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Abstract: In a recent paper [5] Lashkaripour and Foroutannia obtained the norm of a Hausdorff matrix, considered as a bounded linear
operator from �p(w) to �p(v), where �p(w) and �p(v) are weighted �p -spaces, and p ≥ 1. As a corollary to this result they obtain a
new proof for a Hausdorff matrix, with nonnegative entries, to be a bounded operator on �p for p > 1. In this paper these results are
extended to the Endl- Jakimovski (E-J) generalized Hausdorff matrices.
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1. Introduction

Let p ≥ 1, �p denote the linear space of all sequences
x = {xn} satisfying

‖x‖p :=
( ∞∑

n=0

|xn|p
)1/p

.

Let w = {wn} be a sequence with positive entries. For
p ≥ 1 define the weighted �p(w) space by

�p(w) =
{

x :
∞∑

n=0

wn|xn|p < ∞
}

,

with norm ‖ · ‖p,w defined by

‖x‖w,p =
( ∞∑

n=0

wn|xn|p
)1/p

.

If w is a decreasing sequence with limn wn = 0, and∑∞
n=0 wn = ∞, then the Lorentz space d(w, p) is defined

as follows:

d(w, p) =
{

x :
∞∑

n=0

wnx∗p
n < ∞

}
,

where {x∗
n} denotes the decreasing rearrangement of {xn}.

The E-J generalized Hausdorff matrices were defined
independently by Endl [1] and Jakimovski [3]. They are
lower triangular matrices with entries

h
(α)
nk = { n + αn − k∆n−kµk. 0 ≤ k ≤ n, 0, k > n,

where {µn} is any real or complex sequence, ∆ is the for-
ward difference operator defined by ∆µk = µk − µk+1,
∆n+1µk = ∆(∆nµk), and α is any real nonnegative num-
ber. The special case α = 0 yields the ordinary Hausdorff
matrices.

An infinite matrix is said to be conservative if it is a
selfmap of c, the space of convergent sequences. An E-J
matrix is conservative if and only if∫ 1

0

|dµ(x)| < ∞,

where µ is a function of bounded variation over [0, 1]. It is
also the case that the µn have the representation

µn =
∫ 1

0

xn+αdµ(x).

A conservative E-J matrix has all nonnegative entries if
and only if µ(x) is nonnegative and nondecreasing over
[0, 1].

2. Upper Bounds For E-J Matrices

In the following theorem it will be assumed that {vn} and
{wn} are nonnegative decreasing sequences with v0 = 1.
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Theorem 1.Let H(α)(µ) be a conservative E-J matrix with nonnegative entries, p > 1. Then H(α)(µ) maps �p(v) into

�p(w) and
(
inf wn

vn

)1/p ∫ 1

0
x−1/pdµ(x)

≤ ‖Hα(µ)‖v.w.p

≤
(

sup wn

vn

)1/p ∫ 1

0
x−1/pdµ(x). Therefore H(α)(µ) maps �p(w) into itself and

‖H(α)(µ)‖w,p =
∫ 1

0

x−1/pdµ(x).

For any sequence {sn}, define

tn =
n∑

k=0

h
(α)
nk sk.

Lemma 1.If sn ≥ 0 and p > 1, then
∑

tpn ≤
( ∫ 1

0
x−1/pdµ(x)

)p ∑
sp

n

:= ‖H(α)(µ)‖p
∑

sp
n.

Proof.Define en = en(x) =
∑n

k=0 n + αn − kxk+α(1 − x)n−ksk

=
∑n

k=0 n + αn − kxk+αyn−ksk, where 0 ≤ x ≤ 1 and y = 1 − x. Then, by Hólder’s inequality,∑∞
n=0 ep

n ≤ ∑∞
n=0

∑n
k=0 n + αn − kxk+αyn−ksp

k

=
∑∞

k=0 xk+αsp
k

∑∞
n=k n + αn − kyn−k

=
∑∞

k=0 xk+αsp
k

∑∞
j=0 j + k + αjyj

=
∑∞

k=0 xk+αsp
k(1 − y)−1−α−k =

∑∞
k=0 sp

k(1 − y)−1

= (1 − y)−1
∑∞

k=0 sp
k = x−1

∑∞
k=0 sp

k. But tn =
∫ 1

0

∑n
k=0 n + αn − kxk+α(1 − x)n−kskdµ(x)

=
∫ 1

0
en(x)dµ(x). Using (1) - (3) and Minkowski’s inequality

(∑∞
n=0 tpn

)1/p

≤ ∫ 1

0
(
∑∞

n=0 tpn

)1/p

dµ(x)

≤ ‖H(α)(µ)‖
{ ∑∞

n=0 ep
n

}1/p

.

The special case of Lemma 1 for α = 0 is the principal part of Theorem 216 of [2] To prove Theorem 1, since {sn} is a
decreasing sequence, applying Lemma 1 gives ‖H(α)s‖p

w,p

=
∑∞

n=0 wn

(∑n
k=0 n + αn − k

∫ 1

0
xk+α(1 − x)n−kdµ(x)sk

)p

≤
( ∫ 1

0
x−1/pdµ(x)

)p ∑∞
k=0 wk|sp

k|
=

( ∫ 1

0
x−1/pdµ(x)

)p ∑∞
k=0

wk

vk
vk|sp

k|
≤ supk

wk

vk

( ∫ 1

0
x−1/pdµ(x)

)p

‖s‖p
v,p. Hence

‖H(α)s‖w,p ≤
(

sup
k

wk

vk

)1/p
∫ 1

0

x−1/pdµ(x)‖s‖p
v,p,

and so

‖H(α)s‖p
v,w,p ≤

(
sup

k

wk

vk

)1/p
∫ 1

0

x−1/pdµ(x).

It remains to prove the left-hand inequality. Choose 0 < δ < 1/p and sn = (n + 1)−1/p−δ . For any postive ε, < ε < 1,
choose α,N, and δ so that(
1 +

1
α

)−2p

> 1 − ε,

∫ 1

α/n

x−1/pdµ(x) > (1 − ε)
∫ 1

0

x−1/pdµ(x), n ≥ N, .

and
∞∑

n=N

wnsp
n > (1 − ε)

∞∑
n=0

wnsp
n.
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Since {sn} ∈ �p and 0 < vn ≤ 1, it is clear that {sn} ∈ �p(v). Also, (H(α)s)n =
∑n

k=0 n + αn − k
( ∫ 1

0
xk+α(1 −

x)n−kdµ(x)
)
sk

≥ (1 − ε)2sn

∫ 1

0
x−1/pdµ(x), n ≥ N. Hence

w1/p
n (H(α)s)n ≥ (1 − ε)2w1/p

n sn

∫ 1

0

x−1/pdµ(x).

Therefore ‖H(α)s‖p
w,p ≥ ∑∞

n=N wn(Hs)p
n

≥ (1 − ε)2p
( ∫ 1

0
x−1/pdµ(x)

)p ∑∞
n=N wnsp

n

≥ (1 − ε)2p+1
( ∫ 1

0
x−1/pdµ(x)

)p ∑∞
n=0 wnsp

n

= (1 − ε)2p+1
( ∫ 1

0
x−1/pdµ(x)

)p ∑∞
n=0

wn

vn
vnsp

n

≥ inf wn

vn
(1−ε)2p+1

( ∫ 1

0
x−1/pdµ(x)

)p

‖s‖p
v,p. The special case of Theorem 1 for α = 0 is Corollary 2.3 of [5]. Corollary

2.3 of [5] was extended to the E-J matrices in [4]

Corollary 1.If H(α)(µ) is a nonnegative E-J matrix bounded on �p for p > 1, then

‖H(α)‖p =
∫ 1

0

x−1/pdµ(x). (1)

The special case of Corollary 1 for α = 0 is Corollary 2.3 of [5] Although not mentioned in [5], Theorem 2.1 of that paper
provides an alternate proof of the fact that the �p norm of a nonnegative Hausdorff matrix is given by equation (4) with
α = 0. Unfortunately, (4) does not give the correct norm, even for �2, if H(α)(µ) has negative entries. (See, e.g. [6].)

Theorem 2.Let p > 1 and H(α)(µ) be an E-J generalized Hausdorff matrix satisfying the condition that, for all subsets
M,N of natural numbers, having m,n elements, respectively,

∑
i∈M

∑
j∈N

≤
m∑

i=0

n∑
j=0

h
(α)
ij .

Then H(α)(µ) maps d(w, p) into itself and satisfies

‖H(α)(µ)‖d(w,p) =
∫ 1

0

x−1/pdµ(x).

Proof.From Propositions 2.1 and 2.2 of [5] it is sufficient to consider nonnegative decreasing sequences. For such se-
quences we have proved that

‖H(α)(µ)s‖d(w,p) = ‖H(α)(µ)s‖w,p,

and the result follows from Theorem 1.

Theorem 2.2 of [5] is the special case of Theorm 2 for α = 0.
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