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Abstract: In this paper, we consider the problem of constructing confidence interval for the correlation coefficient in a bivariate
normal distribution. For this problem, we found fifteen approaches in literatures. Also, we have proposed a generalizedconfidence
interval and a parametric bootstrap confidence interval. The coverage probabilities and expected lengths of these seventeen approaches
are evaluated and compared via simulation study. In addition, robustness of the methods is considered in the comparisons by the
non-normal distributions. Two real examples are given to illustrate the approaches.
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1 Introduction

A certain departure from stochastic independence between two random variables is assessed by correlation and a
well-known measure of linear association between two random variables is the (Pearson product-moment) correlation
coefficient. One can investigate the applications of the correlation coefficient in all fields of sciences such as engineering,
medicine, psychology, biology and so on.

In a bivariate normal distribution, [1] proposed two expressions for the exact density function ofsample correlation
coefficient, and [2] proposed an expression in term of hypergeometric functions. [3] obtained and tabulated the critical
values for the exact test of hypothesis about the correlation coefficient using these expressions. [4] provided an expression
for the distribution of sample correlation coefficient using a theorem in linear regression.

The well-known z-transform of [5] is a usual method for inference about the correlation coefficient and constructing
confidence interval for this parameter. After that, many authors investigated other approximations and confidence
intervals: [2] offered four modifications of Fishers z-transformation. [6] obtained a simple approximate normalization for
the correlation coefficient in normal samples. For testing,[7] proposed a test statistic, and [8] developed this test statistic.
[8] also obtained a test statistic based on the F distribution and used it to construct a confidence interval. [9] gave another
form of this confidence interval. [10] used method of signed log-likelihood ratio statistic and derived two confidence
intervals. Using the concept of generalized pivotal variable, [11] developed a generalized confidence interval. Using
Cornish-Fisher expansions, [12] gave two approximate confidence intervals. [13] derived an alternative estimator of
Pearsons correlation coefficient in terms of the ranges. Then they found an approximate confidence interval for this
parameter and provided a new approximation for the density function of sample correlation coefficient.

Here, we consider inference about the correlation coefficient parameter and propose a generalized pivotal variable and
a parametric bootstrap (PB) approach for constructing confidence interval for this parameter. This paper is organized as
follows: In Section2, we first review the existing approaches to construct confidence interval for the correlation coefficient
parameter. Then, we derive a generalized pivotal variable and a PB approach for this problem. Simulation studies are
performed in Section3 to evaluate and compare the coverage probability and expected length of these approaches. Two
real examples are given in Section4. The paper is concluded in Section5.
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2 Confidence intervals forρ

Let (X11,X21)
′, . . . ,(X1n,X2n)

′ be a random sample from a bivariate normal distribution withmean vectorµµµ = (µ1,µ2)
′

and variance-covariance matrix

Σ =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

,

whereρ is the correlation coefficient between first and second components. The maximum likelihood estimation forΣ is
S= (Si j ) =

1
n ∑n

i=1 (XXXi − X̄XX)(XXXi − X̄XX)′, where

Sii = S2
i =

1
n

n

∑
j=1

(Xi j − X̄i)
2
, i = 1,2, S12=

1
n

n

∑
j=1

(X1 j − X̄1)(X2 j − X̄2),

andX̄i =
1
n ∑n

j=1Xi j , i = 1,2. Therefore, the maximum likelihood estimation ofρ is R= S12
S1S2

.
Using the expressions for density function ofR given by [1] or by [2], one can construct an exact 100(1−α)%

confidence interval forρ by numerical solving the following equations
∫ L

−1
f (r;ρ)dr =

α
2
,

∫ 1

U
f (r;ρ)dr =

α
2
,

wheref (r;ρ) is the density function of sample correlation coefficient. For more details on the form of thef (r;ρ), one can
refer to [2]. However, this is a very difficult method and needs solving acomplex integral. Therefore, some approximations
methods are proposed to construct confidence interval forρ .

In this Section, we first review the existing methods to construct confidence interval forρ . Then we will propose a
generalized pivotal variable and a PB approach.

2.1 Fisher’s z-transformation

The Fishers z-transformation is the most well-known and popular approximation for the sample correlation coefficientR.
It is also known as the variance stabilizing transformation. [5] showed that

Z =
1
2

log(
1+R
1−R

) = tanh−1(R), (1)

has an asymptotic normal distribution with meanζ = 1
2 log(1+ρ

1−ρ ) = tanh−1(ρ) and variance 1/(n− 3). Therefore, an
approximate 100(1−α)% confidence interval forρ is given by

(

tanh(Z−
Zα/2√
n−3

), tanh(Z+
Zα/2√
n−3

)

)

,

whereZγ is theγth upper quantile of the standard normal distribution.

2.2 Hotelling’s approximations

[2] gave four modifications of Fisher’s z-transformation as

Z1 = Z− 7Z+R
8(n−1)

, ζ1 = ζ − 7ζ +ρ
8(n−1)

,

Z2 = Z− 7Z+R
8(n−1)

− 119Z+57R+3R2

384(n−1)2
, ζ2 = ζ − 7ζ +ρ

8(n−1)
− 119ζ +57ρ +3ρ2

384(n−1)2 ,

Z3 = Z− 3Z+R
4(n−1)

, ζ3 = ζ − 3ζ +ρ
4(n−1)

,

Z4 = Z− 3Z+R
4(n−1)

− 23Z+33R−5R2

96(n−1)2
, ζ4 = ζ − 3ζ +ρ

4(n−1)
− 23ζ +33ρ −5ρ2

96(n−1)2 ,

and showed thatZi , i = 1, . . . ,4, are distributed as normal distribution with meansζi , i = 1, . . . ,4, and variances 1/(n−1).
Therefore, we can construct four confidence intervals forρ based on these approximations. However, there is no closed
form for each of these confidence intervals, and they are obtained numerically.
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2.3 Ruben’s approximation

[6] showed that

Zhr =

(

2n−5
2

)
1
2 R̃−

(

2n−3
2

)
1
2 ρ̃

(

1+ 1
2(R̃

2+ ρ̃2)
)

1
2

,

is asymptotically distributed as a standard normal distribution, whereR̃= R√
1−R2

and ρ̃ = ρ√
1−ρ2

. Therefore, we can

construct a confidence interval forρ numerically based on this approximation.

2.4 Muddapur’s methods

[7] proposed a test statistic for testingρ = 0 as

t =

√
n−2(R−ρ)

√

(1−ρ2)(1−R2)
,

and showed that this statistic has an approximatet distribution withn−2 degrees of freedom for moderately largen. [8]
developed this test statistic as

t =

√
n−2(R−ρb)

√

(1−ρ2)(1−R2)
,

whereb= (S2
1+S2

2)/
√

4S2
1S2

2. He showed that this test statistic has at distribution withn−2 degrees of freedom. This
test statistic is a likelihood ratio test obtained by [14] for testing the hypothesisρ = ρ0. Therefore, one can construct a
confidence interval for the parameterρ .

[8] also considered the test statistic

f =
(1+R)(1−ρ)
(1−R)(1+ρ)

,

and showed that it has an approximate F distribution withn−2 andn−2 degrees of freedom. Note thatf is related to
Fisher’s z-transform through the one to one relationship as

log( f ) = 2(Z− ζ ).

Therefore, a 100(1−α)% confidence interval forρ is

(

(1+Fα/2)R+(1−Fα/2)

(1+Fα/2)+ (1−Fα/2)R
,

(1+Fα/2)R− (1−Fα/2)

(1+Fα/2)− (1−Fα/2)R

)

,

whereFγ is theγth upper quantile of the F distribution withn−2 andn−2 degrees of freedom. [9] gave another form of
this confidence interval as

(

R−w
1−Rw

,
R+w
1+Rw

)

,

where

w=
t(n−2,α/2)/

√
n−2

(

1+(t(n−2,α/2))
2/(n−2)

)1/2
.

2.5 Signed log likelihood method

[10] used the method of signed log-likelihood ratio statistic and its modification to construct two confidence intervals for
ρ . Let ℓ(θθθ), whereθθθ = (µ1,µ2,σ1,σ2,ρ)′, be the log-likelihood function of a sample from bivariate normal distribution,
and suppose that̂θθθ be the maximum likelihood estimator of the parameterθθθ . Let ψ(θθθ ) (hereρ) be a scalar parameter of
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interest and̂θθθ ψ be the constrained maximum likelihood estimator which can be obtained by maximizingℓ(θθθ ) subject to
the constrainψ(θθθ ) = ψ . Thus

D(ψ) = sign(ψ̂ −ψ)
(

2ℓ(θ̂θθ)−2ℓ(θ̂θθψ)
)1/2

,

is the signed log-likelihood ratio statistic and asymptotically is distributed asN(0,1). Therefore, a 100(1−α)% confidence
interval forψ is {ψ : |D(ψ)|< Zα/2}.

The accuracy ofD(ψ) is O(n−
1
2 ), and to improve the accuracy ofD(ψ), the modified signed log-likelihood ratio

statistic was proposed by [15,16]. Consider

D∗(ψ) = D(ψ)− 1
D(ψ)

log
D(ψ)

Q(ψ)
,

where

Q(ψ) = (ψ̂ −ψ)







∣

∣

∣
jθθθθθθ ′(θ̂θθ )

∣

∣

∣

∣

∣

∣
jλλλλλλ ′(θ̂θθ ψ )

∣

∣

∣







1/2

,

and jθθθθθθ ′(θ̂θθ ) and jλλλλλλ ′(θ̂θθ ψ) is the observed information matrix evaluated atθ̂θθ and observed nuisance information matrix
evaluated at̂θθθ ψ , respectively. For more details on the modified signed log-likelihood ratio statisticD∗(ψ) for inference
about correlation coefficient,ρ , reader can refer to [10]. Thus, a 100(1−α)% confidence interval forψ is {ψ : |D∗(ψ)|<
Zα/2}. Note that the calculations are not simple in this method.

2.6 Krishnamoorthy and Xia’s Method

The concepts of generalized pivotal variable and generalized confidence interval are defined by [17] and are used by some
authors in many statistical problems. For more informationabout this concepts, see the book by [18].

[11] proposed a generalized confidence interval forρ by developing a generalized pivotal variable as

Gρ1 =
r̃V22−V21

√

(r̃V22−V21)
2+V2

11

,

where ˜r = r√
1−r2

, andV2
11, V2

22, andV21 are independent random variables withχ2
(n−1), χ2

(n−2), andN(0,1), respectively.

The confidence interval forρ can be constructed by using a Monte Carlo simulation.

2.7 Withers and Nadarajah’s methods

[12] considered Cornish-Fisher expansions for the distribution ofYm = m
1
2 (θ̂ −θ )a12 as

P−1
m (t) = Φ−1(t)+

∞

∑
j=1

m− j/2g j(Φ−1(t)),

wherePm(t) andΦ(t) are the distribution function ofYm and a standard normal distribution, respectively, and gj is certain
polynomials inx. They consideredµµµ = 000, and therefore, gave the estimation ofρ as

ρ̂ =
∑n

j=1Xi1Xi2
√

(∑n
j=1X2

i1)(∑
n
j=1X2

i2)
.

Then, usingYm with the following values

m= n, θ = tanh−1(ρ), θ̂ = tanh−1(ρ̂), a21= 1,

g1(x) =
ρ
2
+ρ3(x

2−1)
6

, g2(x) =
x3

12
+

x
4
−ρ2 x

4
−ρ6(2x3−5x)

36
,

they proposed two confidence intervals forρ . These confidence intervals are obtained numerically.
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2.8 Haddad and Provost’s method

Let D+ = ∑n
i=1 (X

∗
i1+X∗

i2)
2 andD− = ∑n

i=1 (X
∗
i1−X∗

i2)
2, whereX∗

i j =
Xi j −X̄i

Si
, i = 1,2, j = 1, . . . ,n, are the standard values.

[13] proposed an approximately 100(1−α)% confidence interval forρ as
(

D+−D−F∗
α/2

D++D−F∗
α/2

,
D+−D−F∗

1−α/2

D++D−F∗
1−α/2

)

,

whereF∗
γ is theγth upper quantile of the F distribution withn−1 andn−1 degrees of freedom.

2.9 A new generalized confidence interval

Using the concept of generalized confidence interval, we construct a new confidence interval for the correlation coefficient
parameter. LetA= nS, anda= (ai j ) be an observed value of matrixA. ThereforeA∼W(n−1,Σ) and also is distributed

as∑n−1
i=1 ZZZ∗

i ZZZ∗′
i , whereZZZ∗

i has multivariate normal distribution with mean vectorµµµ = 000 and variance-covariance matrixΣ .

Then,a−
1
2 Aa−

1
2 is distributed as∑n−1

i=1 ZZZ∗∗
i ZZZ∗∗′

i , whereZZZ∗∗
i has multivariate normal distribution with mean vectorµµµ = 000

and variance-covariance matrixa−
1
2 Σa−

1
2 . So,a−

1
2 Aa−

1
2 follows a Wishart distribution withn− 1 degrees of freedom

and scale parameter matrixa−
1
2 Σa−

1
2 , i.e.a−

1
2 Aa−

1
2 ∼W(n−1,a−

1
2 Σa−

1
2 ). Consequently

V∗ = (V∗
i j ) = a−

1
2 (a−

1
2 Σa−

1
2 )

− 1
2
(a−

1
2 Aa−

1
2 )(a−

1
2 Σa−

1
2 )

− 1
2
a−

1
2 ∼W(n−1,a−1).

The value ofV∗ atA= a is Σ−1, and for a givena, the distribution ofV∗ does not depend on any unknown parameters.
Therefore,V∗ is a generalized pivotal variable forΣ−1, and

V∗−1 =
1

V∗
11V

∗
22− (V∗

12)
2

[

V∗
22 −V∗

12
−V∗

12 V∗
11

]

,

is a generalized pivotal variable forΣ . So,

Gρ2 =
−V∗

12
√

V∗
11V

∗
22

, (2)

is a generalized pivotal variable for the parameterρ . By using the Monte Carlo simulation given in the following algorithm,
we can find a confidence interval forρ .

Algorithm 1 For given sample covariance matrix, s,
Step 1. Compute a and a−1.
Step 2. Generate V∗ ∼W(n−1,a−1).
Step 3. Compute Gρ2 in (2).
Step 4. Repeat Step 2 and 3 for a large number of times (say M= 10,000)
Then from these M values, the100(α/2)th and100(1−α/2)th percentile of Gρ2 is a 100(1−α)% confidence interval
for ρ .

2.10 A parametric bootstrap method

The bootstrap approach is a computer-based method that is applied on the observed data by Monte Carlo simulation
[19]. Using the PB approach, one can approximate the null distribution of some statistical tests. This approach was used
by some authors in well-known problems like the Behrens-Fisher problem [20], comparing several normal means [21],
ANCOVA with unequal variances [22], the equality of coefficients of variation [23], and the equality of two log-normal
means [24]. Here, we propose a PB confidence interval forρ using the z-transformation in (1).

Lemma 1.Let R be the sample correlation coefficient for a bivariate normal distribution with mean vectorµµµ and variance-
covariance matrixΣ . Then

R∼ ρ̃V +N
√

(ρ̃V +N)2+W2
,

whereρ̃ = ρ√
1−ρ2

, and V2, W2, and N are independent random variables withχ2
(n−1), χ2

(n−2), and N(0,1).
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Proof.SinceΣ is a positive definite matrix, there is a unique lower triangular matrix, L, such thatLL′ = Σ (Cholesky
decomposition). From [25], page 99,

LCC′L′ = A∼W(n−1,Σ),

whereA= (Ai j ) = nS,C=

[

V 0
N W

]

andV2, W2, andN are independent random variables withχ2
(n−1), χ2

(n−2), andN(0,1),

respectively. It can be shown that matrixL has the following form:

L =

[

σ1 0
ρσ2 σ2

√

1−ρ2

]

.

Therefore, we have

A=

[

σ2
1V

2 σ1σ2

√

1−ρ2(ρ̃V2+NV)
σ1σ2

√

1−ρ2(ρ̃V2+NV) σ2
2 (1−ρ2)[(ρ̃V +N)2+W2]

]

.

So, the sample correlation coefficient is distributed asA12√
A11A22

, and the proof is completed.

ConsiderQ= (Z− tanh−1(ρ))2
. We can approximate the distribution ofQ using a PB approach as

QB = (ZB− tanh−1(R))
2
, (3)

whereZB = 1
2 log(1+RB

1−RB ) with

RB ∼ R̃V+N
√

(R̃V+N)2+W2
, (4)

whereR̃= R√
1−R2

. Then, the distribution ofQB provides the PB approximation for the distribution ofQ, and a 100(1−
α)% PB confidence interval forρ is

(

tanh(Z−
√

qB
α), tanh(Z+

√

qB
α)

)

whereqB
α denotes the(1−α)th quantile of the distribution ofQB. The value ofqB

α can be estimated using a Monte Carlo
simulation as follows:

Algorithm 2 For given sample correlation coefficient, R= r,
Step 1. Generate artificial sample correlation coefficients RB in (4) and compute QB in (3).
Step 2. Repeat Step 2 for a large number of times (say M= 10,000), and from these M values, obtain the empirical
distribution of QB and its(1−α)th quantile as an estimate of qB

α .

Remark.We used the Fisher z-transformation quantity to construct the PB confidence interval forρ . In addition, one
can use quantities in Hotelling, Ruben, Muddapur methods, Jeyaratnam, Sign log likelihood, and Withers and Nadarajah
methods, and propose other PB confidence intervals.

3 Simulation Studies

For evaluating the performance of the methods for constructing confidence intervals forρ , we compare the coverage
probabilities and expected lengths using simulation studies. In all cases, we consider 95% confidence coefficient, and
generate 10,000 random samples with sizen from a bivariate normal distribution with(µ1,µ2) = (0,0), (σ1,σ2) = (1,1),
andρ = 0.0,0.1, . . . ,0.9.

With respect to different values ofρ , the coverage probabilities and expected lengths are plotted in Figures1 and2,
respectively, and we can conclude that:
i) For all n andρ , the coverage probabilities of the exact method, Fisher’s z-transformation method, Krishnamoorthy’s
generalized confidence interval, Withers and Nadarajah’ methods, and PB confidence interval are close to the confidence
coefficient.
ii) The coverage probability and expected length of the PB method are close to the coverage probability and expected
length of Fisher’s z-transformation method. However, PB method is applicable forn = 3 but Fisher’s z-transformation
method is not.
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iii) When the sample size is small the coverage probabilities of Ruben, and Haddad and Provost’ methods are larger than
the confidence coefficient, and are satisfactory for other sample sizes.
iv) The coverage probabilities of confidence intervals based on modified signed log-likelihood ratio and Hotellings’Zi are
satisfactory whenn≥ 10.
v) There are a few situations that, the coverage probabilities of our generalized pivotal approach is less than the confidence
coefficient.
vi) The expected lengths of all confidence intervals become small when the sample sizen or the parameterρ becomes
large.

Also, we performed a simulation study of robustness of the confidence intervals forρ . We consider two cases: First,
10,000 random samples with sizen are generated from a bivariate t distribution with 5 degreesof freedom and parameters
(µ1,µ2) = (1,2), (σ1,σ2) = (1,3), andρ = 0,0.6. The results are given in Table1 and we can conclude that the coverage
probabilities of all confidence intervals are not satisfactory, and are smaller than the confidence coefficient.

In second robustness study, 10,000 random samples with sizen are generated from a bivariate log-normal distribution.
A random variableXXX =(X1,X2)

′ has a bivariate log-normal distribution with parametersµµµ andΣ if YYY=(log(X1), log(X2))
′

has the bivariate normal distribution with meanµµµ and covariance matrixΣ . Note that the correlation coefficient for a
bivariate log-normal distribution equals to

ρ∗ =
exp(ρσ1σ2)−1

√

(exp(σ2
1 )−1)(exp(σ2

2 )−1)
,

and the coverage probability of a confidence interval is the number the cases that the parameterρ∗ lies within the
confidence interval. Note thatρ∗ andρ are close whenσ1 andσ2 both are small. Here, we consider(µ1,µ2) = (1,2),
(σ1,σ2) = (0.1,0.1), ρ = 0,0.6. Therefore,ρ∗ = 0,0.5988. The results are given in Table2, and we can conclude the
similar results to normal case. Note that whenσi ’s are not equal or whenσi ’s are large, all confidence intervals are
unsatisfactory, and their coverage probabilities are smaller than the confidence coefficient.

4 Two numerical examples

In this Section, we illustrate the seventeen confidence intervals for the correlation coefficientρ using two real examples.

Example 1.[26] studied the role of nonexercise activity thermogenesis inresistance to fat gain in humans and obtained
the following data set. They considered two variables.X1: the increase in energy use (in cal) from activity other than
deliberate exercise, andX2: the fat gain (in kg). This data set is also studied by [10]. The sample correlation coefficient
equals to -0.7786. The 95% confidence intervals are given in Table3. We can find that the confidence intervals based on
exact method, the confidence interval based on Modified signed log-likelihood ratio (proposed by [10]), and generalized
confidence interval (proposed by [11]) are the same.

Example 2.The source of the data set is National Center for Education Statistics (http: //nces.ed.gov). [3] also studied
this. The Trial Urban District Assessment (TUDA) is a special project under the US National Assessment of Educational
Progress (NAEP). It began assessing performance in selected large urban districts in 2002 and eleven urban school districts
participated in the TUDA at grades 4 and 8 in 2005. The sample correlation coefficients between score in Mathematics
and Reading for grades 4 and 8 equal to 0.9755 and 0.9738, respectively. The 95% confidence intervals using different
methods for two grades are given in Table3. We can find that the confidence interval based on exact method, and the
generalized confidence interval (proposed by [11]) are same in each grade score.
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Fig. 1: The coverage probabilities of confidence intervals forρ with n= 5 (top left),n= 10 (top right),n= 15 (bottom left), andn= 20
(bottom right).
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Fig. 2: The expected length of confidence intervals forρ with n = 5 (top left),n = 10 (top right),n = 15 (bottom left), andn= 20
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Table 1: The coverage probabilities and expected lengths of the 95% confidence intervals (generated from a bivariate t distribution).
Coverage Probability

ρ = 0 ρ = 0.6
Method n 3 5 10 25 3 5 10 25
Exact — 0.9278 0.8998 0.8708 — 0.9304 0.9106 0.8760
z -transform — 0.9285 0.8981 0.8697 — 0.9355 0.9035 0.8747
HotellingZ1 0.8977 0.9142 0.8938 0.8688 0.8991 0.9108 0.9033 0.8727
HotellingZ2 0.9368 0.9188 0.8974 0.8709 0.9276 0.9287 0.8987 0.8718
HotellingZ3 0.8761 0.9087 0.8935 0.8757 0.8722 0.9050 0.8987 0.8681
HotellingZ4 0.9196 0.9177 0.9025 0.8695 0.9112 0.9165 0.8970 0.8648
Ruben — 0.9710 0.9029 0.8671 — 0.9651 0.9128 0.8776
Muddapur 1 0.9380 0.9225 0.8951 0.8499 0.9263 0.8400 0.6404 0.3113
Muddapur 2 0.9426 0.9283 0.9011 0.8716 0.9442 0.9309 0.9071 0.8704
signed log-LR 0.6396 0.7902 0.8486 0.8514 0.6436 0.7952 0.8515 0.8610
Modified signed log-LR 0.8741 0.9084 0.9011 0.8714 0.9212 0.9232 0.9124 0.8862
Krishnamoorthy 0.9450 0.9267 0.8997 0.8716 0.9422 0.9145 0.8248 0.5483
Withers-Nadarajah 1 0.8018 0.7877 0.6810 0.4378 0.8302 0.8368 0.8036 0.6626
Withers-Nadarajah 2 0.8903 0.8636 0.7409 0.4521 0.9023 0.8894 0.8326 0.6929
Haddad and Provost 0.9837 0.9545 0.9232 0.8791 0.9803 0.9564 0.9200 0.8778
Our Generalized method 0.7730 0.8710 0.8770 0.8480 0.7621 0.8740 0.8970 0.8390
PB 0.9342 0.9215 0.8972 0.8711 0.9362 0.9249 0.9029 0.8748

Expected Length
ρ = 0 ρ = 0.6

Method n 3 5 10 25 3 5 10 25
Exact — 1.4362 1.0880 0.7334 — 1.2428 0.8490 0.5185
z-transform — 1.5445 1.1299 0.7438 — 1.3283 0.8632 0.5187
HotellingZ1 1.7071 1.4865 1.1192 0.7426 1.6084 1.2491 0.8583 0.5179
HotellingZ2 1.8213 1.5156 1.1241 0.7435 1.7364 1.2902 0.8607 0.5193
HotellingZ3 1.6664 1.4719 1.1160 0.7443 1.5431 1.2343 0.8530 0.5182
HotellingZ4 1.7900 1.5089 1.1262 0.7430 1.6942 1.2893 0.8581 0.5161
Ruben — 1.5166 1.1024 0.7343 — 1.3625 0.8643 0.5247
Muddapur 1 1.7142 1.2177 0.8026 0.4865 1.6554 1.0546 0.6302 0.3644
Muddapur 2 1.8324 1.5343 1.1330 0.7462 1.7697 1.3179 0.8711 0.5201
signed log-LR 1.1123 1.1799 1.0021 0.7100 0.9457 0.9447 0.7532 0.4929
Modified signed log-LR 1.5857 1.3922 1.0805 0.7324 1.3254 1.2196 0.8862 0.5194
Krishnamoorthy 1.6639 1.5240 1.3318 1.1518 1.6016 1.2854 0.9045 0.4731
Withers-Nadarajah 1 1.2721 1.1393 0.8989 0.6179 1.0079 0.8280 0.5974 0.3621
Withers-Nadarajah 2 1.5227 1.3049 0.9814 0.6420 1.2642 0.9699 0.6436 0.3783
Haddad and Provost 1.8998 1.6225 1.0306 0.7696 1.8483 0.9536 0.6005 0.6725
Our Generalized method 1.5054 1.4429 1.1180 0.7401 1.3285 1.1935 0.8346 0.5149
PB 1.8111 1.5240 1.1325 0.7453 1.7330 1.2989 0.8631 0.5191
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Table 2: The coverage probabilities and expected lengths of the 95% confidence intervals (generated from a bivariate log-normal
distribution).

Coverage Probability
ρ = 0 ρ = 0.6

Method n 3 5 10 25 3 5 10 25
Exact — 0.9478 0.9468 0.9471 — 0.9506 0.9495 0.9456
z -transform — 0.9173 0.9253 0.9387 — 0.7492 0.6497 0.5399
HotellingZ1 0.8765 0.9050 0.9318 0.9420 0.7804 0.7287 0.6543 0.5369
HotellingZ2 0.9254 0.9131 0.9299 0.9415 0.8578 0.7398 0.6566 0.5454
HotellingZ3 0.8694 0.9097 0.9265 0.9392 0.7566 0.7124 0.6577 0.5426
HotellingZ4 0.8947 0.9129 0.9284 0.9386 0.8227 0.726 0.6478 0.5483
Ruben — 0.9554 0.9281 0.9386 — 0.8270 0.6676 0.5495
Muddapur 1 0.9254 0.9006 0.8861 0.8558 0.8081 0.5984 0.4076 0.1587
Muddapur 2 0.9380 0.9236 0.9326 0.9420 0.8807 0.7421 0.6554 0.5456
signed log-LR 0.6587 0.8402 0.9150 0.9393 0.6608 0.8399 0.9117 0.9320
Modified signed log-LR 0.8954 0.9271 0.9325 0.9401 0.8673 0.9154 0.9472 0.9353
Krishnamoorthy 0.9350 0.9151 0.9256 0.9387 0.8627 0.7437 0.6447 0.5210
Withers-Nadarajah 1 0.7936 0.8263 0.8400 0.8454 0.5819 0.5538 0.4673 0.3332
Withers-Nadarajah 2 0.8621 0.8763 0.8720 0.8472 0.7059 0.6560 0.5286 0.3500
Haddad and Provost 0.9717 0.8996 0.7400 0.3827 0.9669 0.9041 0.7563 0.4357
Our Generalized method 0.8010 0.8860 0.9240 0.9320 0.7520 0.8210 0.6970 0.5380
PB 0.9253 0.9100 0.9251 0.9381 0.8355 0.7351 0.6498 0.5407

Expected Length
ρ = 0 ρ = 0.6

Method n 3 5 10 25 3 5 10 25
Exact — 1.4621 1.1186 0.7494 — 1.2839 0.8701 0.5265
z -transform — 1.5579 1.1865 0.7612 — 1.2980 0.9223 0.6134
HotellingZ1 1.6864 1.4973 1.1531 0.7607 1.4989 1.2395 0.9136 0.6132
HotellingZ2 1.8064 1.5282 1.1544 0.7612 1.6577 1.2661 0.9239 0.6159
HotellingZ3 1.6624 1.4963 1.1472 0.7603 1.4482 1.2158 0.9135 0.6127
HotellingZ4 1.7513 1.5235 1.1545 0.7599 1.5977 1.2628 0.9286 0.6255
Ruben — 1.5274 1.1235 0.7497 — 1.3368 0.9146 0.6128
Muddapur 1 1.0285 0.4395 0.1527 0.0338 0.9343 0.3503 0.1098 0.0252
Muddapur 2 1.8256 1.5572 1.1645 0.7630 1.6914 1.2850 0.9277 0.6169
signed log-LR 1.1442 1.2251 1.0381 0.7278 0.9670 0.9768 0.7685 0.5011
Modified signed log-LR 1.6812 1.4225 1.1223 0.7523 1.5359 1.2280 0.8670 0.5267
Krishnamoorthy 1.6517 1.5037 1.3772 1.2297 1.5231 1.2456 1.0262 0.6197
Withers-Nadarajah 1 1.2671 1.1719 0.9703 0.6968 0.9692 0.8795 0.7305 0.5450
Withers-Nadarajah 2 1.4962 1.3333 1.0556 0.7211 1.2093 1.0378 0.7995 0.5633
Haddad and Provost 1.7281 1.3602 0.9709 0.6320 1.7146 1.3439 0.9573 0.6223
Our Generalized method 1.5280 1.4654 1.1530 0.7612 1.2453 1.1578 0.7939 0.8661
PB 1.8021 1.5397 1.1872 0.7628 1.6239 1.2739 0.9234 0.6142
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Table 3: The 95% confidence intervals for the examples 1 and 2.
Example 2 Example 2

method Example 1 (4th Grade Score) (8th Grade Score)
Exact -0.913 , -0.447 0.897 , 0.993 0.890 , 0.992
z-transform -0.919 , -0.461 0.905 , 0.994 0.899 , 0.993
HotellingZ1 -0.919 , -0.463 0.862 , 0.996 0.853 , 0.996
HotellingZ2 -0.919 , -0.463 0.907 , 0.994 0.901 , 0.993
HotellingZ3 -0.918 , -0.465 0.909 , 0.994 0.903 , 0.993
HotellingZ4 -0.918 , -0.464 0.909 , 0.994 0.903 , 0.993
Ruben -0.915 , -0.440 0.888 , 0.993 0.881 , 0.993
Muddapur 1 -0.010 , -0.004 0.899 , 0.992 0.732 , 0.897
Muddapur 2 -0.920 , -0.459 0.905 , 0.993 0.899 , 0.993
signed log-LR -0.912 , -0.494 0.920 , 0.993 0.914 , 0.992
Modified signed log-LR -0.913 , -0.450 0.909 , 0.993 0.901 , 0.992
Krishnamoorthy -0.913 , -0.448 0.897 , 0.993 0.890 , 0.992
Withers-Nadarajah 1 0.067 , 0.781 0.999 , 1.000 0.999 , 1.000
Withers-Nadarajah 2 ) 0.037 , 0.792 0.999 , 1.000 0.999 , 1.000
Haddad and Provost -0.477 , 0.487 0.981 , 0.999 0.993 , 1.000
Our Generalized method -0.924 , -0.484 0.919 , 0.994 0.913 , 0.994
PB -0.919 , -0.461 0.906 , 0.994 0.900 , 0.993

5 Conclusion

The correlation coefficient is an important parameter in a bivariate normal distribution. In this paper, we have evaluated
and compared the coverage probabilities and expected lengths of seventeen confidence intervals for this parameter via a
simulation study. For sample size larger than 10, the coverage probabilities of most methods are satisfactory when the
data has a bivariate normal distribution or when the data hasa bivariate log-normal distribution with small variances.As
opposed to other methods, for all sample size, the coverage probabilities of the exact method, Fishers z-transformation
method, Krishnamoorthys generalized confidence interval,PB confidence interval and Withers and Nadarajahs
approaches are close to the confidence coefficient. The exactmethod is very difficult to implement and requires solving a
complex integral, and the Fishers z-transformation methodis not applicable forn = 3. Therefore, our suggestions are
Krishnamoorthys generalized confidence interval, PB confidence interval, and Withers and Nadarajahs approaches for
the correlation coefficient. However, none of the existing confidence intervals is satisfactory when the data follow a
bivariate log-normal distribution. Therefore, further investigation could be done to find a confidence interval for this case.
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