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Abstract: In recent year’s fractional kinetic equation are studied due to their usefulness and importance in mathematical
physics, especially in astrophysical problems. The aim of present paper is to find the solution of generalized fractional
order kinetic equation, using a new special function. The results obtained here is moderately universal in nature. Special
cases, relating to the Mittag-Leffler function is also considered.
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1 Introduction

We give the new special function, called M function, which is the most generalization of k, —function. Here, we give
first the notation and the definition of the new special M function, introduced by the authors as follows:
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There are p upper parameters a; a, ...a,and q lower parameters by b, ..bg.a, S, v,8,p € C,Re(a) > 0, Re(B) > 0,
Re(y) >0, Re(8) >0, Re(p) >0, Re(ay — ) > 0and (a;)i (b;),are pochammer symbols and ¢ >0, ky,..k,,
l;, ...l are constants. The function (1) is defined when none of the denominator parameters b;s, j = 1,2, ...q is a negative
integer or zero. If any parameter a; is negative then the function (1) terminates into a polynomial in(t — c).

1)

2 Relationship of the “’B‘V"S‘ZM; vekptilaie nction and other special functions

In this section, we defined relationship of M function and various special functions.

(). Fork, = a,k; ... k, =1,1; ..l; =1,6 = 1and p = 1 K, —function is given by Sharma [13],

" E-mail: manoj240674@yahoo.co.in, mohdfarmanali@gmail.com, renujain3@rediffmail.com

@ 2015 NSP
Natural Sciences Publishing Cor.


mailto:renujain3@rediffmail.com
http://dx.doi.org/10.12785/pfda/010107

66 %N\ =) M. Sharma et. al.: Advanced Generalized of Fractional...

[oe]

_ (a)n - (a ) (N a™ (t — ¢)n+a-p-1,
aByLlyralic sy )y a
Mg (8) = Z (b)), - (bq)n n! T((n+y)a—p)

(1. If we take no upper and lower parameter (p = q = 0) in equation (2) then the function reduces to the G-Function,
which was introduced by Lorenzo and Hartley [15] .
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(11). Takingy = 1, in equation (3), we get the R —function given by introduced by Lorenzo and Hartley [15] .
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Now, we takec = 0, in various standard functions.

(V). For ¢ = 0, in equation (3),the M function reduces to New Generalized Mittag-Leffler Function [12]
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(V). We take y = 1, in (5) obtained Generalized Mittag-Leffler Function [12], we get:
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(V1). Further 8 = a — 1in(6), this M function converts Mittag-Leffler Function [6,7], we have:
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(VIN).Whena =1,c =0and 8 = a — B in (4) then the M function treats as Agarwal’s Function [1]
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(VI1). Rabotnov and Hartley function [15] is obtained from M function by putting 8 = 0,a = —a, ¢ = 0 in(4), we have:
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(1X). On substituting a = 1, = —p in(4), we get Miller and Ross Function [5].
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(X). Let us consider ¢ = 0 in equation(3), this function converts into Wright Function [9]. We have:

erps .1
aByLlgral ,y _ 0., Y,
1M1 (t) - F]/ 17701 ((X]/ _ ,8),(1; ata "

Where %p; (t) is special case of the wright’s generalized Hypergeometric functiongy, (t).
Or

(XI). Thus we get H-Function [9] from last case.

(11)
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The Laplace transform of(1), from Lorenzo and Hartley [15] with shifting theorem (Wylie, p.281) we have
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3 Governing fractional kinetic equation

Let us define an arbitrary reaction which is dependent on time N = N(t). It is possible to calculate rate of change
dN/dt to a balance between the destruction rate d and the production rate p of N, then

W ay
dt p:

The production or destruction at time t depends not only on N(t) but also on the previous historyN(t;), t; < t, of the
variable N.
This was represented by Haubold and Mathai [9] as follows:

dN

i —d (Nt) + p(Nt), (14)

where N(t) denotes the function defined by N.(t;) = N(t —t;),t; > 0.

Haubold and Mathai [2] considered a special case of this equation, when spatial fluctuations in homogeneities in

quantity N (t) are neglected. This is given by the equation:
dN;
dt

where the initial conditions are N; (t = 0) = N,, the number density of species i at time t = 0; constant ¢;>0, is called
standard Kkinetic equation and ¢; > 0 is a constant.

= —¢;N;(8), (15)

The solution of the equation (15) is as follows:
Ni(t) = Noe™“¥, (16)
or N(t) — Ny = cgDf T N(b). an

As D; 1 is the integral operator, Haubold and Mathai [2] described the fractional generalization of the standard kinetic
equation (15) as:

N(t)- No = D" N(0), (18)
where D7 is the Riemann-Liouville fractional integral operator; Miller and Ross [5]) defined by:
1 t
NV — — v-1 . 19
DrVN(t) ) j(t w)?’ Hf(wdu, RWw)>0 (19)
0
The solution of the fractional kinetic equation (18) is given by (see Haubold and Mathai [2])
C (D
N(t) = N, ————(ct)¥k. 20
(t) 0 & F(Uk + 1) (Ct) ( )

Also, Saxena, Mathai and Haubold [12] studied the generalizations of the fractional kinetic equation in terms of the Mittag-
Leffler functions which is the extension of the work of Haubold and Mathai [2].

In the present work, we studied of the generalized fractional Kinetic equation. The advanced generalized fractional
kinetic equation and its solution, obtained in terms of the M" —function.
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4 Advanced generalized fractional kinetic equations

In this section, we investigate the solution of advanced generalized fractional kinetic equation. The results are obtained
in a compact form in terms of M — function. The result is presented in the form of a theorem as follows:

Theorem 1: Ifb>0,¢ >0, a>0 >0,y>0,6§>0, p>0and (ya —pB) >0 then for the solution of the
Advanced generalized fractional kinetic equation:

n

B.Y.5, —c% by ..by;b n _
N(©)- Np™Pro0ng < et () = — Z(r)cml)t N (t). 1)
r=1
Then N(t) — NOa,ﬂ,(y+n),6,qu—ga_b1l...bn:b(t). (22)

Proof. We have
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Taking the Laplace transforms of both the sides of equation (23), we get:
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From [15] using shifting theorem for Laplace transform, we have,
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N(s)=No= 5 — (bg) () by b (L + cas—ayr (28)
(a)n - (ap)n &, 1 gB—ay+n)+na y-bs
N(s) = N, by, - (b‘I)n (P)n b} ...DE (1 + cos—a)r+n’ (29)
(a)n - (ap)n ON 1 > —c® n(y_}_n)nsﬁ—oﬂ/e—bs.
N(s) = No Z ( 5% ) n! (30)

(b)y - (bq)n (p)n b} ... D}

Now, taking inverse Laplace transform, we get:

n=o

@ 2015 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 1, No. 1, 65-71 (2015) / http://www.naturalspublishing.com/Journals.asp % -~ Sy 69

[oe]

(@)n - (@) (6), 1 (y +n)
N(t) = N, n n Z(_Ca)ninll—l gh-ay—an 5=bs : 31
® (b (by), (PInbF ...bE L n! { J (31)
00(a) .ola Sn —can + nt_bay+an—,8—1
Wy =y 3 0 () @0 e (4 ), (¢~ D) | 32
Li (b)) (by), Pab} b} nl Ty +ma—p
N(E) = N ™o =c brbnid (33)
This is the complete proof of the theorem.
5 Special cases
Corollary: 1.
Ifwe take (a1)n - (@) =1=(b)n.(bg) 6 =1p=1and b} ...b; = 1 then for the solution of the
advanced generalized fractional Kinetic equation,
n
aq. n
NO)- NP0 = = Y (D) erenre . (34)
r=1
There holds the result
N(@®) = NP1 (@), (35)

In view of the relation (33), this result coincides with the main result of Chaurasia and Pandey [16].
Corollary: 2.

If we put b = 0in corollary (1) then the solution of the Advanced generalized fractional Kinetic equation reduces to the
special case of theorem (1) in Chaurasia and Pandey [16] , given as follows:

For the solution of

n

. n
N©- N P 0w = = Y (D) erepren (o). (36)
r=1
There holds the result
N(E) = NPTt 10 ), (37)

Corollary: 3.

If we put 8 = ya — B in corollary (1) then the solution of the Advanced generalized fractional kinetic equation reduces
to the special case of theorem (1) in Chaurasia and Pandey [16], which is given as follows:

For the solution of

n

_ aq. n
N(t)- Noa.)/a’ 3‘Y.1.1M1—c '1'b(t) - _ Z (r) CraDt—ra N(b). (38)
r=1
There holds the formula
N(t) = No®@ POHmtinr et g, (39)

Corollary: 4.

If we put b =0 in corollary (3) then the solution of the Advanced generalized fractional kinetic equation reduces to
another special case of theorem (1) in Chaurasia and Pandey [16], which is given as follows:
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For the solution of

n

_ aq. n
N(t)- N,“"® ﬁ,y,l,iMl—c A0(¢) = — Z (r) cED;TE N(t). (40)
r=1
There holds the formula
N(t) — NOa,ya—ﬁ,(y+n),1,iM1—c0t,1;0(t)_ (41)

This completes the analysis.

6 Conclusions

In this present work, we have introduced a fractional generalization of the standard kinetic equation and a new special
function given by authors and also established the solution for the Advanced generalized fractional kinetic equation. The
results of the Advanced generalized fractional kinetic equation and its special cease are same as the results of Chaurasia and
Panday [16]. And also, the relations function to the various standard functions is discussed in this paper.
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