interval fop by numerical solving the following equations

L 1
[lf(r;p)dr:%, /u f(r;p)dr=—

wheref (r;p) is the density function of sample correlation coefficiemt: fore details on the form of thigr; p), one can
refer to ]. However, this is a very difficult method and needs solvirgaplex integral. Therefore, some approximations
methods are proposed to construct confidence interval.for

In this Section, we first review the existing methods to cartdtconfidence interval fop. Then we will propose a
generalized pivotal variable and a PB approach.

2.1 Fisher’s z-transformation

The Fishers z-transformation is the most well-known andupapapproximation for the sample correlation coefficient
Itis also known as the variance stabilizing transformatjéhshowed that

1+R

(m) =tanh '(R), 1)

1
y
2'%9

has an asymptotic normal distribution with meénr= 3 Iog(”p) tanh (p) and variance A(n— 3). Therefore, an
approximate 100 — o )% confidence interval fop is given by

(tanr(Z— Zaj2 ),tanh(Z + Za/2 ))
vn—3" vn=3")’

whereZy is theyth upper quantile of the standard normal distribution.

2.2 Hotelling’s approximations

[2] gave four modifications of Fisher’s z-transformation as

., TZ+R _1{+p
L=z 8(n—1)’ =< 8(n—1)’
7Z4+R 119 +57R+3R? 77+p 119 +57p +3p?
Z,=2— - > (=0~ 2
8(n—1) 384(n—1) 8(n—-1)  384n-1)
., 3Z+R , . 3+p
Z3=21 -1 3=¢ =1’
3Z+R 237+33R—5R? 3({+p 23(+33p—5p?
Z4:Z_ - 2 Z4_Z_ > s
4(n—1) 96(n—1) 4n-1)  96n—-1)

and showed tha;, i =1,...,4, are distributed as normal distribution with medns = 1,...,4, and variances/{n—1).
Therefore, we can construct four confidence intervalgpftiased on these approximations. However, there is no closed
form for each of these confidence intervals, and they argradstanumerically.
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2.3 Ruben’s approximation

[6] showed that

1 1
2n-5\2R_ (2n=3)23
Zhr:(2)~(2);p7
(1+ %(R2+[)2)) 2
is asymptotically distributed as a standard normal distiiim, whereR = \/% andp = \/1"__[)2. Therefore, we can

construct a confidence interval fprnumerically based on this approximation.

2.4 Muddapur’s methods

[7] proposed a test statistic for testipg= 0 as

vn—2(R-p)
(1-p?)(1-R)’

and showed that this statistic has an approximaistribution withn — 2 degrees of freedom for moderately largg8]
developed this test statistic as
vn—2(R—pb)

1-p)1-R)

whereb = (S + S5)/,/4S2S3. He showed that this test statistic hasdistribution withn — 2 degrees of freedom. This
test statistic is a likelihood ratio test obtained Ky for testing the hypothesis = pg. Therefore, one can construct a
confidence interval for the paramefr

[8] also considered the test statistic
(1+R(1-p)
(1-R)(1+p)’
and showed that it has an approximate F distribution with2 andn — 2 degrees of freedom. Note thais related to
Fisher’s z-transform through the one to one relationship as

log(f) =2(Z~ 7).
Therefore, a 10d — o )% confidence interval fop is

((1+Fa/2)R+(1—Fa/2) (1+Fa/2)R_(1_Fa/2)>
(1+Fg2) +(1-Fg2)R" (1+Fq/5) —(1—-Fg2)R/’

f:

whereF, is theyth upper quantile of the F distribution with— 2 andn — 2 degrees of freedom9] gave another form of

this confidence interval as
R-w R4+w
1-RwW 1+Rw)/’

t(nfz,c{/Z)/\/nTz
(1+ (tn-2a/2)°/(n— 2))1

where

W=

/2

2.5 Signed log likelihood method

[10] used the method of signed log-likelihood ratio statistid &s modification to construct two confidence intervals for
p.Let/(0), wherAeG = (L, U2, 01,02,p)', be the log-likelihood function of a sample from bivariategmal distribution,

and suppose th# be the maximum likelihood estimator of the paraméetet (8) (herep) be a scalar parameter of
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interest anc@w be the constrained maximum likelihood estimator which cawltained by maximizing(0) subject to
the constrainy(6) = . Thus

. - 1/2
D(w) = sign@ - ) (26(8) —2¢(8y) ) .

is the signed log-likelihood ratio statistic and asympmtally is distributed asl(0, 1). Therefore, a 100 — a)% confidence
interval for is { : [D(Y)| < Zy 2}

The accuracy oD(¢) is O(n‘%), and to improve the accuracy &f(y), the modified signed log-likelihood ratio
statistic was proposed b$%,16]. Consider

D*(y) = D(m)—ﬁlog%,

where
1/2

Qly) = (‘l’—‘#){M} 7
’JAA’(GAU)’

andjeel(é) ande/(éL,,) is the observed information matrix evaluateddaand observed nuisance information matrix
evaluated afy, respectively. For more details on the modified signed ikefihood ratio statistid®*(y) for inference
about correlation coefficienp, reader can refer td.p]. Thus, a 1001 — a)% confidence interval foy is {¢ : |D*(¢)| <

Z, 2} Note that the calculations are not simple in this method.

2.6 Krishnamoorthy and Xia’s Method

The concepts of generalized pivotal variable and gene@bpnfidence interval are defined ly'] and are used by some
authors in many statistical problems. For more informagibaut this concepts, see the book b§][
[11] proposed a generalized confidence intervalddry developing a generalized pivotal variable as

V2o — Vo1
\/(sz —Vo1)? + VA

wherer= 1’_r2, andV3, V2, andVy; are independent random variables V\Aﬁ_n, X(Zn—Z)' andN(0, 1), respectively.

The confidence interval fgr can be constructed by using a Monte Carlo simulation.

2.7 Withers and Nadarajah’s methods

[12] considered Cornish-Fisher expansions for the distrimudf Yy, = m2 (é —0)azp as
Pal(t) = @ Y1)+ Y m/2g (@7 (1)),
=1

wherePy(t) and®(t) are the distribution function of, and a standard normal distribution, respectively, anid gertain
polynomials inx. They consideregh = 0, and therefore, gave the estimatiorpodis

. > i1 Xi1 %2

\/(ZT=1><1'21)(ZT=1X1'22) .

Then, usingry, with the following values
m=n, 6=tanh%(p), B=tanh(p), ax=1,
_P L D R X ox o205
nX)=5+p" ==, QRN =15+7-P P g
they proposed two confidence intervals forThese confidence intervals are obtained numerically.
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2.8 Haddad and Provost’s method

LetD* = 31, (X5 +X5)? andD™ = 311 (X — X3)°, whereX;: = %=X i =1,2,j = 1,....n, are the standard values.

[13] proposed an approximately 10— a)% confidence interval foo as

D*—D7Fy, DT =D7F ;)
D++D*F;/2’D++D*Fl’1 ’

whereF; is theyth upper quantile of the F distribution with— 1 andn — 1 degrees of freedom.

a/2

2.9 A new generalized confidence interval

Using the concept of generalized confidence interval, wsttoat a new confidence interval for the correlation coedfiti
parameter. LeA = nS anda= (&) be an observed value of matwx ThereforeA ~W(n—1, %) and also is distributed

asz{‘;ll Zi*Zi*', whereZ; has multivariate normal distribution with mean vecgpe= 0 and variance-covariance matgx

Then,a 2Aa 2 is distributed aip;fzr*zi**’, whereZ* has multivariate normal distribution with mean vector= 0

and variance-covariance mat@x 3 5a 3. So,a*%Aa*% follows a Wishart distribution witm — 1 degrees of freedom
P S A 1o 1

and scale parameter matax2X>a 2, i.e.a 2Aa 2 ~W(n—1,a 2Xa 2). Consequently

1

2

— _1
V*:(Vi]-‘):a‘%(a‘%Za‘%) (a ZAa 2)(a"2Za %) ‘a Z~W(n—1al).

The value oV* atA=ais =1, and for a givera, the distribution of/* does not depend on any unknown parameters.

ThereforeV* is a generalized pivotal variable far?, and
vl— N S { Vz*z* —!fz] 7
ViV, — (Vi) L~ Viz Via
is a generalized pivotal variable far. So,
Vi

VVIV;,
is a generalized pivotal variable for the parameteBy using the Monte Carlo simulation given in the followidgarithm,
we can find a confidence interval fpr

(@)

Algorithm 1 For given sample covariance matrix, s,

Step 1. Compute a and &

Step 2. Generate V ~W(n—1,a71).

Step 3. Compute Gz in (2).

Step 4. Repeat Step 2 and 3 for a large number of times (say M, 000

Then from these M values, th€0(a/2)th and100(1 — a/2)th percentile of G2 is a 100(1 — a)% confidence interval
for p.

2.10 A parametric bootstrap method

The bootstrap approach is a computer-based method thapie@mwn the observed data by Monte Carlo simulation
[19). Using the PB approach, one can approximate the null Higidn of some statistical tests. This approach was used
by some authors in well-known problems like the Behren&étigproblem 20], comparing several normal mearfl],
ANCOVA with unequal variancep), the equality of coefficients of variatior28], and the equality of two log-normal
means 24]. Here, we propose a PB confidence intervaldarsing the z-transformation i)

Lemma 1Let R be the sample correlation coefficient for a bivariatenmal distribution with mean vectqe and variance-
covariance matrixx. Then .
pV+N

(BV +N)Z+W2’
and V2, W2, and N are independent random variables W@—l)’ x(znfz), and N(0,1).

~

wherep =

_pP
V1-p2’
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ProofSince X is a positive definite matrix, there is a unique lower tridlagunatrix, L, such that_ L’ = 5~ (Cholesky
decomposition). From?H], page 99,
LCCL ' =A~W(n—-1,%),

whereA= (Ajj) =nSC= \l\/l \?V andVv?,W?, andN are independent random variables "Wﬂlly X( 2, @ndN(0,1),

respectively. It can be shown that mattithas the following form:

L [ o1 0 }
p0> Oo\/1—p2|°
Therefore, we have

_ o2v? 0102/1— p2(pV2 +NV)
0102\/1— p?(BV? +NV) 0Z(1 - p?)[(BV +N)* +W?|

So, the sample correlation coefficient is distribute%, and the proof is completed.

ConsideQ = (Z— tanhfl(p))z. We can approximate the distribution@fusing a PB approach as

Q® = (28— tan }(R))", @3)
wherez® = log(LR?) with )
- RV+N @
(RV4+N)Z+ W2’

whereR= —R_ . Then, the distribution o8 provides the PB approximation for the distribution@fand a 1001 —

ViR’
<tanr(Z ~ \/%),tanf(zﬂL qE))

a)% PB confidence interval fgo is
whereg? denotes thél — a)th quantile of the distribution a®®. The value ofj can be estimated using a Monte Carlo
simulation as follows:

Algorithm 2 For given sample correlation coefficientRr,

Step 1. Generate artificial sample correlation coefficieniR (4) and compute &in (3).

Step 2. Repeat Step 2 for a large number of times (say=MO0,000), and from these M values, obtain the empirical
distribution of @ and its(1 — a)th quantile as an estimate ofq

RemarkWe used the Fisher z-transformation quantity to constiuetRB confidence interval fgo. In addition, one
can use quantities in Hotelling, Ruben, Muddapur methaggratnam, Sign log likelihood, and Withers and Nadarajah
methods, and propose other PB confidence intervals.

3 Simulation Studies

For evaluating the performance of the methods for constryctonfidence intervals fop, we compare the coverage
probabilities and expected lengths using simulation stdin all cases, we consider 95% confidence coefficient, and
generate 10,000 random samples with sif®m a bivariate normal distribution witfuy, 1) = (0,0), (01,02) = (1,1),
andp =0.0,0.1,...,0.9.

With respect to different values @f, the coverage probabilities and expected lengths aresplatt Figuresl and?2,
respectively, and we can conclude that:
i) For all n andp, the coverage probabilities of the exact method, Fishettaizsformation method, Krishnamoorthy’s
generalized confidence interval, Withers and Nadarajalthatks, and PB confidence interval are close to the confidence
coefficient.
ii) The coverage probability and expected length of the PBhant are close to the coverage probability and expected
length of Fisher’s z-transformation method. However, PBhoé is applicable fon = 3 but Fisher’s z-transformation
method is not.
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iii) When the sample size is small the coverage probalslitieRuben, and Haddad and Provost’ methods are larger than
the confidence coefficient, and are satisfactory for othepdasizes.

iv) The coverage probabilities of confidence intervals dasemodified signed log-likelihood ratio and Hotellings'are
satisfactory whem > 10.

V) There are a few situations that, the coverage probasliif our generalized pivotal approach is less than the candil
coefficient.

vi) The expected lengths of all confidence intervals becomallsvhen the sample sizeor the parametep becomes
large.

Also, we performed a simulation study of robustness of theidence intervals fop. We consider two cases: First,
10,000 random samples with siz@re generated from a bivariate t distribution with 5 degrédeedom and parameters
(U1, 12) = (1,2), (01,02) = (1,3), andp = 0,0.6. The results are given in Tahleand we can conclude that the coverage
probabilities of all confidence intervals are not satisiagtand are smaller than the confidence coefficient.

In second robustness study, 10,000 random samples with sizegenerated from a bivariate log-normal distribution.
Arandom variabl&X = (X3, X,)’ has a bivariate log-normal distribution with paramefeendZ if Y = (log(X1),log(Xz))’
has the bivariate normal distribution with megnand covariance matriX. Note that the correlation coefficient for a
bivariate log-normal distribution equals to

p* _ exr(pO-lO-Z) -1

J(expR) ~ 1)(expta3) 1)

and the coverage probability of a confidence interval is thmler the cases that the paramedérlies within the
confidence interval. Note tha@t" and p are close whemw; and o, both are small. Here, we considgrs, 2) = (1,2),
(01,02) = (0.1,0.1), p = 0,0.6. Thereforep™ = 0,0.5988. The results are given in Talfeand we can conclude the
similar results to normal case. Note that whais are not equal or whewi’s are large, all confidence intervals are
unsatisfactory, and their coverage probabilities are lemgdan the confidence coefficient.

3

4 Two numerical examples

In this Section, we illustrate the seventeen confidencevake for the correlation coefficieqt using two real examples.

Example 126] studied the role of nonexercise activity thermogenesiesgistance to fat gain in humans and obtained
the following data set. They considered two variabks.the increase in energy use (in cal) from activity other than
deliberate exercise, ari}: the fat gain (in kg). This data set is also studied b§][ The sample correlation coefficient
equals to -0.7786. The 95% confidence intervals are givealiteB. We can find that the confidence intervals based on
exact method, the confidence interval based on Modified digopgelikelihood ratio (proposed byL)]), and generalized
confidence interval (proposed b)) are the same.

Example 2The source of the data set is National Center for EducatiatisBits (http: /nces.ed.gov)3][also studied
this. The Trial Urban District Assessment (TUDA) is a spepiaject under the US National Assessment of Educational
Progress (NAEP). It began assessing performance in seéllectg urban districts in 2002 and eleven urban schoolclistr
participated in the TUDA at grades 4 and 8 in 2005. The sammieelation coefficients between score in Mathematics
and Reading for grades 4 and 8 equal to 0.9755 and 0.973&atasly. The 95% confidence intervals using different
methods for two grades are given in TaBleWe can find that the confidence interval based on exact me#matithe
generalized confidence interval (proposed bij] are same in each grade score.
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Table 1: The coverage probabilities and expected lengths of the &#fedence intervals (generated from a bivariate t distido)t
Coverage Probability

p=0 p=06

Method n 3 5 10 25 3 5 10 25

Exact — 0.9278 | 0.8998 | 0.8708 — 0.9304 | 0.9106 | 0.8760
z -transform — 0.9285| 0.8981 | 0.8697 — 0.9355| 0.9035 | 0.8747
Hotelling Z; 0.8977| 0.9142| 0.8938| 0.8688 || 0.8991 | 0.9108 | 0.9033| 0.8727
Hotelling Z, 0.9368 | 0.9188 | 0.8974| 0.8709 || 0.9276 | 0.9287 | 0.8987 | 0.8718
Hotelling Z3 0.8761| 0.9087 | 0.8935| 0.8757 || 0.8722 | 0.9050 | 0.8987 | 0.8681
HotellingZ, 0.9196 | 0.9177 | 0.9025| 0.8695 || 0.9112| 0.9165| 0.8970 | 0.8648
Ruben — 0.9710| 0.9029 | 0.8671 — 0.9651| 0.9128 | 0.8776
Muddapur 1 0.9380| 0.9225| 0.8951| 0.8499 || 0.9263 | 0.8400 | 0.6404 | 0.3113
Muddapur 2 0.9426 | 0.9283 | 0.9011| 0.8716 | 0.9442| 0.9309 | 0.9071| 0.8704
signed log-LR 0.6396 | 0.7902 | 0.8486| 0.8514 || 0.6436| 0.7952 | 0.8515| 0.8610
Modified signed log-LR | 0.8741 | 0.9084 | 0.9011 | 0.8714 || 0.9212| 0.9232| 0.9124 | 0.8862
Krishnamoorthy 0.9450 | 0.9267 | 0.8997 | 0.8716 || 0.9422 | 0.9145| 0.8248 | 0.5483

Withers-Nadarajah 1 0.8018 | 0.7877| 0.6810| 0.4378|| 0.8302| 0.8368 | 0.8036| 0.6626
Withers-Nadarajah 2 0.8903 | 0.8636 | 0.7409| 0.4521 | 0.9023 | 0.8894 | 0.8326 | 0.6929
Haddad and Provost 0.9837 | 0.9545| 0.9232| 0.8791 || 0.9803| 0.9564 | 0.9200| 0.8778
Our Generalized method 0.7730 | 0.8710| 0.8770| 0.8480 || 0.7621 | 0.8740| 0.8970 | 0.8390

PB 0.9342| 0.9215| 0.8972| 0.8711 | 0.9362 | 0.9249 | 0.9029 | 0.8748
Expected Length
p=0 p=06

Method n 3 5 10 25 3 5 10 25

Exact — 1.4362 | 1.0880| 0.7334 — 1.2428 | 0.8490| 0.5185
z-transform — 1.5445| 1.1299| 0.7438 — 1.3283 | 0.8632| 0.5187
Hotelling Z; 1.7071 | 1.4865| 1.1192| 0.7426 || 1.6084 | 1.2491 | 0.8583| 0.5179
Hotelling Z, 1.8213 | 1.5156 | 1.1241 | 0.7435|| 1.7364 | 1.2902 | 0.8607 | 0.5193
Hotelling Z3 1.6664 | 1.4719| 1.1160| 0.7443 || 1.5431| 1.2343 | 0.8530| 0.5182
HotellingZ, 1.7900 | 1.5089 | 1.1262 | 0.7430|| 1.6942| 1.2893 | 0.8581| 0.5161
Ruben — 1.5166 | 1.1024 | 0.7343 — 1.3625 | 0.8643 | 0.5247
Muddapur 1 1.7142 | 1.2177| 0.8026 | 0.4865 || 1.6554 | 1.0546 | 0.6302| 0.3644
Muddapur 2 1.8324 | 1.5343| 1.1330| 0.7462 || 1.7697 | 1.3179| 0.8711| 0.5201
signed log-LR 1.1123 | 1.1799| 1.0021 | 0.7100 || 0.9457| 0.9447 | 0.7532| 0.4929
Modified signed log-LR | 1.5857 | 1.3922 | 1.0805 | 0.7324 || 1.3254| 1.2196 | 0.8862 | 0.5194
Krishnamoorthy 1.6639 | 1.5240| 1.3318| 1.1518|| 1.6016 | 1.2854 | 0.9045| 0.4731

Withers-Nadarajah 1 1.2721| 1.1393| 0.8989 | 0.6179 | 1.0079| 0.8280| 0.5974| 0.3621
Withers-Nadarajah 2 1.5227| 1.3049 | 0.9814 | 0.6420| 1.2642| 0.9699 | 0.6436| 0.3783
Haddad and Provost 1.8998 | 1.6225| 1.0306 | 0.7696 || 1.8483 | 0.9536 | 0.6005| 0.6725
Our Generalized method 1.5054 | 1.4429| 1.1180| 0.7401 | 1.3285| 1.1935| 0.8346| 0.5149
PB 1.8111| 1.5240| 1.1325| 0.7453 | 1.7330| 1.2989 | 0.8631| 0.5191

(@© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Let®2, No. 1, 23-35 (2015) www.naturalspublishing.com/Journals.asp NS P 33

Table 2: The coverage probabilities and expected lengths of the 9&8fidence intervals (generated from a bivariate log-normal
distribution).

Coverage Probability

p=0 p=0.6

Method n 3 5 10 25 3 5 10 25

Exact — 0.9478 | 0.9468| 0.9471 — 0.9506 | 0.9495| 0.9456
z -transform — 0.9173 | 0.9253| 0.9387 — 0.7492 | 0.6497 | 0.5399
Hotelling Z; 0.8765| 0.9050| 0.9318| 0.9420|| 0.7804| 0.7287 | 0.6543 | 0.5369
Hotelling Z, 0.9254 | 0.9131| 0.9299 | 0.9415|| 0.8578| 0.7398 | 0.6566 | 0.5454
Hotelling Z3 0.8694 | 0.9097 | 0.9265| 0.9392 || 0.7566 | 0.7124 | 0.6577 | 0.5426
Hotelling Z4 0.8947 | 0.9129| 0.9284 | 0.9386 || 0.8227| 0.726 | 0.6478| 0.5483
Ruben — 0.9554 | 0.9281 | 0.9386 — 0.8270| 0.6676 | 0.5495
Muddapur 1 0.9254 | 0.9006 | 0.8861 | 0.8558 || 0.8081| 0.5984 | 0.4076| 0.1587
Muddapur 2 0.9380 | 0.9236| 0.9326 | 0.9420|| 0.8807 | 0.7421 | 0.6554 | 0.5456
signed log-LR 0.6587 | 0.8402 | 0.9150| 0.9393|| 0.6608| 0.8399| 0.9117 | 0.9320
Modified signed log-LR | 0.8954 | 0.9271| 0.9325| 0.9401 || 0.8673 | 0.9154 | 0.9472 | 0.9353
Krishnamoorthy 0.9350 | 0.9151| 0.9256 | 0.9387 || 0.8627 | 0.7437 | 0.6447 | 0.5210

Withers-Nadarajah 1 0.7936 | 0.8263 | 0.8400 | 0.8454 || 0.5819 | 0.5538| 0.4673 | 0.3332
Withers-Nadarajah 2 0.8621 | 0.8763| 0.8720| 0.8472 || 0.7059| 0.6560 | 0.5286 | 0.3500
Haddad and Provost 0.9717| 0.8996 | 0.7400 | 0.3827 || 0.9669 | 0.9041| 0.7563 | 0.4357
Our Generalized methogl 0.8010 | 0.8860 | 0.9240| 0.9320| 0.7520| 0.8210| 0.6970| 0.5380

PB 0.9253 | 0.9100| 0.9251| 0.9381 || 0.8355| 0.7351| 0.6498 | 0.5407
Expected Length
p=0 p=0.6

Method n 3 5 10 25 3 5 10 25

Exact — 1.4621 | 1.1186| 0.7494 — 1.2839 | 0.8701| 0.5265
z -transform — 1.5579 | 1.1865| 0.7612 — 1.2980 | 0.9223| 0.6134
Hotelling Zy 1.6864 | 1.4973| 1.1531| 0.7607 || 1.4989 | 1.2395| 0.9136 | 0.6132
Hotelling Z, 1.8064 | 1.5282| 1.1544| 0.7612 || 1.6577 | 1.2661 | 0.9239 | 0.6159
Hotelling Z3 1.6624 | 1.4963| 1.1472| 0.7603 || 1.4482| 1.2158 | 0.9135| 0.6127
Hotelling Z4 1.7513 | 1.5235| 1.1545| 0.7599 || 1.5977 | 1.2628 | 0.9286 | 0.6255
Ruben — 15274 | 1.1235| 0.7497 — 1.3368 | 0.9146 | 0.6128
Muddapur 1 1.0285| 0.4395| 0.1527 | 0.0338 || 0.9343| 0.3503 | 0.1098 | 0.0252
Muddapur 2 1.8256 | 1.5572| 1.1645| 0.7630 || 1.6914 | 1.2850 | 0.9277 | 0.6169
signed log-LR 1.1442 | 1.2251| 1.0381| 0.7278 || 0.9670| 0.9768 | 0.7685 | 0.5011
Modified signed log-LR | 1.6812 | 1.4225| 1.1223| 0.7523 || 1.5359| 1.2280| 0.8670 | 0.5267
Krishnamoorthy 1.6517 | 1.5037 | 1.3772| 1.2297 || 1.5231| 1.2456 | 1.0262 | 0.6197

Withers-Nadarajah 1 1.2671| 1.1719| 0.9703 | 0.6968 || 0.9692 | 0.8795| 0.7305 | 0.5450
Withers-Nadarajah 2 1.4962| 1.3333| 1.0556 | 0.7211| 1.2093| 1.0378| 0.7995| 0.5633
Haddad and Provost 1.7281 | 1.3602| 0.9709 | 0.6320 || 1.7146 | 1.3439 | 0.9573 | 0.6223
Our Generalized methogl 1.5280 | 1.4654 | 1.1530| 0.7612 | 1.2453| 1.1578| 0.7939 | 0.8661
PB 1.8021 | 1.5397 | 1.1872| 0.7628 || 1.6239 | 1.2739| 0.9234 | 0.6142
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Table 3: The 95% confidence intervals for the examples 1 and 2.
Example 2 Example 2
method Example 1 | (4th Grade Score) (8th Grade Score
Exact -0.913,-0.447| 0.897,0.993 0.890, 0.992
z-transform -0.919,-0.461| 0.905, 0.994 0.899, 0.993
Hotelling Zy -0.919,-0.463| 0.862,0.996 0.853, 0.996
Hotelling Z -0.919,-0.463| 0.907,0.994 0.901, 0.993
Hotelling Z3 -0.918,-0.465| 0.909, 0.994 0.903, 0.993
Hotelling Z4 -0.918,-0.464| 0.909, 0.994 0.903, 0.993
Ruben -0.915,-0.440| 0.888,0.993 0.881, 0.993
Muddapur 1 -0.010,-0.004| 0.899,0.992 0.732,0.897
Muddapur 2 -0.920,-0.459| 0.905, 0.993 0.899, 0.993
signed log-LR -0.912,-0.494| 0.920,0.993 0.914, 0.992
Modified signed log-LR | -0.913,-0.450f  0.909, 0.993 0.901, 0.992
Krishnamoorthy -0.913,-0.448| 0.897,0.993 0.890, 0.992
Withers-Nadarajah 1 0.067,0.781 0.999, 1.000 0.999, 1.000
Withers-Nadarajah 2 ) 0.037,0.792 0.999, 1.000 0.999, 1.000
Haddad and Provost -0.477 ,0.487 0.981, 0.999 0.993, 1.000
Our Generalized method -0.924 ,-0.484| 0.919, 0.994 0.913, 0.994
PB -0.919,-0.461| 0.906, 0.994 0.900, 0.993

5 Conclusion

The correlation coefficient is an important parameter invaitite normal distribution. In this paper, we have evaldat
and compared the coverage probabilities and expectedhienfiseventeen confidence intervals for this parameter via a
simulation study. For sample size larger than 10, the coeepaobabilities of most methods are satisfactory when the
data has a bivariate normal distribution or when the dataHhagariate log-normal distribution with small variancés.
opposed to other methods, for all sample size, the covenagdmabpilities of the exact method, Fishers z-transfornmatio
method, Krishnamoorthys generalized confidence inter?&8, confidence interval and Withers and Nadarajahs
approaches are close to the confidence coefficient. The meadhbd is very difficult to implement and requires solving a
complex integral, and the Fishers z-transformation meihatbt applicable fon = 3. Therefore, our suggestions are
Krishnamoorthys generalized confidence interval, PB cenfié interval, and Withers and Nadarajahs approaches for
the correlation coefficient. However, none of the existingfdence intervals is satisfactory when the data follow a
bivariate log-normal distribution. Therefore, furthevéstigation could be done to find a confidence interval far tiaise.
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