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Abstract: To solve identification of nonlinear dynamic systems, a recurrent wavelet neural network (RWNN) model is proposed in
this paper. The proposed RWNN model has four-layer structure. Temporal relations embedded in the network by adding somefeedback
connections representing the memory units in the second layer. An online learning algorithm, which consists of structure learning and
parameter learning, is proposed and is able to construct thewavelet neural network dynamically. The structure learning is based on
the input partitions to determine the number of wavelet bases, and the parameter learning is based on the supervised gradient descent
method to adjust the shape of wavelet functions, feedback weights, and the connection weights. Computer simulations were conducted
to illustrate the performance and applicability of the proposed model.
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1 Introduction

Artificial neural networks are powerful empirical
modeling tools that can be trained to represent complex
multi-input multi-output nonlinear systems. There are two
major classes of neural networks that have become more
important in recent years, namely, feedforward neural
networks (NN) [1]-[3] and recurrent neural networks
(RNN) [4]-[7]. It is known that a three-layer feedforward
NN is capable of approximating any continuous map
arbitrarily closely. Since for a dynamic system [1], the
output is a function of past output or past input or both,
identification and control of this system is not as
straightforward as a static system. Due to the feedforward
NN is a static mapping and is without the aid of tapped
delays. The feedforward NN is unable to represent a
dynamic system mapping. On the other hand, the RNN
has superior capabilities than NN, such as dynamic and
the ability to store information for later use. Therefore,
the RNN have the vantage of dealing with temporal
problems, which have been found to be difficult for
feedforward NN. Regardless of their type, however,
neural networks are generally disadvantaged by their
”black box” format, and lack a systematic way to
determine the appropriate model structure, have no

localizability, and converge slowly. A suitable local
approximation approach is proposed to overcoming the
disadvantages of global approximation networks. That is,
the global activation function is substituted by localized
basis functions. For the local approximation method, only
a small subset of the network parameters is engaged at
each point in the input space. The network transparency
may be improved by adopting the wavelet decomposition
technique from the field of adaptive signal processing.
Due to the local properties of wavelets, arbitrary
functions can be approximated by the truncated discrete
wavelet transform.

Recently, many researches proposed wavelet neural
networks for identification and control [8]-[14].
Ikonomopoulos and Endou [8] proposed the analytical
ability of the discrete wavelet decomposition with the
computational power of radial basis function networks.
Members of a wavelet family were chosen through a
statistical selection criterion that constructs the structure
of the network. Ho et al. [9] used the orthogonal least
squares (OLS) algorithm to purify the wavelets from their
candidates, which avoided using more wavelets than
required and often resulted in an overfitting of the data
and a poor situation in [10]. Lin et al. [11] proposed a
wavelet neural network to control the moving table of a
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linear ultrasonic motor (LUSM) drive system. They chose
an initialization for the mother wavelet based on the input
domains defined by the examples of the training
sequence. Huang and Huang [12] proposed an
evolutionary algorithm for optimally adjusted wavelet
networks. However, the selections of wavelet bases were
based on practical experimentation or trial-and-error tests.

The objective of this paper is to introduce a recurrent
wavelet neural network (RWNN) model with online
learning algorithm. The architecture of RWNN model
enables them to preserve past states of the networks.
Therefore, the RWNN model has the capability to deal
with temporal problems. An online learning algorithm,
which consists of structure learning and parameter
learning, is proposed and is able to construct the wavelet
neural network dynamically. The structure learning is
based on the input partitions to determine the number of
wavelet bases, and the parameter learning is based on the
supervised gradient descent method to adjust the shape of
wavelet functions, feedback weights, and the connection
weights. In the initial form, there are no wavelet bases
and wavelet functions. They are created and begin to
grow as the first training input data arrives. Thus, the user
need not be given any a priori knowledge or initial
information on the wavelet bases and functions. Finally,
the RWNN model is applied in several identification
problems. The advantages of the proposed RWNN model
are summarized as follows: 1) it converges quickly; 2) it
is constructed automatically; 3) it requires much lower
adjustable parameters; and 4) it has much lower rms error.

The rest of this paper is organized as follows. Section
2 presents the proposed structure of the RWNN, while the
online learning algorithm is exhibited in section 3. After
the illustrative example is shown in section 4, section 5
concludes this paper.

2 Structure of the Recurrent Wavelet Neural
Network

In the static wavelet-base neural network (WNN), the
input data in the input layer of the network at times is
x(s) = [x1(s),x2(s), . . . ,xi(s), . . . ,xn(s)]T , whereT is the
transpose andn is the number of dimensions. Noted that
in ordinary wavelet neural network model applications, it
is often useful to normalize the input vectorsx(s) into the
interval [0, 1]. Then, the activation functions of the
wavelet nodes in the wavelet layer are derived from the
mother waveletφ(x(s)), with a dilation of d and a
translation oft [10]:

φd.t(x(s)) = 2d/2φ(2dx(s)− t). (1)

The mother wavelet is selected so that it constitutes an
orthonormal basis inL2(ℜn). The derivation of a
differentiable Mexican-hat function is adopted as a
mother wavelet herein,

φ(x(s)) = (1−‖x(s)‖2)e−‖x(s)‖2/2, (2)

where‖x(s)‖2 = xTx. Therefore, the activation function of
the jth wavelet node connected with theith input data is
represented as:

φd j .t j (xi(s))= 2di j /2(1−‖2di j xi(s)−ti j ‖
2)e−‖2di j xi(s)−ti j ‖2/2,

(3)
where i = 1, . . . ,n, j = 1, . . . ,m, n is the number of
input-dimensions, andm is the number of the wavelets.
The wavelet functions of Eq. (3) with various dilations
and translations are presented in Fig.1. Equation (3)
indicated that the enforcement ofstatic mapping.

Fig. 1: Wavelet bases with various dilations and translations.

The structure of the RWNN model is shown in Fig.2.
The proposed RWNN model is designed as a four-layer
structure, which is comprised of an input layer, wavelet
layer, product layer, and output layer. Temporal relations
embedded in the network by adding some feedback
connections representing the memory units in the second
layer. In RWNN model, to store information for later use,
thedynamic mappingis adopted as follows:

φd j .t j (z
−1
i j (s))

= 2di j /2(1−‖2di j z−1
i j (s)− ti j‖

2)e−‖2di j z−1
i j (s)−ti j ‖2/2, (4)

where

z−1
i j (s) = xi(s)+θi j ·φd j .t j (z

−1
i j (s−1)), (5)

θi j is the feedback weight,xi(s) is theith input variable at
time s, i = 1, . . . ,n, and j = 1, . . . ,m. It is clear that the
input of this layer contains the memory termsz−1

i j (s−1),
which store the past information of the network. Then,
each wavelet in the product layer is labeled∏, i.e., the
product of the jth multi-dimensional wavelet with
Z−1

i j (s) = [z−1
1 j , . . . ,z

−1
n j ] can be defined as

ψ j(Z
−1
i j (s)) =

n

∏
i=1

φd j .t j (z
−1
i j (s)). (6)

According to the theory of multi-resolution analysis
(MRA) [10,14], any f ∈ L2(ℜ) can be regarded as a
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linear combination of wavelets at different resolution
levels. For this reason, the functionf is expressed as

Yl (s) = f ≈
m

∑
j=1

wl
jψ j(Z

−1
j (s)), (7)

whereYl (s) = [Y1(s), . . . ,Yp(s)] means thel th output of
the RWNN model at times. If ψ j = [ψ1, . . . ,ψm] is used
as a nonlinear transformation function of hidden nodes
and weight vectors andwl

j = [wl
1, . . . ,w

l
m] defines the

connection weights, then Eq. (7) can be considered the
functional expression of the RWNN modeling function
Yl (s).

Fig. 2: The architecture of the RWNN model.

3 An On-line Learning Algorithm

In this section, the degree measure method and the
well-known back propagation (BP) algorithm are used
concurrently for constructing and adjusting the RWNN
controller. The degree measure method is used to decide
the number of wavelet bases in the wavelet layer and the
product layer. On the other hand, the BP algorithm is used
to adjust the parameters of the wavelet bases, feedback
weights, and connection weights. The details of the
algorithm are presented below.

3.1 The Structure Learning Scheme

Initially, there are no wavelet bases in the RWNN model.
The first task is to decide when a new wavelet base is
generated. For each incoming patternxi(s), the firing
strength of a wavelet base can be regarded as the degree
of the incoming pattern belonging to the corresponding

wavelet base. An input datumxi(s) with a higher firing
strength means that its spatial location is nearer to the
center of the wavelet baseti j than those with smaller
firing strength. Based on this concept, the firing strength
obtained from Eq. (6) in the product layer can be used as
the degree measure

Fj = |ψ j |, (8)

where j = 1, . . . ,q, q is the number of existing wavelet
bases, and|ψ j | is the absolute value ofψ j . According to
the degree measure, the criterion of a new wavelet base
generated for new incoming data is described as follows:

Find the maximum degreeFmax

Fmax= max
1≤ j≤q

Fj . (9)

If Fmax≤ F, then a new wavelet base is generated, where
F is a pre-specified threshold that should decay during the
learning process, limiting the size of the RWNN model.

tq+1 = xi(s), (10)

dq+1 = 0, (11)

and
wq+1 = θq+1 = random value, (12)

where xi(s) is the new incoming data at times; the
connection weightwq+1 of the output layer and feedback
weightθq+1 are selected from the range between−1 and
1 randomly; and the dilationdq+1 is set to zero to obtain a
higher firing strength for the input valuexi(s) (see Fig.2).

The concise online degree measure method of the
RWNN model is shown as follows:

Initialization;
do{

IF xi(s) is the first incoming pattern, do{
Generate a new wavelet base;
with translation tq+1 = xi(s);
dilation dq+1 = 0;
connection weight wq+1 ∈ [−1,1];
feedback weightθq+1 ∈ [−1,1];

}
ELSE for each newly incoming pattern, do{

Executing the degree measure method;
IF Fmax≤ F, do{

Generate a new wavelet base;
with translation tq+1 = xi(s);
dilation dq+1 = 0;
connection weight wq+1 ∈ [−1,1];
feedback weightθq+1 ∈ [−1,1];

}
}

} until the task is finished.
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3.2 The Parameter Learning Scheme

After the network structure has been adjusted according
to the current training pattern, the network then enters the
second learning step to adjust the parameters of the
wavelet base, feedback weight and the connection weight
(t, d, θ , and w) with the same training pattern. The
parameter-learning algorithm is based on a set of MIMO
pairs{xi(s),Ydes

l (s)}. If the l th error functionel is defined

el = (Yl (s)−Ydes
l (s)), (13)

whereYl (s) is the l th model output andYdes
l (s) is the l th

desired output at times, then the cost functionE can be
defined as

E =
1

2p

p

∑
l=1

e2
l (14)

and can be minimized by all adjustable parameters using
an iterative computational scheme.

Assuming thatW is the adjustable parameter in the
wavelet layer and the output layer, the general learning
rule used is

W(s+1) =W(s)+∆W =W(s)+η(
∂E
∂W

), (15)

whereη ands represent the learning rate and the iteration
number, respectively. The gradient of the cost functionE
in Eq. (14) with respect to the vector of arbitrarily
adjustable parameterW is defined as

∂E
∂W

=−
1
p

p

∑
l=1

el
∂Yl

∂W
. (16)

With the above equation defined, we can infer that the
free parameters adjusted in the RWNN is as follows:
The connection weight of the output layer is updated by

wl
j (s+1) = wl

j(s)+∆wl
j , (17)

where

∆wl
j =−ηw

∂E

∂wl
j

=−ηw ·
1
p
·e·ψ j . (18)

Similarly, the updated laws ofti j , di j , andθi j are shown
as follows:

ti j (s+1) = ti j (s)+∆ ti j , (19)

di j (s+1) = di j (s)+∆di j , (20)

and
θi j (s+1) = θi j (s)+∆θi j , (21)

where

∆ ti j =−ηt
∂E
∂ ti j

=−ηt ·
1
p

p

∑
l=1

el ·w
l
j ·ψ j ·

{

2di j z−1
i j (s)− ti j

1− (2di j z−1
i j (s)− ti j )2

·
[

2+
(

1− (2di j z−1
i j (s)− ti j )

2
)]

}

,

(22)

∆di j =−ηd
∂E
∂di j

=−ηd ·
1
p

p

∑
l=1

el ·w
l
j ·ψ j

·

{

ln2
2

−2di j ·z−1
i j (s) · ln2 · (2di j z−1

i j (s)− ti j )

·

[

1+
2

1− (2di j z−1
i j (s)− ti j )2

]}

,

(23)

∆θi j =−ηθ
∂E
∂θi j

=−ηθ ·
1
p

p

∑
l=1

el ·w
l
j ·ψ j

·

{

2di j z−1
i j (s)− ti j

1− (2di j z−1
i j (s)− ti j )2

·φd j .t j (z
−1
i j (s−1))

·2di j ·
(

(2di j z−1
i j (s)− ti j )

2−3
)

}

,

(24)

4 Illustrative Examples

To certify the performance of the RWNN model for
temporal problems, several examples and performance
contrasts with some other recurrent networks are
presented in this section. These parameters (ηt , ηd, ηθ ,
ηw, dinit , F) are set in advance, and the number of training
epochs for the RWNN model in each example is
determined based on the desired accuracy.
Example 1: Prediction of Time Sequence

To clearly verify if the proposed RWNN model can
learn the temporal relationship, a simple time sequence
prediction problem found in [8] is used for test in the
following example.

The test bed used is shown in Fig.3(a). This is an ”8”
shape made up of a series with 12 points which are to be
presented to the network in the order as shown. The
RWNN model is asked to predict the succeeding point for
every presented point. Obviously, a static network cannot
accomplish this task, since the point at coordinate (0, 0)
has two successors: point 5 and point 11. The RWNN
model must decide the successor of (0, 0) based on its
predecessor; if the predecessor is 3, then the successor is
5, whereas if the predecessor is 9, the successor is 11.

In this example, the RWNN model contains only two
input nodes, which are activated with the two dimensional
coordinate of the current point, and two output nodes,
which represent the two dimensional coordinate of the
predicted point. The initial parameters are set as
ηt = ηd = ηθ = ηw = 0.05, dinit = 0, andF = 0.6. The
training process is continued for 1000 epochs. Starting at
zero, the number of wavelet nodes grows dynamically for
incoming training data. The final root-mean-square (rms)
error of 0.000014 is achieved. The free parameters are
obtained at end of learning as follows:

di j =

[

−0.284 0.118 0.019 −0.11 0.16 −0.143 −0.046 0.002 −0.01 −0.1 −0.01 0.02
0.435 0.211 −0.121 0.599 −0.215 0.405 0.525 −0.009 0.144 0.02 0.003 0.06

]

,
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ti j =

[

−0.182 0.59 0.943 0.099 −0.943 −0.77 0.242 0.49 0.917 −1.165 −0.0009 −0.346
0.532 1.188 0.529 −0.095 −0.706 −0.779 −1.05 −1.04 −0.175 0.451 1.001 −0.982

]

,

wl j =

[

−0.274 0.726 0.388 −0.965 −0.649 −0.349 0.578 0.269 −0.113 −0.086 −0.056 0.0166
0.787 0.189 0.09 0.017 −0.342 −0.765 −0.785 −0.01 −0.221 0.209 −0.199 0.527

]

,

and

θi j =

[

0.247 0.111 −0.399 −0.328 −0.464 0.197 0.263 −0.306 −0.04 −0.389 −0.126 0.3
−0.598 −0.118 0.003 0.172 −0.347 0.233 0.52 0.105 −0.521 0.111 0.099 −0.525

]

.

Figure 3(b) shows the prediction results by the trained
RWNN model. Simulation results show that we can
obtain perfect prediction capability.

Fig. 3: Simulation results of time sequence prediction. (a) Test
bed for the sample prediction experiment in Example 1. (b)
Results of prediction using the RWNN model after 1000 training
epochs.

Recently, Lee and Teng [15] proposed a model, called
recurrent fuzzy neural network (RFNN) architecture, for
learning and tuning a fuzzy predictor. They adopted
standard zero-order TSK-type fuzzy model. For
initializing parameters of the RFNN model, the rule
number should be given in advance. But, the users need
not give it anya priori knowledge or even any initial
information for our proposed model. The RFNN
model [15] and a traditional (non-recurrent) fuzzy neural
network (FNN) [16] are also applied to this time
prediction problem. Figure4(a) shows the prediction
results using the RFNN model. In this figure, the RFNN
also obtain prediction capability, but some time prediction

points cannot be matched exactly. Figure4(b) shows that
a feedforward FNN model cannot predict successfully,
because of its static mapping. Figure4(c) shows the
learning curves of the RWNN model, the RFNN
model [15] and the FNN model [16]. The learning curve
of the RWNN appears to have an oscillation at the
beginning of learning. This situation reflects the structure
changing in the early stage of learning. In this figure, our
model converges quickly and obtains a small rms error.
To give a clear understanding of this performance
comparison with the RFNN model and the FNN model on
the same problem is made in Table1. Computer
simulations were conducted to illustrate the performance
and applicability of the proposed model.

Table 1: Performance comparison of various existing models on
time sequence prediction, with 1000 epochs.

Rules/nodes Parameters RMS error
RWNN 12 96 0.000014

RFNN [15] 12 96 0.0072
FNN [16] 12 108 0.148

Example 2: Identification of Nonlinear Dynamic
System

Consider the following dynamic plant with longer
input delays:

yp(s+1) = 0.72yp(s)+0.025yp(s−1)u(s−1)

+0.01u2(s−2)+0.2u(s−3) (25)

This plant is the same as that used in Kim et al. [17]. In
our model, only with two input values,yp(s) andu(s), are
fed to the RWNN model to determine the outputyp(s).
The training input are independent and identically
distributed (i.i.d.) uniform sequence over [−2, 2] for
about half of the training time and a single sinusoid signal
given by 1.05sin(πs/45) for the remaining training time.
There is no repetition on these 900 training data, i.e.,
different training sets for each epoch. The checking input
signalu(s) as the following equation is used to determine
the identification results

u(s) =



















sin
(π ·s

25

)

, 0< s< 250
1.0, 250≤ s< 500
−1.0, 500≤ s< 750
0.3sin

(π ·s
25

)

+0.1sin
(π ·s

32

)

+0.6sin
(π ·s

10

)

, 750≤ s< 1000
(26)

During the training, only 10 epochs be used, where
are 900 time steps in each epoch. The initial parameters
are set asηt = ηd = ηθ = ηw = 0.05, dinit = 0, and
F = 0.07. After training, the final rms error is 0.00028,
and two wavelet nodes are generated. These obtained free
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Fig. 4: (a) Results of prediction using the RFNN [15] after 1000
training epochs. (b) Results of prediction using the FNN [16]
after 1000 training epochs. (c) Learning curves of the RWNN
model, the RFNN model [15] and the FNN model [16].

parameters are

di j =

[

0.437 0.446
−0.862−0.455

]

, ti j =

[

0.946 −0.9
0.535−0.628

]

,

θi j =

[

−0.281 0.329
−0.44 0.465

]

, wl j = [1.22−0.957].

Figure 5(a) shows the outputs of the plant and the
RWNN model. The results show the perfect identification
capability of the RWNN model. Figure5(b) illustrates the
error between the desired output and the RWNN output.
The learning curves of the WRFNN model and the RFNN
model [15] are shown in Fig.5(c). In this figure, we also
obtain a smaller rms error and converge quickly than the
RFNN model [15]. Finally, we compare the performance

of our model with that of other existing recurrent methods
(RFNN [15], ERNN [18], RSONFIN [19], and
TRFN-S [20]). The comparison results are tabulated in
Table2. As shown in Table2, the numbers of adjustable
parameters and rms error in our model are rather smaller
than other recurrent methods under the same training
epochs.

Table 2: Performance comparison of various recurrent methods
on the identification problem, with 10 epochs.

Parameters RMS err. RMS err.
(train) (test)

RWNN 14 0.00028 0.0012
TRFN-S [20] 33 0.0067 0.0313
RFNN [15] 21 0.00181 0.00402

RSONFIN [19] 49 0.03 0.06

Fig. 5: Simulation results of the RWNN model for dynamic
system identification in Example2. (a) The outputs of the plant
and the RWNN. (b) The error between the RWNN output and the
desired output. (c) Learning curves of the RWNN model and the
RFNN model [15].

Example 3: Identification of Chaotic System
The discrete time Henon system is repeatedly used in

the study of chaotic dynamics and is not exceedingly
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simple in the sense that it is of second order with one
delay and two parameters [21]. This chaotic system is
described by

y(s+1) =−H ·y2(s)+Q ·y(s−1)+1.0, (27)

for s= 1,2, . . ., which, withH=1.4 andQ=0.3, produces a
chaotic strange attractor as shown in Fig.6(a). For this
training, the input of the RWNN model isy(s−1) and the
output isy(s). Now, the training input patterns sampled
randomly (1000 pairs) from system over the interval
y(s−1) ∈ [−1.5, 1.5]. Then, the RWNN model is used to
approximate the chaotic system.

In applying the RWNN model to this example, only
100 epochs are used. Here the initial point is
[y(1),y(0)]T = [0.4,0.4]T. The initial parameters are set
as ηt = ηd = ηθ = ηw = 0.05, dinit = 0, andF = 0.36.
After training, there are six wavelet nodes are generated.
The obtained free parameters are:

di j = [−0.211−0.226−1.936−1.996−0.05 0.186],

ti j = [−0.321−0.453−0.72 0.494 2.184 1.06],

θi j = [0.081−0.083−1.556−2.24 0.022−0.0189],

and

wl j = [1.592 1.551−4.555−2.196−1.408 1.164].

The phase plane of this chaotic system after training
for the FNN model [16] and the RWNN are shown in
Fig. 6(b) and Fig.6(c). In Fig. 6(b), the FNN model is
inappropriate for chaotic dynamics system because of its
static mapping. To give a clear understanding of this
performance comparison with the RFNN model and the
FNN model on the same problem is made in Table3. The
proposed RWNN model needs fewer wavelet nodes and
obtains a smaller rms error than the RFNN model and the
FNN model.

Table 3: Performance comparison of various methods in this
chaotic system in Example 3, with 100 epochs.

Rules/nodes Parameters RMS err. RMS err.
(train) (test)

RWNN 6 24 0.0017 0.0017
RFNN [15] 8 32 0.0141 0.0145
FNN [16] 8 24 0.1338 0.1557

5 Conclusion

In this paper, we propose a recurrent wavelet neural
network (RWNN) model for solving temporal problems.
We adopt the orthogonal function as wavelet neural
network bases. Due to its multiscale, multiresolution, and
localization, the RWNN can accurately capture the

Fig. 6: (a) Check data of this chaotic system. (b) Result of
identification using the FNN model [16] for the chaotic system.
(c) Result of identification using the RWNN model for the
chaotic system.

nonlinear behavior of systems. Adding feedback
connections in the second layer, where the feedback units
act as memory elements, develop the temporal relations
embedded in the RWNN. An online learning algorithm is
proposed to construct model and tune parameters
automatically. The experimental results strongly
demonstrate that the learning scheme is very effective for
identification of dynamic systems.
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