Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) %N =S¥\ 89

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/091L11

Reduction of Model Checking-based Test Generation
using Satisfiability

Gongzheng Lt#*, Huaikou Miad and Honghao Gab

1 School of Computer Engineering and Science, Shanghai titye200072 Shanghai, China
2 Department of Computer Engineering, Suzhou Vocationabélsity, 215104 Suzhou, Jiangsu, China

Received: 12 Nov. 2013, Revised: 13 Mar. 2014, Accepted: a4 RD14
Published online: 1 Feb. 2015

Abstract: Constructing test cases from counterexamples generatead apdel checker is an important method to perform test
automation. In fact, one counterexample may cover multigé goals, which leads to unnecessary calls to the modekeheand
redundant test cases in test suite such that affect thedgstirformance. A method to test suite reduction based asfiahtlity is
proposed. The kripke model is translated in conjunctiorhuéist goals (trap properties) into CNFs. And then test gn@lenerate
counterexample is selected according to the hardness aftinesponding CNF, after that, model checking the seletsidgoal to
generate counterexample. The generated counterexani@@stated in conjunction with those uncovered test godts CNFs. If the
corresponding CNF is unsatisfiable then the test goal isegickut from the set of test goals. Meanwhile, the new geretatt case

is winnowed by test suite to reduce the redundancy beforeatlded into the test suite. Experimental results show lieatrtethod
proposed in this paper is effective for reducing the modekkhr calls and the length of the test suite. At the same tinescoverage
and error detection capability of the test suite are notided|

Keywords: Satisfiability, Model Checking, Test Suite Reduction

1 Introduction a small test suite to satisfy the coverage criterion. Model
checker is not dedicated for generating test cases. It
Testing is an important and traditional software quality generates one counterexample for each test goal (trap
assurance technology. At present, test cases are generate@perty). Generally, the same counterexample is
by manua”y, which is lower efﬁciency' error-prone and generated several times for different properties. Sirllyilar
not reusable such that total costs of software developmeri shorter counterexample may be subsumed by a longer.
increased dramatically. So testing automation is theSo it will lead to unnecessary calls to model checker to
inevitable trend. Recent years, model checking has beefenerate such counterexamples, and decrease the
used to the automatic generation and optimization of tesperformance of model checking-based testing.
cases. However, model checking is originally an In this paper, we propose a method to reduce the test
automatic verification technology for finite state model. If suite during test generation. The kripke model is
the verified property is not hold on the model, the modeltranslated in conjunction with test goals into CNFs. And
checker generates a counterexample which explains ththen test goal to generate counterexample is selected
reason why the property is violated. Whether test case caaccording to the hardness of their corresponding CNF,
be constructed from the counterexample directly becomesfter that, model checking the selected test goal to
the starting point of model checking can be used ingenerate counterexample. The counterexample is
testing. translated in conjunction with those uncovered test goals
Fraser et al. I] indicated that there are several into CNFs. If the corresponding CNF is unsatisfiable then
problems when using model checking to generate testhe test goal is picked out from the set of test goals.
cases. One of them is that executing a test case malleanwhile, the new generated test case is winnowed by
consume some resources, and large numbers of test casest suite to reduce the redundancy before it is added into
may affect the testing performance greatly, which requireghe test suite. This paper is organized as follows: Section

* Corresponding author e-maiinks0863@sina.com.cn

(@© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/091L11

920 NS 2 G. Z. Lu et. al. : Reduction of Model Checking-based Test...

2 introduces the related works, and then section 3 give#\P is the set of atomic propositions. If the model violates
the background about our method. Section 4 shows howhe property, model checker generates a counterexample
satisfiability can be used to reduce the test suite. Theo explain the trace violating the property. Such trace is
effects of this method are empirically analyzed in detail in the prefix of a path in the model.

section 5. Finally, it is the conclusions and future work. Definition 2 (Path) A path ofrt:=< s,---,s > of a

Kripke StructureK is a finite or infinite state sequence
suchthattO<i<n:(s,s+1) €T forK.
2 Related Works In this paper, the property is specified by temporal
logic LTL [13].
Many model checking-based test generation methods have The syntax of LTL isip::=true| falsgp|—@i| @ A @|
been proposed. They can be fall into two categories: 1) V @@ — @|X@|F ¢|Go|@U @, wherep is the atomic
Test goalis represented as trap prope2i@ 4], and model propositiong andp, are LTL formulas, temporal operator
checking the trap property, the counterexample generatel, F, G, U represent the next state, some state in future, all
by the model checker is constructed as test sequence whidtates in future, and until some state respectively.
covers the test goal. 2) Model or property is mutate®, The semantics of LTL is represented by infinite paths
7], the inconsistency between the model and the propertyf a Kripke Structure. Model checker computes iteratively
will generate counterexample which is used to constructwvhetherK satisfiesp on pathr, denoted aK, T ¢. 7§
test suite satisfying the mutation adequacy criterion. is the suffix of the pathr starting from theth state, (i)
Test suite generated by model checking may havedenotes théh state of the pathr, wherei € N. 17(0) is the
redundancy which affects the testing performance, so it idnitial state of the patr.
necessary to reduce the test suite. The reduction of test Trap property(test goalp is the property assumed to
suite which uses a smaller test suite to cover the coveragpee violated by the model and it is used to generate
criteria can be divided into reduction after test generatio counterexamplesuch thak,t ¥ ¢, wheret is a path. For
and reduction during test generation. Reduction after teséxample, a test goal for state coverage criterion is a state
generation denotes that generate test suite in terms af can finally be reached, the trap property is written as
coverage criteria and then eliminate the redundant tesG—(state= a). A counterexample to such trap property is
cases from the test suite. Reduction during test generatioany path that contains stage The test case of test goal
indicates that generate test case for the selected test goghn be constructed directly from the state sequence
and check whether the test goals remaining in the set oorresponding tot. Generally, the state sequence
test goals are covered by this test case to avoid t@orresponding to the counterexample is called a test case.
generating test cases for these test goals. Hamon & al. [The length of the test case is the number of the transitions
extended test cases iteratively using model checker SALin the state sequence. The set of test cases is called test
the number of the test cases in the resulting test suite isuite, the length of the test suite is the total length of all
reduced, but the total length of the test suite may not beest cases in the test suite.
decreased, and they didn’t indicate which test cases can
be extended. Ammann et aB][represented the test case
as model, and model checking the remaining test goals on
the model to decide whether they are covered by the test
case, it refers to the transition from test cases to model
and calls to model checker frequently. Fraser et Hlj [
used LTL rewriting to eliminate the test goals covered by
existing test cases. Zeng et dll] used CTL rewriting to
reduce the test goals and test suites. They all did not giv
in which order to select the test goals to generate tes
cases, however, the order of test goals selection will aiffec
the effect of the reduction of test suite.

Using Satisfiability to Reduce Test Suite

ﬁ'raditionally, test cases are generated by model checking
all the trap properties sequentially. It may lead to
redundant test cases. And the performance of model
&hecking-based test generation will be degraded because

e still generate test cases for trap properties which have
covered by existing test cases. Such situation can be
avoided by checking whether the trap properties have
been covered by existing test cases, so the redundant test
cases can be reduced, meanwhile the model checker calls
also be eliminated.
3 Background Bounded model checkinglf] decides whether the

)) . model satisfies the property based on satisfiability.
Kripke structure 12] is generally used as formal modelin pjfferent with the traditional model checking, bounded
model checking. model checking does not search the state space, but
Definition 1 (Kripke Structure) A Kripke structur isa translates the conjunction of the model with the negation
tuple K=(S, S, T,L), whereSis the set of state$5, C S of the property into a CNF, and solves the CNF using
is the set of initial states] C Sx Sis the total transition ~ SAT solver. If it is unsatisfiable, then the model satisfies
relation, and. : S— 2P is the labeling function maps each the property, else the satisfiability assignment of the
state to a set of atomic propositions that hold in this statevariables is a counterexample of the property.

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) ywwww.naturalspublishing.com/Journals.asp NS P 91

Satisfiability can also be used to reduce the modelclause id;. The hardness of CNF s

checking-based test generation. After a test case i — 2-ili

generated for a trap property, the test case is translated in For each trap property, we translate the conjunction of

conjunction with the remaining trap properties into CNFs, the model with it into CNF. Then the hardness of each CNF

and the trap properties covered by the test case iS 985 computed, we assumed that the set of hardnéssTée

according to the unsatisfiability of the correspondingtest goals are ranked ascending according to the hardness

CNFs, so it is unnecessary to call model checker toof the CNF, and the resulting set of test goalREG We

generate test cases for such trap properties. ~ select the test goal sequentially frd®T G The smalleh

The method to reduce the test suite using satisfiabilityyil| generate the longer test case, so it avoids to generatin

is given as follows. It improves the performance of model redundant test cases.

checking-based test generation greatly. The method to check whether the remaining test goals
in the set of test goals are covered by existing test cases
using satisfiability is based on the following theorem.

4.1 Bounded Model Checking and Satisfiability Theorem 1Letm:=< s,---,5 > be the test case for test
goal T G1. Selecting an uncovered test gddb2 from the

The main idea of bounded model checking is: the modelset of test goalsTG, if the CNF translated from

is modeled as Kripke Structure and the property isTA G—-TG2 is unsatisfiable, then the test caseovers

specified by LTL formula, and the bound is setkidhen test goall G2.

the conjunction of the model with the negation of the LTL ~ Because the CNF translated fromA G-TG2 is

formula constitutes BMC formula, the BMC formula is unsatisfiable, that ist G—T G2. It can be seen that is

encoded to SAT instance (CNF), finally the CNF is solveda counterexample d&—T G2, thenrt can be the test case

by SAT solver. If the CNF is satisfiable, then a covering test goal G2.

counterexample is generated, else it denotes that the

model satisfies the property affesteps. Algorithm1 TestSuitReduction(M, TG, TS

Let M be a Kripke Structuref be the negation of a 1 pegin

LTL formula, k be the bound{[M, f]| is a proposition. A 2 H={};

path m =< s9,---,5 > is a finite state sequence of for each test goapin TG do

(M, f]]k- [[M, f]] is satisfiable ifff holds on some path begin

TL. i=1;

Definition 3 (BMC formula) BMC formula is: f = GenerateCNfM A ¢);

[M, 1l = [IMJJk A [l [MTiT (S0) A A T(S15814), h(i)= ComputeHardnes$);

O©OoO~NO U W

[FkECLA TRV VIS LA 1 TF9) = Hon();
| Lk:T (SKa S')al—k:\/r:o | Lk- 10 end '
The explanation of BMC formula can refer td4]. 11 RT G= RankAscendingl G,H):

Definition 4 (CNF) A CNF isF =C;V ---VCy, where 12 TS={};
Ci,---,Cn are clauses, each clause has the f@m |1V 13 WhileRT G!=empty do

--Vlp forlq,--- Iy are literals, each literal is the positive 14 begin
or negative form of a boolean variable. 15 Select a test gogl fromRTG
Most SAT tools use DPLL algorithm to solve CNF, the 16 RTG=RTG-{¢};
algorithm finds out whether exists some assignment of thel 7 = Model CheckingM, ¢);
boolean variables such that the CNF is true. If existing,18 if TS={};
F is called satisfiable, df is called unsatisfiable iF is 19 thenT S=TSu{m};
always false for any assignment of the boolean variables. 20 elseT SSWinnow(T S m);
21 for each remain test go@lin RT Gdo
22 begin
; ; 23 f = GenerateCNET, ¢);
4.2 Reduction of the Test Suite 24 result = SATY)
) 25 if result = unsatisfiable
The order for selecting test goals to generate test case isg thenRT G=RTG— {¢};
important. Previous works selected the test goalsy; end
randomly. In satisfiability theory, the shorter the clause i og end

the harder the clause is to be solved. Based on this, W89 end
first translateM A @ into CNFs, and then select the test

goal according to the hardness of the CNFs. We select the first test goal from the set of test goals
Definition 5 (Hardness of CNF) Let the number of the RTG meanwhile delete the test goal froRT G Model
clause in the CNF ig, the number of the literal in thi¢h checking the test goal, and generate test case for the test

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

92 NS 2 G. Z. Lu et. al. : Reduction of Model Checking-based Test...

goal, the test case is added to test stli&When the new the satisfiability can be used to reduce the test suite
test case is added to the test suite, it is winnowed bygenerated by model checking. And our method is
current test suitd S and the redundant test cases will be compared with the non-optimized model checking-based
eliminated. Then if this test case is not redundant, it istest generation method and LTL Rewriting method.
translated in conjunction with the each remaining test Test cases for navigation behavior of the simplified
goal in the set of test goals into CNF. The CNFs areversion of Student Grade Retrieve System (SGRS) are
solved by SAT tool. If the CNF is unsatisfiable, then generated in terms of state coverage criterion, transition
deleting the test goal iIRTG else solving the next CNF coverage criterion and transition pair coverage criterion
until the CNFs are all solved. After this, the test goals respectively. The Kripke Structure of the navigation
satisfied by the test case are deleted fiRiG and the behavior is described in figure 11][The navigation
model checker will not be called to generate test cases fobegins at pagblank, the home pageainis consisted of

them. We choose test goal sequentially fr&(fh G and
repeat above procedure for each test goal WRTIG is
empty.

two sub-frame pagesewsand login. Users can submit
their login information fromogin, then pagestudviewis
returned for students or the pagdminviewis returned

The algorithm of reduction of the test suite using for system administrator. Administrator can maintain the

satisfiability is given in algorithm 1.

system and retrieve the students’ information. Students

Function GenerateCNM A @) is used to translate can look over their personal information from subpage

M A @ into CNF. ComputeHardnesk) computes the
hardness of CNF. RankAscendin@l G,H) sorts the set

studinfoin studviewand inquire their grade from page
grade The pagegradelist is generated dynamically

of the test goals according to the hardness of theiraccording to the query conditions provided gyade
corresponding CNFs, and the resulting set is the rankedagestudinfo and grade can be visited through each

test goalRT G ModelCheckingM, ¢) model checks the

test goalp on modelM and generates a counterexample

1. Winnow(T S 1) winnows test caser by test suiteT S
The function WinnowT S 1) is described in algorithm 2.

Algorithm 2 Winnow (T S)

1 begin

2 foreachtestcasgéin TSdo

3 begin

4 j =MinLength(r, {);

5 fori=1tojdo

6 begin

7 if I Match(7(i), {(i))

8 thenT S= T SuU {m};

9 exit;

10 else if(i == j) and

11 (Lengthm) > Length({))
12 thenT S=TS— {{} U {m};
13 end

14 end

15end

Function MinLengtlir, {) is used to get the smaller

length between the length of test casand the length of
{. Match(i(i),{(i)) checks whether thih state ofrt is
the same as théh state of. If they are the same,
Match(7i(i),{(i)) returns true. If some test cagen T Sis
subsumed by test case then test casé is deleted from
TSandrmis added to.

5 Experimental Study

other.

blank main

l

login

loginfail]:[adminview]

[
(
(J—

gradelist]

grads

Fig. 1: Kripke Structure of SGRS

Our method first translates the conjunction of the
system modeM with each test goap into CNF. Then the
hardness of the CNFs are computed, the set of ranked test
goalsRT Gis get according to the hardness of the CNFs.
If several CNFs have the same hardness, then we rank the
test goals corresponding to these CNFs randomly. Finally,
the test goal used to generate test case is chosen
sequentially.

For state coverage criterion, the ranking of the
hardness of CNFs is showed in table 1.

According to table 1, test godlGLl is first chosen to
model checking and generate test case
rm : (blank main login, studviewgrade gradelist). And
then the test cas® is converted in conjunction with each
test goal INRTG— {TG1} into CNF. If the CNF is

In this paper, test cases are generated by model checkensatisfiable, then it indicates theg covers the test goal
NuSMV 2.5.4, and the satisfiability of the CNFs are corresponding to the CNF. We delete the test goals
solved by Yices 15]. An example is used to explain how covered by from RT Gand get the ne\RT G Next we

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) ywwww.naturalspublishing.com/Journals.asp

N 5SS = 93

chose the remaining test goals RTG sequentially,

repeat above procedure uriR Gis empty.

Finally, we get 6 test casesrj : (blank main login,
studviewgrade gradelist), 7o : (blank main login,
adminview, & : (blank main news, 1 : (blank main,
login, studviewstudinfo, 75 : (blank main login,
adminviewmaintain), 7% : (blank main login,loginfail).

Table 3: Reduction: State Coverage Criterion
Method MDC TC Length

Original 10 10 31
LTL Rewriting 8 5 18
Our Method 6 5 14

During the generation of the test cases, the test goals

covered by these test cases are shown in table 2.

Table 1: Ranking of the hardness of CNFs: State Coverage

Criterion

TG L C L/C R
TG1 2508 747 3.357429719 1
TG2 2401 705 3.405673759 3
TG3 2421 706 3.42917847 9
TG4 2403 704 3.413352273 5
TGS 2439 704 3.464488636 10
TG6 2547 704 3.617897727 11
TG7 2404 704 3.414772727 6
TG8 2404 704 3.414772727 7
TGO 2404 704 3.414772727 8
TG10 2402 704 3.411931818 4
TG11 2390 703 3.399715505 2

TG: TestGoal L Literals C: Clauses R Ranking

TGL1:Glgradelist T@ : Glgrade T@ : G!studinfo TG : Glstudview
TG5 : G'maintain TG : G!loginfailT G7 : Gllogin T G8 : Gladminview
TG9 :Glnews TAO :G!main TALL : Glblank

Table 2: Test goals covered by test cagas~ 15

TG moTe B Ty T T
TGL Y

TG2 Y

TG3 Y

T4 Y

TG5 Y
TG6 Y
TG7 Y

TGS Y

TG9 Y

TGI0 Y

TGl1 Y

After winnowing, 7% is subsumed byrg, so it is
redundant, and the test suiteli$= {m, 18, T4, 15, Tk } .

MDC : NumberofModelCheckingcallsTC NumberofTestCasesLength
Lengtho fTestSuite

Our method is compared with the non-optimized
model checking-based test generation method (Original)
and LTL Rewriting method for these three coverage
criteria in table 3- 5.

Table 4: Reduction: Transition Coverage Criterion
Method MDC TC Length

Original 17 17 63
LTL Rewriting 12 7 35
Our Method 10 7 32

Table 5: Reduction: Transition pair Coverage Criterion
Method MDC TC Length

Original 29 29 136
LTL Rewriting 22 13 73
Our Method 19 13 73

The original method calls the model checker once for
each test goal, and generates a test case for each of them.
So the number of model checking calls and the number of
test cases both equal to the number of test goals. Our
method and LTL Rewriting method both can eliminate the
number of the model checking calls well, and reduce the
number of test cases and the length of the test suite
greatly. The number of test cases generated by our
method is the same as the LTL Rewriting, but the number
of model checking calls is smaller than LTL Rewriting
and the length of the test suite is also shorter (or equal).
The reason for our method can reduce more model
checker calls than LTL Rewriting is: we select the test
goal to generate counterexample according to the
hardness of its corresponding CNF, while LTL Rewriting
is randomly. The smaller the hardness of the
corresponding CNF is, the harder the test goal is

Similarly, for the 17 test goals of the transition satisfiable, the longer the test case is and the more test
coverage criterion, we get 7 test cases. And we get 13 tegjoals are covered, so the less model checker calls are
cases for the 29 test goals of the transition pair coverageequired. The reason why the length of the test suite is

criterion.

shorter than the LTL Rewriting is: our method use

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

94 NS 2 G. Z. Lu et. al. : Reduction of Model Checking-based Test...

bounded model checking which generate the shortesbnce. The number of test cases is reduced by both our
counterexample, so the length of the test suite maymethod and LTL Rewriting, but the coverage of the test
become shorter. goals for each criterion is not improved. Our Method (LP)
increases the length of test suite a little bit, but the
coverage of the test goals is increased obviously. Here,
the coverage of the test suite generated for transition pair

Table 6: Coverage: State Coverage Criterion N . " .
coverage criterion is not given. Transition pair coverage

Method TGs TGr TGrp criterion is stronger than the other two criterions, the tes
Original 100% 58.82% 31.03% suite satisfying the transition pair coverage criteriosoal
LTL Rewriting ~ 100% 58.82% 31.03% satisfies them. So the coverage of the test suites for these
Our Method 100% 58.82% 31.03% methods is 100%.
Our Method(LP) 100% 82.35% 58.62% Last, we study whether the error detection capability

is affected while the number of test cases and length of
test suite are reduced. Mutation score which is the percent
of mutated models or properties detected by test cases can
be as the measurement of the error detection capability.
Models or properties can be mutated by mutant
operations. In our experiment, we use model mutant and

Table 7: Coverage: Transition Coverage Criterion . .
get 112 mutations. The results are in table 8.

Method TGs TGr TGre Ms, Mt and Mrp are the mutation scores of the test
Original 100% 100% 55.17% suites generated with regard to the three coverage
LTL Rewriting 100% 100% 55.17% criterions. The error detection capability of our method is
Our Method 100% 100% 55.17% the same as the original method and LTL Rewriting while
Our Method(LP) 100% 100% 75.86% our method reduces more test cases and has shorter test

suite. Ms and Mt of Our Method (LP) are declined a
litle. One possible explanation is: when we use the
mutant operation substitution, many states add a
transition to themselves. These mutations can be detected
by the test cases generated by our method. While Our
Table 8: Mutation Scores: Model Mutants Method (LP) extends the loop in the test cases generated
by our method once. Several states can reach themselves

Method Ms Mr Mrp through multistep transitions. These multistep transgio
Original 75% 77.68% 68.75% are substituted by one self transition in mutant model.
LTL Rewriting 75% 77.68% 68.75% They can’'t be detected by Our Method (LP), so its
Our Method 75% 77.68% 68.75% mutation scores are declined.
Our Method(LP) 71.43% 73.21% 68.75% The results of our experimental indicate that: our

method can eliminate the number of model checking calls
well, and can reduce the number of test cases and the
length of test suite greatly. Our method has advantage

In following, in order for presented to the method to be over LTL Rewriting. At the same time, the coverage of
feasible, itis important that the coverage with regard & th the test goals and the error detection capability of our
criteria used for test generation is not affected. We amalyz method are not declined.
the coverage of the test suites generated by the original,

LTL Rewriting and our method respectively. Table 6 and

table 7 show the result of coverage analysis. There is ong Conclusions and future work
table for each set of test goals used for test case generation

for each coverage criterion.

TGs, TGr and TGrp are the set of test goals
generated according to state coverage criterion, transiti
coverage criterion and transition pair coverage criterion
respectively. In table 6, the test suite is generated fde sta
coverage criterion, the coverage of the test gdaB; is
100%. And in table 7, the test suite is generated for
transition coverage criterion, the coverage of the test
goalsT Gr is 100%, and transition coverage criterion is 1.Test goal used to generate test case is chosen
stronger than state coverage criterion, so the coverage of according to the hardness of its corresponding CNF,
TGs is also 100%. Our Method (LP) represents that which is better than the random method. It requires
extend the loop in the test cases generated by our method less model checking calls and reduces more test cases.

We propose an approach to reduce the model checking-
based test generation using satisfiability. The experiatent
results show that: it has good reduction effectiveness, and
can improve the performance of the test generation based
on model checking, it also can reduce the expense required
in the following test execution.

The features of our method are as follows:

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1L, 89-96 (2015) ywwww.naturalspublishing.com/Journals.asp %N S'r’)r 95

2.Test goals covered by the test case are checked by tHe] P. E. Ammann, P. E. Black, W. Majurski. Using Model
unsatisfiability of the CNF which is the conjunction of Checking to Generate Tests from Specifications. In:
the test case with each test goal. LTL Rewriting Proc. of the 2nd Intl Conf. on Formal Engineering
method uses LTL Rewriting tool to rewrite each LTL ~ Methods(ICEFM’'98). IEEE Computer Society, 1998, 46-54.
formula. The rewriting operation is performed in each [7] G. Fraser, F. Wotawa. Property relevant software tgstiith
state, which may have less efficiency when the test Model-checkers. SIGSOFT Softw. Eng. Notes, 20BB]1-
cases are long. While the satisfiability of the CNF is __ 10. o
solved by SAT tool, which has efficient algorithms. [8] G. Hamon, L. de Moura, and J. Rushby. Generating faffluent
Even for long test cases, the corresponding CNFs can test set with a quel (?hecker. In: Proc. of the 2nd Int'l Conf.
be solved quickly. on Software Engineering and Formal Methods(SEFM 2004).

3.Bounded model checking is used to generate tes., 'CoC COMPUter Society, 2004: 261-270.
cases. Bounded model checking can generate th 1P If..Aerannl, P'tE'tBl?Ck'fTp,ecg'Cat'onf'btised‘lfhovﬁgnge
shortest counterexample, so the length of test suite metric fo evaluate fest Set m. Froc. of the

- Int'l Symposium on High-assurance Systems Engineering
gee”erff.‘;zd by our method is shorter than the LTL (jasE99). IEEE Computer Society, 1999: 239-248,
writing.

. . . [10] G. Fraser, F. Wotawa. Using LTL Rewriting to Improve the
4.0ur method has better reduction effectiveness, while performance of Model Checker-Based Test Case Generation.

the coverage of the test goals and the error detection |n: proc. of the 3rd Int'l Workshop on Advances in Model-

capability are not declined. Based Testing (AMOST 2007). ACM Press, 2007: 64-74.
Based on the work in this paper, our future work [11] H. W. Zeng, H. K. Miao. Opitimization of Model Checking-
includes: Based Test Generation. Journal of Computer -Aided Design

. & Computer Graphics, 20123: 496-502.
1.When we use bounded model checking to generate teﬂZ] M. O. Markus, S. David, and S. Bernhard. Model Checking

cases, we will research how the bound k can affectthe A Tytorial Introduction. In: A. Cortesi, G. Fil eds. Proc. of
reduction effectiveness, the coverage of test goals and the 6th Int'l Symposium on Static Analysis (SAS'99). Berlin

the error detection capability. _ Springer-Verlag, 1999: 330-354.
2.Using an industrial application to validate our method. [13] H. Keijo, N . Ilkka. Bounded LTL Model Checking with
3.To implement a prototype tool. Stable Models. In: T. Eiter, W. Faber and M. Truszczyski

eds. Proc. of the 6th Int'l Conf. on Logic Programming and

Nonmonotonic Reasoning (LPNMR 2001). Berlin: Springer-
Acknowledgement Verlag, 2001: 200-212.

[14] C. Edmund, B. Armin, R. Richard, and Y. S. Zhu.

This work is supported by the National Natural Science Bounded Model Checking Using Satisfiability Solving.
Foundation of China (NSFC) under grant Formal Methods in System Design, 20Q8; 7-34.
No0.60970007,N0.61073050 and No0.61170044; and thg15] B. Dutertre The Yices SMT Solver.
Shanghai Leading Academic Discipline Project of China http://yices.csl.sri.com/documentation.shtml
under grant No0.J50103.

Gongzheng Lu received
the Master degree in
Computer Software and
Theory from Soochow
University, Suzhou, China,
in 2006. Now study the Ph.D.
of Computer Application

References

[1] G. Fraser, F. Wotawa, and P. Ammann. Issues in using model
checker for test case generation. The Journal of System and
Software, 200982: 1403-1418.

[2] A. Gargantini, C. Heitmeyer. Using Model Checking to
Generate Tests from Requirements Specifications. ACM
SIGSOFT Software Engineering Notes, 1999,146-162. Technology in Shanghai

[3] M. P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj and J University from 2010. He is
Gao. Auto-Generating Test Sequences Using Model Checker: currently a lecturer in Suzhou
A Case Study. In: A. Petrenko and A.Ulrich eds. Proc. of \cational University. His research interests include
the 3rd Int'l Workshop on Formal Approaches to Software software testing and model checking.

Testing. Berlin: Springer-Verlag, 2003. 42-59.

[4] S. Rayadurgam, M. P. Heimdahl. Coverage based Test-Case
Generation using Model Checkers. In: Proc. of the 8th
Annual IEEE Int'l Conf. on Workshops on the Engineering
of Computer Based Systems (ECBS 2001). IEEE Computer
Society, 2001. 83-91.

[5] P. Ammann, W. Ding, D. Xu. Using a Model Checker to Test
Safety Properties. In: Proc. of the 7th IEEE Int'l Conf. on
Engineering of Complex Computer Systems (ICECCS 2001).

IEEE Computer Society, 2001, 212-221.

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://yices.csl.sri.com/documentation.shtml

G. Z. Lu et. al. : Reduction of Model Checking-based Test...

Honghao Gao received

Huaikou Miao received the Master degree in
the Master degree in Computer Science from
Computer Application —— Zhejiang University,
Technology from Shanghai ¢ 3 Hangzhou, China, in 2009.
University of Science and = He is a member of the China
Technology, Shanghai, China, \ 7 Computer Federation, IEEE

in 1986. He is currently
a professor in Computer
Engineering and Science at

Shanghai University, China. Science of Shanghai University and his research interests

and ACM. Currently he is a
Ph.D. candidate in the School
of Computer Engineering and

His research interests include software formal methodsnclude formal method and model checking.
and software engineering.

(@© 2015 NSP
Natural Sciences Publishing Cor.

	Introduction
	Related Works
	Background
	Using Satisfiability to Reduce Test Suite
	Experimental Study
	Conclusions and future work

