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The Fermat numbers F (n) = 22n

+ 1 have been studied to great extents as far as
primality and factorization are concerned. The generalized Fermat numbers are those
of the form Fa(n) = a2n

+ 1, which raise similar interests when a is an even number.
If a is odd, of course, Fa(n) would be divisible by 2. In this paper, we investigate the
behaviour of the numbers En = F3(n)/2 and present an initial primality test for En

given that En−1 is known to be prime. Some ideas of research for future consideration
are suggested.
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1 Background

Factorization and primality testing have become two major areas of research in the field
of computational number theory. Modern primality tests and factorization methods have
their roots back in the times of Fermat but it was not until the late seventies—particularly
with the invention of the RSA cryptosystem—that the subjects have again gained a wide
attention in the world of computing mathematics.

Two families of integers that serve well to illustrate the theories, as well as to pose an
endless factoring challenge, are the Fermat numbers F (n) = 22n

+ 1 and the Mersenne
numbers M(p) = 2p − 1. Fermat conjectured that the sequence F (n) would yield only
primes; The defying fact now is that no one has seen a prime Fermat number beyond F (4),
if there is any (in contrast to the seemingly infinite list of their counterpart: the Mersenne
primes).

Even when its compositeness has been verified, a Fermat number is generally too enor-
mous in size to give away one of its proper factors. For that, an advanced factoring tool
such as the elliptic curve method can be utilized, with a great deal of patience, in order to
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tame large integers as these. Such scenario was properly applied to F (10) in [2], to name
one successful case.

The generalized Fermat numbers Fa(n) = a2n

+1 share most of the arithmetic proper-
ties enjoyed by F (n). While primality concern for Fermat numbers is considered settled, at
least theoretically, that for generalized Fermat numbers on the other hand is quite lacking.
Compensating this setback, however, many efforts have been fruitful in finding factors of
generalized Fermat numbers. Dubner and Keller [4] discovered that each prime of the form
k × 2m + 1 with m > n is a factor of some Fa(n) for approximately one in every k values
of the base a, independent of n. In fact, quite a few generalized Fermat numbers in this
way have been revealed to be divisible by existing known prime factors of F (n).

This knowledge furthermore plays a crucial role in the search for primes among the
generalized Fermat numbers by way of simultaneously sieving certain intevals of a, for a
fixed value of n. Yves Gallot, one of the prominent researchers in this field, has written
his Proth.exe program for anyone wishing to participate in the hunt for a record prime; see
http://pagesperso-orange.fr/yves.gallot/primes/.

As an added remark, readers should be aware that some authors employ the name gen-
eralized Fermat numbers refering to the larger class of integers a2n

+ b2n

, where a and b

are required to have no common factors. See, for instance, the works cited in [1] and [6].

2 Preliminary Facts

Let a ≥ 2. If k has an odd prime factor q, then the number ak + 1 will be divisible by
ak/q + 1. This leads to the definition of generalized Fermat numbers

Fa(n) = a2n

+ 1, (2.1)

which extends that of Fermat numbers F (n) = F2(n) = 22n

+ 1. The exponent k being
a power of 2 allows the possibility of Fa(n) to be a prime number, at least when a is even.
The sequence Fa(n) is known to satisfy the following recurrence relation for n ≥ 1.

Fa(n) = (a − 1)Fa(0)Fa(1)Fa(2) · · ·Fa(n − 1) + 2. (2.2)

This recursive definition of Fa(n), furthermore, implies the fact that

gcd(Fa(m), Fa(n)) =

{
1, if a is even
2, if a is odd

, (2.3)

whenever m �= n. In particular, note that when a is odd, the terms Fa(n), being all even,
are never divisible by 4, except perhaps Fa(0) = a + 1.

Results related to the primality of Fa(n) are given next.

Proposition 2.1. Every odd prime q which divides Fa(n) must satisfy the congruence q ≡
1 (mod 2n+1).
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Proof. We have two congruences: a2n ≡ −1 (mod q) and a2n+1 ≡ 1 (mod q). These
say that the order of 2 in the multiplicative group Zq is 2n+1. This order is a divisor of
φ(q) = q − 1, which yields the theorem.

Proposition 2.2. If a is even, the number Fa(n) is a strong probable prime to the base a,

for every n ≥ 1. Moreover, so is Fa(n)/2 when a is odd.

Proof. Let 2e be the largest power of 2 dividing a. Then Fa(n)− 1 = a2n

= 2e·2n × d for
some odd number d. The strong probable prime test involves the sequence

ad, a2×d, a22×d, a23×d, . . . , a2e·2n×d = aa2n

(2.4)

modulo Fa(n). Since a2n ≡ −1 (mod a2n

+1), we have in this sequence the term a2n×d ≡
−1 (mod a2n

+ 1), thereby the test is passed.
For a odd, Eq. (2.2) gives

Fa(n)
2

− 1 =
(a − 1)Fa(0)Fa(1)Fa(2) · · ·Fa(n − 1)

2
. (2.5)

In the right-hand numerator of (2.5), while each factor is even, exactly one of them is
divisible by 4, i.e., either a− 1 or Fa(0) = a+1. This implies that Eq. (2.5) represents the
quantity 2n+1 × c for some odd number c. The test is again passed since, similar as before,
we have a2n×c ≡ −1 (mod (a2n

+ 1)/2).

Theorem 2.1 (Pepin’s primality test for F (n)). For n ≥ 1, the Fermat number F (n) =
22n

+ 1 is prime if and only if the following congruence holds.

3
F (n)−1

2 ≡ −1 (mod F (n)). (2.6)

Necessity for this theorem is given by Euler’s criterion, noting that the Legendre symbol
(3|22n

+ 1) is equal to −1. See, for instance, [7, p. 91] for details of the proof. Sufficiency
is a direct consequence of the well-known Proth’s test, which is a special case of the fol-
lowing weak form of Lucas’ test.

Theorem 2.2 (Lucas). The odd number N is prime if there exists b such that

bN−1 ≡ 1 (mod N) and b
N−1

q �≡ 1 (mod N) (2.7)

for each prime q dividing N − 1.

Proof. Let UN denote the multiplicative group of units of the modular integers ZN . The
first congruence says that the order of b in UN is a divisor of N−1 but not, says the second,
of any proper factor of N −1. This can happen only if this order is N −1. But this quantity
is too large for the size of UN , except when N is prime for then UN is all of ZN minus the
congruence class of 0.
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3 Primality of 32n
+1

2

Let us focus now upon the sequence F3(n)/2. For convenience, we denote these num-
bers using a new notation,

En =
32n

+ 1
2

. (3.1)

Note that Eq. (2.2) now simplifies slightly to

En − 1 = F3(0)F3(1)F3(2) · · ·F3(n − 1). (3.2)

In turn, this yields a new quadratic recurrence relation for En given by

En = (En−1 − 1) 2En−1 + 1. (3.3)

Eq. (3.2) poses the biggest problem is applying Lucas’ test for the number En, since
the exponent En−1 factors into many distinct primes, increasing with n. In fact to employ
Lucas’ test, as stated in Theorem 2.2, it would require factoring all the numbers from
F3(0) to F3(n − 1). This concern can be eased to some degree by another theorem due to
Pocklington. (See [7, p. 86] for a proof of this theorem.)

Theorem 3.1 (Pocklington). Suppose that N − 1 = FR with F > R. Then N is a prime

if for every prime factor q of F there is an integer b such that

bN−1 ≡ 1 (mod N) and gcd(b
N−1

q − 1, N) = 1. (3.4)

With N = En in Pocklington’s theorem, the choice of F = F3(n−1) would serve well.
Still, we would need to know the complete factors of En−1 in order to apply the theorem
and test the primality of En. If we knew, let’s assume, that En−1 were prime then we
could try the following theorem, which is not expected to work always but is theoretically
interesting nevertheless.

Theorem 3.2. Suppose that En−1 is prime. If gcd(9En−1−1 − 1, En) = 1 then En is also

a prime number. Alternately, En is prime if there is an integer b, other than 3, such that

bEn−1 ≡ 1 (mod En) and gcd(b2(En−1−1) − 1, En) = 1. (3.5)

Proof. In Theorem 3.1, let N = En and F = F3(n − 1) = 2En−1. Proposition 2.2
implies that 3En−1 ≡ 1 (mod En) and 3(En−1)/2 ≡ (3|En) (mod En). After verifying
that En ≡ 2 (mod 3) and En ≡ 1 (mod 4), we call upon the quadratic reciprocity law to
evaluate the Jacobi symbol:

(3|En) = (En|3) = (2|3) = −1. (3.6)

Therefore gcd(3(En−1)/2 − 1, En) = gcd(−2, En) = 1. In view of Theorem 3.1 we need
now check only the other prime factor of F3(n − 1), namely En−1. With the same base
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of b = 3, Eq. (3.3) gives 3(En−1)/En−1 = 32(En−1−1) and thus the desired gcd condition,
which is sufficient to prove primality. If, however, we choose another base b �= 3 then the
condition bEn−1 ≡ 1 (mod En) is also needed (this is the Fermat test for probable primes)
lest En is actually composite.

Remark 3.1. In the context of Theorem 3.2, the quantity b2(En−1−1) − 1 is divisible by
En−1 according to Fermat’s little theorem (including the case b = 3), say with a quotient
of K. The numbers En being pairwise relatively prime, the stated gcd condition in (3.5)
may well be replaced by gcd(K, En) = 1. In terms of computation time, however, this
change would be technically insignificant.

To illustrate the applicability of Theorem 3.2 we run a few tests, comparing the results
against the actual primality of En; these are recorded in Table 3.1 below. It seems inter-
esting that, using b = 3, where they are already strong probable primes to this base, the
numbers En are likely to be immune against this test.

n Primality of En Tested with b = 3 Tested with b = 2
0 prime N/A N/A
1 prime gcd = 1, prime gcd = 1, prime
2 prime gcd = E2, inconclusive gcd = 1, prime
3 composite gcd = E3, inconclusive composite, Fermat test
4 prime N/A N/A
5 prime gcd = E5, inconclusive gcd = 1, prime
6 prime gcd = E6, inconclusive gcd = 1, prime
7 composite gcd = E7, inconclusive composite, Fermat test

Table 3.1: Primality of En, compared to test results given by Theorem 3.2.

4 Factorization and Research Problems

Despite all we have, the computations around these numbers yet involve a very large
modulus and hence, having recognized a composite En, it remains a huge challenge to find
its factorization. Table 4.1, given next, displays the first few factorizations of En, com-
puted using Keith Matthews’ CALC program for Windows, available at http://www.
numbertheory.org/calc/.

There remain many unsolved problems about generalized Fermat numbers. For future
research, the following are a number of ideas to pursue where En is concerned.

1. We have verified that the numbers E10 to at least E15 are all composite by means
of the Fermat test for probable primes base 2. It would be an interesting problem
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to know whether or not there exist Fermat pseudoprimes to the base 2 among the
numbers En. If there is none, then of course the Fermat test would become an
absolute primality test for En.

2. If the above idea proved fruitless, can we still find another deterministic test for En

somewhat similar to that of Pepin?
3. In view of the nice recurrence given by Eq. (3.2), it is tempting to find some ways

to predict the occurrence of consecutive primes among the sequence En. Although,
in this case, it seems more reasonable to conjecture that there are no such things as
consecutive primes beyond E6. If this conjecture is true, then En will be composite
for infinitely many values of n.

4. Perhaps En is never again prime for all n > 6.
5. Brute factorization efforts are evidently unwise. We might adopt the techniques uti-

lized in [4] in order to scan values of n for which En is divisible by a known proper
factor.

n En

0 2
1 5
2 41
3 17 × 193
4 21523361
5 926510094425921
6 1716841910146256242328924544641
7 257 × 275201 × 138424618868737 × 3913786281514524929×

153849834853910661121
8 12289 × 8972801 × C111

9 134382593 × 22320686081 × C226

Table 4.1: Prime factorization of En up to n = 9. The notation Ck indicates a composite (hence
incomplete factorization) whose decimal size is k digits long.
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