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Abstract: This paper presents a novel approach based on the frequency spectrum analysis for the gearbox and blade damage
recognition of wind generation system. The proposed approach utilizes a back-propagation neural network (BPNN) to extend the
end of the frequency spectrum to overcome the end effect problem of the Hilbert-Huang transform (HHT), which consists ofempirical
mode decomposition (EMD) and Hilbert transform (HT). The extension of the two ends obtained by the proposed approach forms a
new frequency spectrum to improve the end effect problem which can distort Hilbert spectrum. The proposed approach is successfully
applied to analyze the generator currents of a wind generation system. Simulated results reveal the new frequency spectrum obtained
by the proposed approach can substantially improve the recognition accuracy of gearbox and blade damage.
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1 Introduction

The maintenance cost of gearbox and blades becomes a
major expense of a wind generation system. Damage of
each component of wind turbines should be detected on
the earliest time to avoid cascade damage to all turbines.
Gearbox and blades of wind turbines are the two
important components which are easily neglected. A
common damage of gearbox and blades is caused by
collision and non-lubrication friction. Recently, damage
inspection of blades employs the ultrasonic,
shearography, thermography and X-ray CT techniques,
etc, but the generator operation needs interrupting during
the inspection. Although the methods can offer a
sophisticated report for the status of the blade, it costs and
is time-consuming. To solve the problem, accelerometers
are the alternatives.

The vibration signals obtained from accelerometers
are applied in recognizing the characteristics of the
gearbox damage [1]. However, aging and inaccurate
adjustment of accelerometers might not be available in
measurement. The generator system is always in danger
to an unreliable recognition alarm system. Therefore, new

methods for the gearbox damage recognition without
extra measurement apparatus should be researched. It is
important to develop a new approach that can efficiently
detect damage of a wind generator by only using current
signals of a gearbox without accelerometers. In recent
literatures [2,3], accelerometers are also used for damage
recognition of the blade. The aging and adjustment
problem still exist. Thus, the current analysis might be a
good method to recognize the status of blade even when a
wind turbine is on operation.

Many studies discussed the analytic methods of the
signals. For example, fast Fourier transform (FFT) is used
to recognize the generator damage [4] but it fails to obtain
instantaneous frequency. Therefore, the short-time
Fourier transform (STFT) or wavelet transform (WT) is
adopted instead [5,6]. Liao Wei et al. applied the
multi-resolution of wavelet transform to monitor the
vibration signal and detect the fault of wind turbines [7].
The vibration signals analysis of generators is a rather
practical technique that many similar researches discuss
the issue [8]. For instance, W. Yang et al. applied wavelet
transform in the current of wind turbines to monitor
operation condition and detect faults [6]. The
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aforementioned methods are mainly based on fast Fourier
transform and wavelet transform, but the spectrum is not
clear due to the limitation of conversion base. Traditional
methods such as fast Fourier transform and wavelet
transform are unsuitable for recognizing the faults of
wind turbines. To improve the resolution of spectrum, the
Hilbert-Huang transform is applied in this paper and a
tailor made gearbox and blade are used in the
experimental systems. The measured current signals of
the damaged gearbox and blade were analyzed for the
patterns of the spectrum obtained by using the
Hilbert-Huang transform. The result shows that it is
feasible recognizing the status of gearbox and blades by
using generator currents.

This paper measures and analyzes the currents of
wind generators to identify the possibility of the proposed
approaches for damage recognition of gearbox and blades
of wind turbines. In this paper, a tailor-made gearbox and
blade are used in the experimental systems, the current
signals of the damaged gearbox and blade were measured
and the signals were analyzed to discover the patterns of
the spectrum obtained by using the Hilbert-Huang
transform analysis. The results show that recognizing the
status of the gearbox and blade by the generator currents
could be possible and alternative.

2 Hilbert-Huang Transform

Traditional time-frequency techniques cannot precisely
analyze the energy-frequency spectrum of non-stationary
and nonlinear signals. The Hilbert-Huang transform
composed of empirical mode decomposition and Hilbert
transform is advantageous to the analysis problem [9,10,
11]. A signal can be decomposed into several intrinsic
mode functions (IMFs) by using Hilbert-Huang transform
and the instantaneous amplitude and frequency can be
observed from intrinsic mode functions through Hilbert
transform. Subsequently, the corresponding distributions
of time, frequency and energy can also be obtained. The
procedures are detailed as below.

2.1 Empirical Mode Decomposition

Hilbert transform analyzes stationary and linear signals
efficiently instead of non-stationary and nonlinear ones.
The empirical mode decomposition is a solution to the
problem [9,10,11]. In the signal analysis, the empirical
mode decomposition can extract different frequency
components from a complex signal which the flowchart is
shown in Figure 1 and the calculating steps are as blows.

Step 1. Find local maxima and local minima of original
signal x(t). Connect them to produce the upper
and lower envelopes. The original signalx(t) can
be decomposed by empirical mode decomposition
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Fig. 1: The procedure of empirical mode decomposition.

to obtain several intrinsic mode functions and a
monotonic trend, as shown in equation (1).

x(t) =
n

∑
j=1

c j + rn (1)

Step 2. Compute the mean of envelopesm1,k to be the
average of the upper and lower envelopes.

Step 3. Computeh1,k = x(t)−m1,k.
Step 4. RepeatStep 1 to Step 4 until h1,k satisfies the

definition of IMF, and save ascn = hn,k.
Step 5. Compute the residue:rn = hn,0− cn.
Step 6. If the residuern is a monotonic trend, stop the

procedures. Otherwise, repeat the aboveStep 1 to
Step 4 to obtain residue intrinsic mode functions.

2.2 Hilbert Transform

The y j(t) can be obtained from IMFc j(t) by using
Hilbert transform, as shown in equation (2), wherePV is
the Cauchy principal value.

y j(t) =
1
π

PV
∫ ∞

−∞

c j(τ)
t − τ

dτ (2)

The analytic signalz(t) can be expressed as a complex
conjugate pair of real partc j(t) and imaginary party j(t),
as shown in equation (3).

z(t) = c j(t)+ iy j(t) = a j(t)e
iθ j(t) (3)
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Fig. 2: Test platform of wind generation system.
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Fig. 3: Structure of test platform.

The instantaneous amplitudea j(t) and the
instantaneous phaseθ j(t) are shown in equations (4) and
(5), respectively.

a j(t) =
√

c2
j(t)+ y2

j(t) (4)

θ j(t) = tan−1 y j(t)

c j(t)
(5)

Then, the instantaneous frequencyω j(t) can be
obtained by computing the derivatives for the
instantaneous phaseθ j(t), as shown in equation (6).

ω j(t) =
dθ j(t)

dt
(6)

The results of Hilbert spectrum offer the information
about the energy distribution over time and frequency. The
ability can capture time-frequency localization to make the
concept of instantaneous frequency and time relevant [9].

3 Damage Measurement for Gearbox and
Blade

The test platform consists of a motor, a gearbox, a
generator and six blades, as shown in Figure 2. The motor
is used for simulating the wind source to drive the
gearbox and generator, and the blades are used for the
simulation of rotation. We used a DAQ card to obtain the
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Fig. 4: Back propagation neural network topology.

current signals of the generator and the speed of the
rotation in the experimental test, as shown in Figure 3.

The tailor-made damaged samples of gearbox and
blades were used for the measurements which are
representative of a loss-of-lubrication gearbox and a
damaged blade. The type of six-fold blades is employed
in this paper. We damaged one of the blades and
measured the current signals when the blades were
rotating.

We took out all the lubrication oil from the gearbox as
a damaged sample and then measured the current signals
after 1 hour. The new gearbox with full lubrication is a
normal sample, and the current signals were measured
after 1 hour. By using equations (2)-(6), the Hilbert
spectrums of the damaged sample can be compared with
normal samples.

4 BPNN Solution Methodology

Back propagation neural network(BPNN), a supervised
learning network consisted of an input layer, an output
layer, and a hidden layer, is one of the most widespread
methods applied to categorization and prediction as
shown in Figure 4. The principle of back propagation
neural network is gradient steepest descent method. By
repeatedly transmitting the gradient error to update
weight value w and bias b, the output achieves the target
value. The procedure of back propagation neural network
can be divided into two parts: 1) the feed-forward phase
and 2) the back propagation phase. Network starts output
computation during feed-forward phase, and amends
weights and biases backwards during back propagation
phase, as shown in Figure 5.

Establish the relevance between the input and output
of a network is a necessary task for constructing a neural
network model. The data base is composed of a training
set data and a test set data, where the former is for
network training to construct a network model and the
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Fig. 5: Back propagation neural network solution
structure.

latter is for testing the accuracy of network. When not
achieving the target value, the accuracy will process
network training again or increase the data of the training
set to achieve the goal. The network procedures are
explicitly explained as below.

4.1 Feed-Forward Phase

Step 1. AssumeP is the input. Calculate the output of the
hidden layer,a1, using the formula as shown in
equation (7) wherew1, b1, and f1 represent the
weight value, bias, and activation function,
respectively.

a1 = f1 (w1p+ b1) (7)

Step 2. The output of the hidden layer,a1, acts as the input
of the output layer. Then, calculate the formula as
shown in equation (8) to obtain the outputa2. In
equation (8),w2, b2, and f2 represent the weight
value, bias, and activation function, respectively.

a2 = f2 (w2a1+ b2) (8)

4.2 Back Propagation Phase

Step 1. Amend weight and bias based on mean square
error. Calculate the mean square error of outputa2
and target valued, as shown in equation (9).

E(t) = [d(t)− a2(t)]
2 (9)

Step 2. Calculate the gradient error of each weight and
each bias affected by mean square error using
equations (10) to (13).

∂E(t)
∂w2(t)

=−

[

e(t) f ′2 (w2(t)a1(t)+ b2(t))
]

a1(t)

(10)

∂E(t)
∂b2(t)

=−e(t) f ′2 [w2(t)a1(t)+ b2(t)] (11)

∂E(t)
∂w1(t)

=−

[

∑
k

e(t) f ′2 (w2(t)a1(t)+ b2(t)w2(t))

]

f ′1 (w1(t)p(t)+ b1(t)p(t))
(12)

∂E(t)
∂b1(t)

=−

[

∑
k

e(t) f ′2 (w2(t)a1(t)+ b2(t)w2(t))

]

f ′1 (w1(t)p(t)+ b1(t))
(13)

Step 3. Suppose learning rate isα and adjust each weight
and each bias, as shown in equations (14) to (17).

w2(t +1) = w2(t)−α
∂E(t)
∂w2(t)

(14)

b2(t +1) = b2(t)−α
∂E(t)
∂b2(t)

(15)

w1(t +1) = w1(t)−α
∂E(t)
∂w1(t)

(16)

b1(t +1) = b1(t)−α
∂E(t)
∂b1(t)

(17)

5 Experimental Results

It is difficult to distinguish the difference between output
current signals of a normal gearbox and output current
signals of a damaged gearbox. The Hilbert spectrum
obtained by using the Hilbert-Huang transform is
employed in this work. Differences between both normal
and damaged gearboxes can be observed from the
instantaneous frequency and amplitude of the spectrum.

5.1 Gearbox Damage

The output current signals of both normal and damaged
gearboxes are measured. The Hilbert spectrums of the
output currents of both normal and damaged gearboxes
are illustrated in Figures 6(a) and 6(b). In the Figure 6(a),
the spectrum is clear with a stable frequency component
and a measurement noise. However, the disturbance
phenomena exit within 10 to 50 Hz and 100 to 130 Hz in
the spectrum of Figure 6(b). The results show that the
Hilbert spectrum can recognize the damage of a gearbox.

5.2 Blade Damage

The output current signals of normal and damaged blades
are measured. The Hilbert spectrums of the output
currents of both normal and damaged blades are
illustrated in Figures 7(a) and 7(b). In the Figure 7(a), the
spectrum is clear and with a stable frequency component
and a measurement noise of about 40 Hz. However, the
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(a) normal gearbox

(b) damaged gearbox

Fig. 6: Hilbert spectrum of generator currents.

disturbance phenomena are chaotically distributed within
0 to 100 Hz in the spectrum of Figure 7(b). The results
show that the Hilbert spectrum can recognize the damage
of a blade.

6 Conclusions

This paper presents a novel recognition approach to the
damaged gearbox and blade of wind generation system.
The Hilbert-Huang transform is mainly applied to obtain
the Hilbert spectrums of the generator currents to
recognize the damage of gearbox and blades. The results
show that the Hilbert-Huang transform is advantageous to
the recognition of the damage through the current of
generator. The experimental test can be regarded as a
successful reference to encourage researchers who can
have an alternative way of using the currents to recognize
the status of the gearbox and blades of wind generation
system.

(a) normal blade

(b) damaged blade

Fig. 7: Hilbert spectrum of generator currents.
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