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Abstract: Inarecent paper [5] Lashkaripour and Foroutannia obtained the norm of a Hausdorff matrix, considered as abounded linear
operator from ¢, (w) to £,(v), where £, (w) and £, (v) are weighted ¢,, -spaces, and p > 1. Asacorallary to this result they obtain a
new proof for a Hausdorff matrix, with nonnegative entries, to be a bounded operator on ¢, for p > 1. In this paper these results are

extended to the Endl- Jakimovski (E-J) generalized Hausdorff matrices.
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1. Introduction

Let p > 1, ¢, denote the linear space of all sequences
x = {z,} satisfying

> N\ 1/P
ol = (D feal?)
n=0
Let w = {w, } be asequence with positive entries. For
p > 1 define the weighted ¢, (w) space by

ly(w) = {x : iwn|xn|" < oo}7
n=0

with norm || - ||,,.., defined by
> 1/p
lallup = (3 walwal?)
n=0
If w is a decreasing sequence with lim,, w,, = 0, and
>0 o wy = 00, then the Lorentz space d(w, p) is defined
asfollows:

d(w,p) = {:17 : anx;p < oo},
n=0
where {2 } denotesthe decreasing rearrangement of {x,, }.
The E-J generalized Hausdorff matrices were defined
independently by Endl [1] and Jakimovski [3]. They are
lower triangular matrices with entries

WY —{nt+an—kA" Fpu. 0<k<n,0, k>n,

where {,, } isany real or complex sequence, A isthe for-
ward difference operator defined by Aux = pr — prt1,
AL = A(A™uy), and acisany real nonnegative num-
ber. The special case o = 0 yields the ordinary Hausdorff
matrices.

An infinite matrix is said to be conservative if it is a
selfmap of ¢, the space of convergent sequences. An E-J
matrix is conservative if and only if

/ ()] < .

where 1 isafunction of bounded variation over [0, 1]. Itis
also the case that the 1, have the representation

1
L, = / 2" tdp(z).
0
A conservative E-J matrix has al nonnegative entries if

and only if u(x) is nonnegative and nondecreasing over
[0, 1].

2. Upper Bounds For E-J Matrices

In the following theorem it will be assumed that {v,, } and
{w, } are nonnegative decreasing sequences with vy = 1.
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Theorem 1.Let H(®) (1) be a conservative E-J matrix with nonnegative entries, p > 1. Then H(®) (1) maps £, (v) into
¢, (w) and (inf i”}—;)up fol e~ VPdu(z)

< [H*(1)l[v.w.p

< (sup wn) v i 2=/ dp(x). Therefore H(®) (1) maps £, (w) into itself and

1
I H@ (1) = / VP du(a).

For any sequence {s,, }, define
= Z hg:}?sk.
k=0

1 p
Lemmallfs, >0andp > 1,then Y P < (fo xil/”du(x)) >osP
= [|H @ ()P 3 sh.

Proof.Define e, = e, (z) = > 1_on+an — ka*+(1 —z)"Fs;,

=Y _on+an—ka*toyn=Fs where0 <z < 1andy = 1 — z. Then, by Holder'sinequality,
> o €h < ZZC 0 koM +an — kattaynThsy

=Yoo TSy 3T n+an — ky" Tk

=Yg ahtast ]0]+k-‘rajy3

= Yot esi(l—y) i = Ek: 05k(1_y)

=(1- y)*1 Zio oSk =a Tty sk But t, = fo Sh_on+an— kxk+a( — x)”*kskd,u( )

—fo en(x ). Using (1) - (3) and Minkowski’s inequality (Zn Otﬁ) < fo o n)l/pdu(:c)
1/
< |H) (g >\|{Zn oen}

The specia case of Lemma 1 for o = 0 isthe principal part of Theorem 216 of [2] To prove Theorem 1, since {s,,} isa
decreasing sequence, applying Lemma 1 gives ||H()s|?,

= o wa( Sign+an — k fy atte(1 - )" Fdp(@)s, )
< (Jo = rdua))" 3572wl

= (fo = rdpa))” 3y 2eonls]]

< supy, 2 [y = 7du()) " |s|l,,. Hence

o w\Vp [t
15l < (500 55) " [ rauolsl,

U,
and so
1/p 1
[H s, < (500 22) " [Ca rduco)
k Uk 0

It remains to prove the left-hand inequality. Choose 0 < § < 1/p and s,, = (n + 1)~/P=% For any postivee, < € < 1,
choose o, N, and ¢ so that

1\ -2
(1—|——) >1—e,
e}

1 1
/ e VPdp(x) > (1 — 6)/ e Pdu(z), n>N,.
a/n 0

and

(o) o
g wysh > (1 —¢) E wpsh.
n=N n=0
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Since {s,} € £, and 0 < v, < 1, itisclear that {s,} € £,(v). Also, (Hs),, = > _n+an— k(fol kel —
x)"*kdﬂ(x)> Sk
> (1-e€)%s, fol z~YPdu(x), n > N.Hence

1
wy/P(Hs), > (1 - 6)2w71/psn/ =P du(z).
0

Therefore |[H (st > >0 w,(Hs)h,

> (1= pr( f o VPdp(a)) Sy wash

> (1= fy o rdu(e)) 20 g wash
—(1— 6)2p+1<f01 x’l/”du(ﬂf)y S TEUnSh

> inf 2 (1—¢)*P*! fol = VPdu(z) p||s||§j7p. The special case of Theorem 1 for o = 0 isCorollary 2.3 of [5]. Corollary
2.3 of [5] was extended to the E-J matricesin [4]

Corollary 1.If H(®) (1) isanonnegative E-J matrix bounded on ¢, for p > 1, then

1
| E@]|, = / e VPdu(a). )

The special case of Corollary 1 for o = 0 isCorollary 2.3 of [5] Although not mentioned in [5], Theorem 2.1 of that paper
provides an alternate proof of the fact that the ¢, norm of a nonnegative Hausdorff matrix is given by equation (4) with

o = 0. Unfortunately, (4) does not give the correct norm, even for £,, if H(®) (1) has negative entries. (See, e.g. [6].)

Theorem 2.Let p > 1 and H(®) (1) be an E-J generalized Hausdorff matrix satisfying the condition that, for all subsets
M, N of natural numbers, having m, n elements, respectively,

PP ML

€M jEN i=0 7=0

Then H(® (1) maps d(w, p) into itself and satisfies

1
1E@ (1)) = / eV du(z),

Proof.From Propositions 2.1 and 2.2 of [5] it is sufficient to consider nonnegative decreasing sequences. For such se-
quences we have proved that

IH ) (1)5llagw py = [ H (1) 5|,
and the result follows from Theorem 1.

Theorem 2.2 of [5] isthe special case of Theorm 2 for oo = 0.
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matrices. Several papers on summability have recently been
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