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Abstract: In this note we consider a Merton model for default risk, vehtre firm’s value is driven by a Brownian motion and a
compound Poisson process.
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1 Introduction

Various models of Merton’s type for credit risk have beerditd so far (refer [1] to [8]). This paper aims to our recent
results, where a model driven by a jump process is studie@l]iarjd another model governed by a jumps-diffusion is
investigated in [10]. Suppose that the asset v&judf a company, under a risk neutral measure, is given by theWaig
differential equation

d\i = (r — BA ) dt + oVidW + Vi dQ, (1.1)

whereW is a standard Brownian motio@(t) = EiNzal)Yi is a compound Poisson procebkt) is a Poisson process with
intensityA > 0, Yi’s are independent and identically distributed randomalaes withE(Y;) = 3. All of these processes
are supposed to be considered under the risk neutral medsiiel),r is the interest rateg > 0 is a constant anbl
expresses the number of jumps@fwhile Y; is thei-th jump size ofQ(t).

The model (1.1) reflects a fact that, the firm’s value can chaagdomly not only in a continuous way but also in a
cumulatively discrete fashion.

We will study on the probability of default of the company wthits valueV; is less than some debts.

2 Case of onedebt L

A bankruptcy situation will occur at some timevhen the company asset value is less than aldebdhd the problem is
how to calculate the default probabiliB(\y < L).
Itis known that the solution of (1.1) is given by (see [7])

2 \
Vi = Voexg oW + (r — BA —%)t] M+ 2.1)
We see that
2 Ne

IVt = INVo+ OW + (r — BA — 2}t + > (Y +1)
272

And the evenf\t < L} or {In\; < InL} means that
oW +Z < X, (2.2)
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where
g2
X =InL—(r—pBA —?)t—lnvo, (2.3)

Z = %‘ui, with Ui = In(1+Y)). (2.4)

Z; is also a compound Poisson process whgieare i.i.d. random variables.

We calculate first the characteristic functiéh (s) of Z:. Z; is also a compound Poisson process whii@e i.i.d. random
variables.

We recall first the characteristic functi&, (s) of Z:

W (s) = E(€)
= _ZOE(éSZthtzj)P(Ntzj)
J:

_ iOE(eis(Ul-‘r...+Uj))F)(Nt _ J)
i=

= i(Eeisul...EeiSUJ)P(Nt =)
j=

= 5 () G —exihtiun (9-) @25)
> |

whereyyy (s) is the common characteristic functionldfs.
It is known also that, for a compound Poisson procesg age haveu(t) = EZ; = AtE(U;) = AtEIN(1+Y,) = Atm;
02(t) =Varzy = AtE(U?) = AtE[In(1+Y))]2 = Aty?, whereEIn(1+Y;) = mandE[(In(1+Y,))?] = y2.
Denote byZ; the normalization o
t — .
a(t)

And we will show thatz; has an approximately normal distribution.
Indeed, according to the Taylor expansion for charactefiighction

2 (i9k
(s —k;TEMkv

we can write

Yu(s) =1+ism— §32+o(sz). (2.6)

Now we compute the characteristic functionZf= ﬁz( — %

u(t)

Y (5) = & 0 Y, (s/01(t)).

Taking account of (2.5) and (2.6) we have

W, (s) = & 50 expAt(yy (s/0 () — 1))
t

= e*is% exp[i)\tm% - 2(:; § + o(?)]
T 2
— e " expisu(t)/o1t) - Ty S o))

= exp(§ +0($)), ast — o.
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ThenZ; ~ .4 (0,1) or Z; ~ .4 (u(t),o(t)?), whereu(t) = AtEIn(1+Y), a(t) = /AE[In(1+Y)]2 = VAty.
Now we can consides\W + Z; as a sum of two independent normal random variables for ekehe enough, so it has
also a normal distribution with mean
W) = p(t) = AtEIN(1+Y)
and variance
0% (t) = 0%+ 02(t) = 02 + AtE[In(1+Y)))?,
whereo > 0 is a known constant as in (1.1).

And o
X — H*
P ~Q(———> 2.7
(oW +2Z < %) ~ &( ) ) (2.7)
where®(x) is the standard normal distribution function.
We are now in the position to state the follow theorem.
Theorem 2.1 The default probability can be approximated by
1 Xt * 2 *2
Pactaut & ————— / e (UK W?/20% W gy 2.8
default U*(t)\/ﬁ . ( )

where
% =InL—(r—BA —a?/2)t—InVy

u(t) = MEIN(1+Y), o*(t) = AtE[In(1+Y;)?].

3 Case of many liabilitiesLy, Lo, ...,Lm

Now we consider the case where the company faces up numeebtslg, L,,...,Ly that should be paid at times,
to,...tm respectively, with; <t < ... <tn=T.
The company will jump into default position before the tifiéf and only if at one of time; (i = 1,2,...,m), it happens
that

Vg < L.

So the probability of default beforg is
Paetaut (0, T) =1 —P(W; > Li, V).
DenoteL = max{Ly,...,Lim} It is easy to see that for &ll(i = 1,...,m) we have

My >Li) D (W >L).

Then
Paefaut (0, T) < 1—P(Vy > L, V). (3.1)

PutX = oW + Z;, where, as beforg = zi“‘:‘lui, Ui =In(1+Y;). The inequality;, > L is equivalent to
2

Xy =0W, +Z; >InL—InVo— (r—BA —%)ti =X

Consider the event .
A={V > Lt} = ({% > %} (3.2)
i=1
Then
Pdefault(OvT) < 1- P(A)-

It is known that a compound Poisson process is a process epémdient increments. The proces@als and(Z;) are
independent and both are of independent increments, se otess; = oW + Z.
Denoting byA; the event{X; > x},i =1,2,...,mwe can see that

A= {th >Xt1} = {th_X0>Xt1}v
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A2:{X(2 >Xt2}:{X[2—X(1>Xt2—X(1}D{X(2—Xt1>Xt2—Xt1},
if A, occurs.

Am= {Xtm > Xtm} = {Xtm _Xtm—l ™ _Xtm—l} ) {Xtm _Xtm—l ™ _Xm—l}v

if Aq,...Am_1 OCCUI.
PutBj = {X; — X , >X; — % ,} fori =1,2,...,mandxg = 0 by convention. It follows that

(B c A=A
i=1 i=1

P(A) > P((Bi) = [lP(Bi), (3.3)

And by definition ofB;,

P(Bi) = P(Xy — X4y > % —%_,)
= P(O(\M| _Wifl) + (Z(| - Z(i,l) > Xti _Xti,l)' (34)

PutXi =X, —X; ., Wi = o(W, —W,_,) andZ; = Z;, — Z; ,, whereZ is defined as in (2.4). The random variali¥e has
normal distribution# (0,02 (tj —t_1)). The random variabl&; = z'l:h:‘Nt;lHUk has the same distribution with that of

2?:‘1‘” Uy sinceUi’s are i.i.d and\; is a process of stationary and independent increments.
We can see that the distributiongfis given by

00

(Zi<z= Z}P(N[i—ti—l =nP(Z <z/Ny—y_, =n)

n=

N
N
I
5

© 3N+ + .\N
_ A (t| tl—l) ef)\ (ti—ti—1) P(zl < Z/Nti T n)

n=1 n! k=1
_ g n(ti - ti—l)ne—/\(ti —ti,l)lzljfn(z)7 (3'5)
& n!

whereR;" is then fold convolution of common distribution df;s.
Suppose now that;’s are continuous random variables, so Arg andZ;’s. Then the density function of; = W +7Z; is

f, (9 = g % f (%) = /_ 0; fi, (X— )7, (2)dlz
_ 1 ” . (x=2?
B o4/ 2m(t —ti_1) /—oo exp[ 20'2(ti _ti—l)}
d

wheref; (2) = GF (2) is the density function oZ;.
Now we have

fz (2)dz, (3.6)

XX

P(B) =1 / fi, ()clx,

—00

wherefy (x) is defined by (3.6).
And so, the following assertion is ready to be stated:
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Theorem 3.1 If U;’s are continuous random variables then the probability of default before T is estimated by

X‘X‘|1|: 1
g

Paeraut(0,T) <1— rl( /m e

00 _ 52
x/_wexp[—%] fzi(z)dz] dx), (3.8)
where )
% =InL— InVo—(r—B)\—%) (3.9)
and
. (2) = i%we M5 DP(Z; < 2/Ny_y, , = ). (3.10)

4 Particular casesof Theorem 3.1

We consider some particular cases for distributiob),gs.

4.1. Case of normal random variables
Suppose thadl = Uy ~ .#(0,1) then we have_; Uk ~ .4 (0,n) with density function\/%efzz/2n and the density

of Zj is

fZ. Z '—tu )" e Mti—ti-1)g —~Z/2n (4.1)
From (3.8) and (4.1) we have
Pttt (0.T) < 1— [ s Aot ety L
default = |_!L Z | i—1 zno_\/m
Xt th 1 ) 22
/ / exp| - 202 — 1)—%}dzdx) (4.2)

4.2. Case of exponential random variable Uy with parameter v > 0
We know that ifUy ~ exp(v) theny}_; Uy ~ Gamma(n, v) with the density function
AN-1g-27/v
vir(n) ’
wherel” is Gamma function. Then
oAt |2 lg-2/v

- & _tl 1)
fZI Z T().

We can see the estimation in (3.8):
m X %, (x—2)?
Pacrat(0.T) < 1— 1 (1 / / X7z
default( ) 18 ( e o /72“_ t| _tl 1 202 t| _tl 1)

© 2 (ti—ti—l)n A f—tiy) Zn 1o z/v
— o (12X

] x

m © yn
—1— (1—2)\—(t'—t| 1)e At 1

——— P
e ! o4/ 2m(t —ti_1)

X Xig [© (x—2)? z, 1
></ /0 o0~ ety an_(n)dzdx). 4.3)
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5When U = Uy’sare general discrete random variables

In this case we have

NG —t_g © Nt
P(zl = Z) = P( z Uk = Z) = Z P(Nli—ti,l = n)P( Z Uk = Z/N[i—ti,l = n)
k=1 n=1 k=1

o0 n
= z P(Ny—_, = n)P( z Uk=2)

=1 k=1
= S /\n(ti;'ti_l)ne*)‘(ti*ti—ﬂp( c Uy = 2).

=1 n &

Denote by. the set of all possible values &f =9 z::k:‘f*l Uy. So that

P(Xi <X) =P(0Wi +Zi <x) = 5 P(oW; <x—2P(Zi =2)
e’

— )| X
zg;n 1/00 O'm 20'2 '_ti—l)]

AN —ti1)" Aty _
% Te 1 P(kZ]_Uk = z)du.

The default probability in this case is estimated by

[ee]

(x—2)2

=Y nzl g+ 2"( —ti_1) / 2Uz(ti —ti_1)
X Me*)\ (Gi—t-1)p( . Uy = 2)
ni k; k=)

Poefaut (0,T) < 1-— (1— Jdxx
1=

6 U isPoisson random variable with parameter 8 > 0
If U = Uy ~ Poisson(B) then
n
z Uy ~ Poisson(nfB)
k=1

with mass probability

Then

Pdefault 0 T rl (1 ;Onzl G\/m X
nB]dxMe—)\ (ti—til)(n_ﬁ)z>

X2
[ 202(ti —ti1) n! Z
m ( 2 2 Ati—ti—)" (nB)* 1 "
rl Z) n! Z gy 2m(t —t_1)
-

2

/xt 1exq ﬁ—nﬁ]dx).
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