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Abstract: A novel approach for constructing symmetric compactly supported biorthogonal multiwavelets with short sequences is
proposed in this paper. For some symmetric types of biorthogonal multiwavelet systems, starting from the symmetric properties of
scaling and wavelet functions, parameterized symmetric forms of polyphase matrices can be derived. Furthermore, according to the
matrix equations of the perfect reconstruction condition, the parameters of polyphase matrices can be reduced, which finally leads to
our proposed algorithm for the construction of symmetric compactly supported biorthogonal multiwavelets with short sequences.
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1. Introduction

Multiwavelets have several advantages over scalar wavelets
because it is possible to construct multiwavelet bases pos-
sessing several properties at the same time, such as orthog-
onality, symmetry, short support and a high number of van-
ishing moments. Since the multiwavelet was firstly studied
by Goodman et. al. [1], the construction of multiwavelets
has been a hot issue. Many approaches have been proposed
such as fractal interpolation method [2,3], polyphase ma-
trix extension [4,5], lifting scheme [6,7] etc.. However, the
involved computations are rather complex, and there is no
simple and direct construction approach available so far.

This paper presents an algorithm to the construction of
symmetric compactly supported biorthogonal multiwavelets
with short sequences (SCSBMSS) based on the correspond-
ing multiscaling vectors. Firstly, we will discuss how the
symmetry of multiscaling and multiwavelet functions af-
fects the corresponding polyphase matrices. As a result,
the symmetric forms of polyphase matrices will be de-
rived under different symmetric conditions. Moreover, be-
cause the construction of SCSBMSS can be boiled down
to find high-pass filter sequences based on the low-pass fil-
ter sequences such that they satisfy the perfect recostruc-

tion (PR) condition. We will show how to solve the matrix
equations of the PR condition, which finally leads to our
proposed construction algorithm.

Let Φ(x) = (φ1(x), φ2(x), ..., φp(x))T and Φ̃(x) =
(φ̃1(x), φ̃2(x), ..., φ̃p(x))T be a pair of biorthogonal mul-
tiscaling vectors satisfying the matrix dilation equations
Φ(x) =

√
2
∑

k∈Z HkΦ(2x−k) and Φ̃(x) =
√

2
∑

k∈Z H̃k

Φ̃(2x − k), respectively. Here, Hk and H̃k are finite two-
scale matrix coefficients, whose entries are real-valued num-
bers. The corresponding biorthogonal multiwavelet and dual
multiwavelet vectors are Ψ = (ψ1, ψ2, ..., ψp)T and Ψ̃ =
(ψ̃1, ψ̃2, ..., ψ̃p)T , which satisfy the dilation equations
Ψ(x) =

√
2
∑

k∈Z GkΦ(2x−k) and Ψ̃(x) =
√

2
∑

k∈Z G̃k

Φ̃(2x − k) with finite real-valued matrix coefficients Gk

and G̃k. We say that Φ(x) is a multiscaling vector func-
tion with short sequence if the length of the coefficient se-
quence {Hk}k∈Z is less than or equal to 4. Φ̃(x), Ψ(x) and
Ψ̃(x) can be defined analogously. Define two p×pmatrices
He(z) and Ho(z) as He(z) = 2−1/2

∑
k∈Z H2kz

k and
Ho(z) = 2−1/2

∑
k∈Z H2k+1z

k, where z = e−jω . Then
the polyphase matrix ofΦ(x) is defined asH(z) = (He(z)
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Ho(z))p×2p. Likewise, H̃(z) = (H̃e(z) H̃o(z))p×2p,G(z)
= (Ge(z) Go(z))p×2p and G̃(z) = (G̃e(z) G̃o(z))p×2p

are the polyphase matrices of Φ̃(x), Ψ(x) and Ψ̃(x), re-
spectively. LetR[z] be the ring of univariate Laurent poly-
nomials over the complex field. It can be verified that the
polyphase matrices H(z), H̃(z), G(z) and G̃(z) are all
matrices over R[z].

For a given biorthogonal multiwavelet system, the PR
condition means that the following matrix equation must
be met:(
He(z) Ho(z)
Ge(z) Go(z)

)(
H̃e(z)∗ G̃e(z)∗

H̃o(z)∗ G̃o(z)∗

)
= I2p, (1)

i.e.,
He(z)H̃e(z)∗ +Ho(z)H̃o(z)∗ = Ip, (2)

He(z)G̃e(z)∗ +Ho(z)G̃o(z)∗ = Op, (3)

Ge(z)H̃e(z)∗ +Go(z)H̃o(z)∗ = Op, (4)

Ge(z)G̃e(z)∗ +Go(z)G̃o(z)∗ = Ip, (5)
where I2p denotes the 2p × 2p identity matrix. Our con-
struction problem is: for a given pair of compactly sup-
ported biorthogonal multiscaling vectors Φ(x) and Φ̃(x)
with polyphase matrices satisfyingH(z)H̃(z)∗ = Ip, how
to find the corresponding G(z) and G̃(z) such that they
satisfy (1). In this paper, only the multiwavelet systems
with short sequences are considered, i.e., each of Φ(x),
Φ̃(x), Ψ(x) and Ψ̃(x) only has at most 4 nonzero matrix
coefficients.

2. Symmetric forms of polyphase matrices

In this section, we will study the symmetric properties of
biorthogonal multiwavelets with short sequences so that
parameterized symmetric forms of polyphase matrices can
be derived for future development.

For the multiscaling and multiwavelet functions, they
are called symmetric (antisymmetric) if they satisfy
φi(x) = siφi(2ai − x), ψi(x) = tiψi(2bi − x), (6)

φ̃i(x) = s̃iφ̃i(2ãi − x), ψ̃i(x) = t̃iψ̃i(2b̃i − x), (7)

where si, ti, s̃i, t̃i ∈ {−1, 1}, ai, bi, ãi and b̃i ∈ R, 1 ≤
i ≤ p, i.e., si, ti, s̃i, t̃i determine whether a function is
symmetric or antisymmetric and ai, bi, ãi and b̃i are the
symmetric (antisymmetric) centers. Define the two-scale
matrix symbols as{

P (z) =
√

2
∑

k∈Z Hkz
k, Q(z) =

√
2
∑

k∈Z Gkz
k;

P̃ (z) =
√

2
∑

k∈Z H̃kz
k, Q̃(z) =

√
2
∑

k∈Z G̃kz
k.
(8)

According to (8) and take into account the Fourier trans-
forms of (6) and (7), we have
P (z) = SA(z2)P (z−1)SA(z−1), (9)

P̃ (z) = S̃Ã(z2)P̃ (z−1)S̃Ã(z−1), (10)

Q(z) = TB(z2)Q(z−1)SB(z−1), (11)

Q̃(z) = T̃ B̃(z2)Q̃(z−1)S̃B̃(z−1), (12)

where S and A(z) are diagonal matrices with diagonal en-
tries si and z2ai , respectively. T , S̃, T̃ , B(z), Ã(z) and
B̃(z) are defined analogously.

Here, only the multiwavelet systems with multiplic-
ity p = 2 are considered. Thus, there are only two com-
ponents in each of multiscaling and multiwavelet vectors.
Note that Q(z) = Ge(z2) + zGo(z2) (P (z) also satisfies
a similar equation), and take into account (11):

Q(z)=Ge(z2) + zGo(z2)

= T

(
z4b1 0
0 z4b2

)
Q(z−1)

(
z−2a1 0

0 z−2a2

)
S. (13)

Because the bases remain essentially the same when
we replace any scaling or wavelet function by its integer
translate, without a loss of generality, we can assume that
ai, bi ∈ [0, 1). Note that P (z) and Q(z) are required to
be Laurent polynomial matrices in z, which ensures that
the scaling and wavelet functions are compactly supported.
Thus, according to (13), the values of ai, i = 1, 2 can
only be either 0 or 1/2 and bi be 0, 1/4, 1/2 or 3/4. In the
following, scaling vector functions with same symmetric
centers (i.e., the components of scaling vectors have same
symmetric centers) and different symmetric centers will
be discussed, respectively. For the orthogonal case, multi-
wavelets with different symmetric centers have been stud-
ied in [9]. We say a multiscaling vector Φ(x) = (φ1(x)
φ2(x)) is symmetric/antisymmetric about a1 and a2, if φ1(x)
is symmetric about a1 and φ2(x) is antisymmetric about
a2. If there are no wavelets symmetric about 1/4 or 3/4,
then, several useful symmetric forms of polyphase matri-
ces can be derived, as follows.

Theorem 1. Suppose that all multiscaling and multi-
wavelet vectors Φ(x), Ψ(x), Φ̃(x) and Ψ̃(x) are symmet-
ric/antisymmetric about 0 (this symmetric form is denoted
as Type I), i.e., a1 = a2 = b1 = b2 = 0, then the cor-
responding polyphase matrix of Ψ(x) has the following
form.

(
Ge(z) Go(z)

)
=
(
c1 0 c3(1 + z−1) c4(1 − z−1)
0 d2 d3(1 − z−1) d4(1 + z−1)

)
,

(14)
where ci and di, 1 ≤ i ≤ 4, are constants. Also, (G̃e(z)
G̃o(z)) has a similar form of (14).

Proof. By substituting a1 = a2 = b1 = b2 = 0 into
(13), we have{

Ge(z) = T0Ge(z−1)S0

Go(z) = z−1T0Go(z−1)S0,
(15)

where the subscripts of T0 and S0 denote the symmetric
centers of scaling and multiwavelet functions, respectively.
In this case, T0 = S0 = diag(1,−1).

Let

Ge(z) =
(
G11

e (z) G12
e (z)

G21
e (z) G22

e (z)

)
, (16)
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by substituting (16) into (15), we have{
G11

e (z) = G11
e (z−1), G12

e (z) = −G12
e (z−1),

G21
e (z) = −G21

e (z−1), G22
e (z) = G22

e (z−1). (17)

Note that only the biorthogonal multiwavelets with short
sequences are considered here, i.e., the coefficient number
of the multiwavelet is less than or equal to 4. Thus, each
of the entries of Ge(z) and Go(z) can only be a first-order
polynomial in z (or z−1) or a constant. Further, by (15),
Ge(z) can be chosen as

Ge(z) =
(
c1 + c′1z c2 + c′2z
d1 + d′1z d2 + d′2z

)
. (18)

Go(z) can only be chosen as

Go(z) =
(
c3 + c′3z

−1 c4 + c′4z
−1

d3 + d′3z
−1 d4 + d′4z

−1

)
,

where ci, c′i, di, d′i, 1 ≤ i ≤ 4, are constants. By substitut-
ing (18) into (17), we get

G11
e (z) = c1, G

12
e (z) = 0, G21

e (z) = 0, G22
e (z) = d2.

(19)
Analogously, we haveG11

o (z) = c3(1+z−1),G12
o (z) =

c4(1 − z−1), G21
o (z) = d3(1 − z−1), G22

o (z) = d4(1 +
z−1). Thus, (14) holds. Also, we can prove that (G̃e(z)
G̃o(z)) has a similar form of (14).

Besides the above symmetric form of Type I, in this
paper, another two symmetric types are given, as follows.

Type II. Suppose that all the multiscaling and mul-
tiwavelet vectors are symmetric/antisymmetric about 1/2.
According to (13), we have{

Ge(z) = T1/2Go(z−1)S1/2

Go(z) = T1/2Ge(z−1)S1/2,
(20)

where, T1/2 = S1/2 = diag(1,−1).
Because all the entries of Ge(z) and Go(z) can only

be the first-order polynomials in z (or z−1) or constants,
we can assume that

Ge(z) =
(
c1 + d1z c2 + d2z
c3 + d3z c4 + d4z

)
. (21)

By (20),

Go(z) =
(

c1 + d1z
−1 −(c2 + d2z

−1)
−(c3 + d3z

−1) c4 + d4z
−1

)
. (22)

Thus, G(z) has the following symmetric form:
G(z) =

(
Ge(z) Go(z)

)
=
(
c1 + d1z c2 + d2z c1 + d1z

−1 −(c2 + d2z
−1)

c3 + d3z c4 + d4z −(c3 + d3z
−1) c4 + d4z

−1

)
.

Also, (G̃e(z) G̃o(z)) has a similar form.
Type III. Here, we will discuss a sort of biorthogo-

nal multiscaling vector functions with different symmet-
ric centers, i.e., the first and second components of both
Φ(x) and Φ̃(x) are respectively symmetric about 0 and 1/2,

while Ψ(x) and Ψ̃(x) are symmetric/antisymmetric about
0. In this case, we have the following theorem.

Theorem 2. Suppose that Φ(x), Φ̃(x), Ψ(x) and Ψ̃(x)
satisfy the above mentioned symmetric conditions of Type
III. Then G(z)U = (Ge(z) Go(z))U has the form of

G(z)U =
(
c1 c2(1 + z−1) c3(1 + z−1) c4(1 − z−1)
0 d2(1 − z−1) d3(1 − z−1) d4(1 + z−1)

)
,

(23)
and the corresponding multiwavelet functions obtained by
(Ge(z) Go(z)) satisfy the symmetric conditions of Type
III. Here,

U =

⎛
⎜⎜⎝

1 0 0 0
0 1√

2
0 1√

2
0 0 1 0
0 1√

2
0 − 1√

2

⎞
⎟⎟⎠

is an orthogonal matrix and U−1 = UT = U = U∗. ci
and di, 1 ≤ i ≤ 4 are constants. Also, G̃(z)U = (G̃e(z)
G̃o(z))U has a similar form of (23).

Proof. By substituting a1 = 0, a2 = 1/2, b1 = b2 = 0
into (13) and note that S = diag(1, 1), T = diag(1,−1),
we have

G(z) =
(

1 0
0 −1

)
G(z−1)

⎛
⎜⎝

1 0 0 0
0 0 0 z−1

0 0 z−1 0
0 z−1 0 0

⎞
⎟⎠ .

Denote G(z)U as R(z), then

R(z) = G(z)U =
(

1 0
0 −1

)
G(z−1)UU

⎛
⎜⎝

1 0 0 0
0 0 0 z−1

0 0 z−1 0
0 z−1 0 0

⎞
⎟⎠U.

Note that

U

⎛
⎜⎝

1 0 0 0
0 0 0 z−1

0 0 z−1 0
0 z−1 0 0

⎞
⎟⎠U =

⎛
⎜⎝

1 0 0 0
0 z−1 0 0
0 0 z−1 0
0 0 0 −z−1

⎞
⎟⎠ ,

thus
R(z) = diag(1,−1)R(z−1)diag(1, z−1, z−1,−z−1),

i.e.,{
Re(z) = diag(1,−1)Re(z−1)diag(1, z−1),
Ro(z) = diag(1,−1)Ro(z−1)diag(z−1,−z−1).

(24)
Let

Re(z) =
(
R11

e (z) R12
e (z)

R21
e (z) R22

e (z)

)
, Ro(z) =

(
R11

o (z) R12
o (z)

R21
o (z) R22

o (z)

)
,

(25)
by substituting (25) into (24), we have⎧⎪⎨
⎪⎩
R11

e (z) = R11
e (z−1)

R12
e (z) = z−1R12

e (z−1)
R21

e (z) = −R21
e (z−1)

R22
e (z) = −z−1R22

e (z−1),

⎧⎪⎨
⎪⎩
R11

o (z) = z−1R11
o (z−1)

R12
o (z) = −z−1R12

o (z−1)
R21

o (z) = −z−1R21
o (z−1)

R22
o (z) = z−1R22

o (z−1).
(26)

c© 2012 NSP
Natural Sciences Publishing Cor.



504 Lucian Trifina et al : On construction of symmetric compactly supported biorthogonal ...

Because each of the entries of Re(z) and Ro(z) can only
be a first-order polynomial in z (or z−1) or a constant. By
(24), Re(z) and Ro(z) must have the following forms:⎧⎪⎪⎨

⎪⎪⎩
Re(z) =

(
c1 + c′1z

−1 c2 + c′2z
−1

d1 + d′1z
−1 d2 + d′2z

−1

)
,

Ro(z) =
(
c3 + c′3z

−1 c4 + c′4z
−1

d3 + d′3z
−1 d4 + d′4z

−1

)
.

(27)

By substituting (27) into (26), we have⎧⎪⎨
⎪⎩
R11

e (z) = c1
R12

e (z) = c2(1 + z−1)
R21

e (z) = 0
R22

e (z) = d2(1 − z−1),

⎧⎪⎨
⎪⎩
R11

o (z) = c3(1 + z−1)
R12

o (z) = c4(1 − z−1)
R21

o (z) = d3(1 − z−1)
R22

o (z) = d4(1 + z−1).

Therefore, (23) holds. Analogously, (R̃e(z) R̃o(z)) = (G̃e(z)
G̃o(z))U has a similar form of (23).

Denote H ′(z) = H(z)U and H̃ ′(z)∗ = UH̃(z)∗.
Thus, H ′(z), H̃ ′(z)∗, R(z) and R̃(z)∗ satisfy the PR con-
dition, which is equivalent to the fact that H(z), H̃(z)∗,
G(z) and G̃(z)∗ satisfy the PR condition. For a given pair
of H ′(z) and H̃ ′(z)∗, if the solution matrices R(z) and
R̃(z)∗ (they are in the form of (23)) can be found, then
the multiwavelet vector functions Ψ(x) and Ψ̃(x) obtained
by the polyphase matrices G(z) = R(z)U and G̃(z) =
R̃(z)U satisfy the symmetric conditions of Type III.

According to the above discussions, the construction of
SCSBMSS of the above three symmetric types from their
corresponding multiscaling functions can be converted into
how to determine the parameters ci and di, 1 ≤ i ≤ 4.
Thus, for a given pair of low-pass filter sequences {Hk}
and {H̃k}, the corresponding polyphase matrices (Ge(z)
Go(z)) and (G̃e(z) G̃o(z)) of high-pass filter sequences
can be obtained by substituting the corresponding sym-
metric forms of them into (1). Then (Ge(z) Go(z)) and
(G̃e(z) G̃o(z)) can be solved from the matrix equation.
The construction algorithm for the above three symmetric
types is presented as follows.

Step 1. Compute the polyphase matrices (He(z)Ho(z))
and (H̃e(z) H̃o(z)) ((He(z)Ho(z))U and (H̃e(z) H̃o(z))U
for Type III ) by the low-pass filter matrix coefficients.

Step 2. Substitute the corresponding symmetric forms
of (Ge(z) Go(z)) and (G̃e(z) G̃o(z)) ((Ge(z) Go(z))U
and (G̃e(z) G̃o(z))U for Type III) into (1) according to
the symmetric centers of scaling functions. By solving (1),
the relations of ci and di, 1 ≤ i ≤ 4, can be obtained to
reduce the number of parameters.

Step 3. Select proper parameter values to obtain the
polyphase matrices of the corresponding multiwavelets.

3. Examples

Example 1. Consider the biorthogonal sets of scaling vec-
tor functions and their corresponding multiwavelets pre-

sented in [5]. Here, Φ(x), Φ̃(x), Ψ(x) and Ψ̃(x) are sym-
metric/antisymmetric about 0. This satisfies the symmetric
Type I. All the scaling and multiwavelet functions have a
support in [−1, 1]. The scaling coefficients were given in
[5] as follows.

H−1 =
(

1
2

1
5−1 − 2
5

)
, H0 =

(
1 0
0 1

2

)
, H1 =

(
1
2 − 1

5
1 − 2

5

)
;

H̃−1 =
(

1
2

5
4−7

16
−35
32

)
, H̃0 =

(
1 0
0 1

2

)
, H̃1 =

(
1
2

−5
4

7
16

−35
32

)
.

Solution. From the definitions of polyphase matrices
described in Section I, we have,

He(z) =

( √
2

2 0
0

√
2

4

)
,

Ho(z) =

( √
2(z−1+1)

4

√
2(z−1−1)

10√
2(1−z−1)

2
−√

2(z−1+1)
5

)
,

H̃e(z)∗ =

( √
2

2 0
0

√
2

4

)
,

H̃o(z)∗ =

( √
2(z+1)

4
7
√

2(1−z)
32

5
√

2(z−1)
8

−35
√

2(z+1)
64

)
.

Because the symmetric centers of the scaling functions
are 0. We can use (14) for computation. By substituting
(14) into (4), we have(

Ge(z) Go(z)
)( H̃e(z)∗

H̃o(z)∗

)

=
(
c1 0 c3(1 + z−1) c4(1 − z−1)
0 d2 d3(1 − z−1) d4(1 + z−1)

)

×

⎛
⎜⎜⎜⎝

√
2

2 0
0

√
2

4√
2(z+1)

4
7
√

2(1−z)
32

5
√

2(z−1)
8

−35
√

2(z+1)
64

⎞
⎟⎟⎟⎠= O2.

The solutions of the above matrix equation are{
c3 = − 5

2c4; c1 = 5c4
d3 = − 5

2d4; d2 = 35
4 d4.

(28)

Thus, (
Ge(z) Go(z)

)
=

(
5c4 0 −5(1+z−1)

2 c4 c4(1 − z−1)
0 35

4 d4
5(z−1−1)

2 d4 d4(1 + z−1)

)
(29)

Analogously, we can obtain G̃e(z) and G̃o(z) by solving
the matrix equation (G̃e(z) G̃o(z))(He(z)Ho(z))∗ = O2.
The resultant matrix is(

G̃e(z) G̃o(z)
)

=

(
4
5 c̃4 0 −2(1+z−1)

5 c̃4 c̃4(1 − z−1)
0 16

5 d̃4
2(z−1−1)

5 d̃4 d̃4(1 + z−1)

)
. (30)

Finally, by substituting (29) and (30) into (5), we have
c4 = 1

8c̃4
, d4 = 1

32d̃4
. Thus,

c© 2012 NSP
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(
Ge(z) Go(z)

)
=

(
5

8c̃4
0 −5(1+z−1)

16c̃4

(1−z−1)
8c̃4

0 35
128d̃4

5(z−1−1)

64d̃4

(1+z−1)

32d̃4

)
,

(
G̃e(z)∗

G̃o(z)∗

)
=

⎛
⎜⎜⎝

4
5 c̃4 0
0 16

5 d̃4
−2(1+z)

5 c̃4
−2(1−z)

5 d̃4

c̃4(1 − z) d̃2(1 + z)

⎞
⎟⎟⎠ .

It can be seen that there are only two parameters in
(Ge(z) Go(z)) and (G̃e(z) G̃o(z))∗. In fact, as long as
c̃4 �= 0 and d̃4 �= 0, the above two matrices are a so-
lution of the construction problem. Especially, let c̃4 =
−

√
2

8 and d̃4 = 35
√

2
128 . Then the resultant matrices (Ge(z)

Go(z)) and (G̃e(z) G̃o(z)) coincide with the results as
documented in [5]. The graphs of multiscaling and mul-
tiwavelet functions of this example are shown in Figure 1
and Figure 2.

Example 2. Here, we will reconstruct the biorthogo-
nal multiwavelet presented in [8], which satisfies the sym-
metric Type II. Both the scaling and wavelet functions are
symmetric/antisymmetric about 1/2. The scaling coefficients
were given in [8] as follows.

H0 =
(

1 0
−1 0

)
, H1 =

(
1 0
1 0

)
; H̃−1 =

(
0 1

8
0 − 1

8

)
,

H̃0 =
(

1 1
8−1 1
8

)
, H̃1 =

(
1 − 1

8
1 1

8

)
, H̃2 =

(
0 − 1

8
0 − 1

8

)
.

Solution. The polyphase matrices of the scaling coeffi-
cients are

He(z) =

(
1√
2

0
− 1√

2
0

)
, Ho(z) =

(
1√
2

0
1√
2

0

)
;

H̃e(z) =

(
1√
2

1−z
8
√

2−1√
2

1−z
8
√

2

)
, H̃o(z) =

(
1√
2

z−1−1
8
√

2
1√
2

1−z−1

8
√

2

)
.

According to (4), (21) and (22), we have(
Ge(z) Go(z)

)( H̃e(z)∗

H̃o(z)∗

)

=
(
c1 + d1z c2 + d2z c1 + d1z

−1 −(c2 + d2z
−1)

c3 + d3z c4 + d4z −(c3 + d3z
−1) c4 + d4z

−1

)
·⎛

⎜⎜⎜⎝
1√
2

− 1√
2

1−z−1

8
√

2
1−z−1

8
√

2
1√
2

1√
2

z−1
8
√

2
1−z
8
√

2

⎞
⎟⎟⎟⎠ = O2.

The above matrix equation equals to four equations
with 8 parameters. The solutions of the matrix equation
are c1 = − 1

8c2, d1 = 1
8c2, d2 = 0; c3 = 1

8c4, d3 = − 1
8c4,

d4 = 0. Thus,(
Ge(z) Go(z)

)
=

(
c2(z−1)

8 c2
c2(z

−1−1)
8 −c2

c4(1−z)
8 c4

c4(z
−1−1)
8 c4

)
.

Analogously, G̃e(z) and G̃o(z) can be obtained by solv-
ing (3). The resultant matrix is(

G̃e(z) G̃o(z)
)

=
(

0 c̃2 + d̃2z 0 −(c̃2 + d̃2z
−1)

0 c̃4 + d̃4z 0 c̃4 + d̃4z
−1

)
.

Finally, by solving (5), we have d̃2 = 0, d̃4 = 0, c̃2 =
1

2c2
, c̃4 = 1

2c4
. Thus
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Figure 1 Graphs of scaling functions and their corresponding
multiwavelets of Example 1: φ1(x), ψ1(x), φ2(x) and ψ2(x).
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Figure 2 Graphs of the dual scaling functions and their corre-
sponding dual multiwavelets of Example 1: φ̃1(x), ψ̃1(x), φ̃2(x)
and ψ̃2(x).

(
G̃e(z) G̃o(z)

)
=
(

0 1
2c2

0 − 1
2c2

0 1
2c4

0 1
2c4

)
.

Especially, when c2 = − 1√
2

and c4 = 1√
2
, we can ob-

tain the so-called 2/4 SABMF biorthogonal multiwavelet
as documented in [8]. The graphs of multiscaling and mul-
tiwavelet functions of this example are shown in Figure 3
and Figure 4.

Example 3. The biorthogonal multiwavelet constructed
in [3] accords with the symmetric form of Type III. The
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Figure 3 Graphs of the scaling functions and their correspond-
ing multiwavelets of Example 2: φ1(x), ψ1(x), φ2(x) and
ψ2(x).
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Figure 4 Graphs of the dual scaling functions and their corre-
sponding dual multiwavelets of Example 2: φ̃1(x), ψ̃1(x), φ̃2(x)
and ψ̃2(x).

components of the scaling vectors have different symmet-
ric centers, i.e., φ1(x) and φ2(x) are symmetric about 0
and 1/2, respectively (likewise, φ̃1(x) and φ̃2(x) are also
symmetric about 0 and 1/2, respectively). The matrix co-
efficients of scaling vector functions were given in [3] as
follows.

H−2 =
(

0 − 1
6
√

3
0 0

)
,H−1 =

(− 1
6

5
6
√

3
0 0

)
,H0 =

(
1 5

6
√

3

0 2
3

)
,

H1 =

(
− 1

6 − 1
6
√

3
2√
3

2
3

)
; H̃−2 =

(
0 0
0 0

)
, H̃−1 =

(
− 1

2

√
3

2
0 0

)
,

H̃0 =
(

1
√

3
2

0 1
2

)
,

H̃1 =
(− 1

2 0
2√
3

1
2

)
.

Solution. Compute H ′(z) = H(z)U and H̃ ′(z)∗ =
UH̃(z)∗, as follows.

H ′(z) =

(
1√
2

(1+z−1)

3
√

3

−(1+z−1)

6
√

2

(1−z−1)

2
√

3

0 2
3

√
6

3 0

)
,

H̃ ′(z)∗ =

⎛
⎜⎜⎜⎝

1√
2

0
√

3(1+z)
4

1
2−(1+z)

2
√

2
2√
6√

3(1−z)
4 0

⎞
⎟⎟⎟⎠ . (31)

According to (23), let R(z) = G(z)U , then(
Re(z) Ro(z)

)( H̃ ′
e(z)

∗

H̃ ′
o(z)

∗

)

=
(
c1 c2(1 + z−1) c3(1 + z−1) c4(1 − z−1)
0 d2(1 − z−1) d3(1 − z−1) d4(1 + z−1)

)
·⎛

⎜⎜⎜⎝
1√
2

0
√

3(1+z)
4

1
2−(1+z)

2
√

2
2√
6√

3(1−z)
4 0

⎞
⎟⎟⎟⎠= O2.

By solving this matrix equation, we have c1 = 6c3, c2 =
− 4√

6
c3, c4 = −√

6c3; d2 = − 4√
6
d3, d4 = −√

6d3. Thus,(
Re(z) Ro(z)

)
=(

6c3
−4(1+z−1)√

6
c3 c3(1 + z−1)

√
6c3(z−1 − 1)

0 4(z−1−1)√
6

d3 d3(1 − z−1) −√
6d3(1 + z−1)

)
.

(32)
Analogously, we can obtain R̃e(z) and R̃o(z) by solving
the matrix equation (R̃e(z) R̃o(z))(H ′

e(z)H
′
o(z))

∗ = O2.
The resultant matrix is(
R̃e(z) R̃o(z)

)
=(

2c̃3
−√

6(1+z−1)
2 c̃3 c̃3(1 + z−1)

√
6(z−1−1)

2 c̃3

0
√

6(z−1−1)
2 d̃3 d̃3(1 − z−1) −√

6(1+z−1)
2 d̃3

)
.

(33)
Finally, by substituting (32) and (33) into (Re(z) Ro(z))·
(R̃e(z) R̃o(z))∗ = I2, we have

c3 =
1

24c̃3
, d3 =

1
12d̃3

. (34)

Substitute (34) into (32) and compute G(z) = R(z)U ,
G̃(z)∗ = UR̃(z)∗, the resultant polyphase matrices are
(Ge(z) Go(z))

=

⎛
⎝ 1

4c̃3

(z−1−5)

24
√

3c̃3

(1+z−1)
24c̃3

(1−5z−1)

24
√

3c̃3

0 −(z−1+5)

12
√

3d̃3

(1−z−1)

12d̃3

(1+5z−1)

12
√

3d̃3

⎞
⎠ ,

(G̃e(z) G̃o(z))

=
(

2c̃3 −√
3c̃3 c̃3(1 + z−1) −√

3c̃3z−1

0 −√
3d̃3 d̃3(1 − z−1)

√
3d̃3z

−1

)
.
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Especially, when c̃3 = −
√

2
4 and d̃3 = 1

2 , we can obtain
the biorthogonal multiwavelet as documented in [3]. The
graphs of multiscaling and multiwavelet functions of this
example are shown in Figure 5 and Figure 6.

Remark. Besides the three symmetric types discussed
in Section 2, symmetric forms of other symmetric types
can also be derived. For example, suppose the multiscaling
and multiwavelet vector functions are symmetric/antisymmetric
about 0 and 1/2, respectively. According to (13), we have{

Ge(z) = zT1/2Ge(z−1)S0

Go(z) = T1/2Go(z−1)S0.

−1 −0.5 0 0.5 1

0

0.5

1

1.5

φ
1
(x)

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

ψ
1
(x)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2
φ

2
(x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ψ
2
(x)

x

x

x

x

Figure 5 Graphs of the scaling functions and their correspond-
ing multiwavelets of Example 3: φ1(x), ψ1(x), φ2(x) and
ψ2(x).
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Figure 6 Graphs of the dual scaling functions and their corre-
sponding dual multiwavelets of Example 3: φ̃1(x), ψ̃1(x), φ̃2(x)
and ψ̃2(x).

For such a biorthogonal multiwavelet system with short
sequences, the polyphase matrix has the form of(
Ge(z) Go(z)

)
=
(
c1(1 + z) c2(1 − z) c3 0
d1(1 − z) d2(1 + z) 0 d4

)
. (35)

Also, (G̃e(z) G̃o(z)) is in a similar form.
For the scaling vectors given in Example 1, we can

prove that there are no corresponding biorthogonal multi-
wavelets with short sequences such that the polyphase ma-
trices G(z) and G̃(z) satisfy the symmetric form of (35).
But we can verify that the following high-pass matrix se-
quences satisfy the symmetric properties described in this
Remark (i.e., the multiscaling and multiwavelet vectors are
symmetric/antisymmetric about 0 and 1/2 respectively).

G(−1) =
(

0 0
0 0

)
, G(0) =

√
2
(− 1

2 − 7
8

5
4

35
16

)
,

G(1) =
√

2
(

1 0
0 1

)
, G(2) =

√
2
(− 1

2
7
8− 5

4
35
16

)
;

G̃(−1) =
√

2
(

3
32

15
64−3

80
−3
32

)
, G̃(0) =

√
2
(− 1

4 − 1
4

1
10

1
10

)
,

G̃(1) =
√

2
(

10
32 0
0 10

32

)
, G̃(2) =

√
2
( − 1

4
1
4− 1

10
1
10

)
,

G̃(3) =
√

2
(

3
32 − 15

64
3
80 − 3

32

)
.

The above matrix coefficients can not be obtained by
the approach proposed in this paper because the coefficient
number of the dual-multiwavelet exceeds 4. We will fur-
ther study the construction of biorthogonal multiwavelets
with arbitrary sequences by other approaches.

4. Conclusion

In this paper, a simple and direct approach for the con-
struction of SCSBMSS based on the multiscaling vectors
was proposed. By studying the symmetric properties of
the multiscaling and multiwavelet vectors, parameterized
symmetric forms of the polyphase matrices could be ob-
tained. Thus, for a given pair of scaling vectors, by sub-
stituting the corresponding symmetric forms of polyphase
matrices into matrix equations of the PR condition, the pa-
rameters could be greatly reduced, which finally led to the
solution of the multiwavelet construction problem. Exam-
ples showed that our proposed approach was direct and
useful for the construction of SCSBMSS.
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