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Abstract: Çinlar velocity field which is based on eddies of rotationalform is a promising subgrid velocity model for its use in large
eddy simulation (LES). This has been confirmed by data analysis of high frequency radar observations. The energy spectrum plays
a central role for representing the subgrid scales in filtered Navier-Stokes equations used in LES. We consider a truncated Gamma
distribution for eddy sizes to replicate the subgrid scale energy spectrum analytically. Kolmogorov proposed a form ofthe spectrum
that extends to the inertial scale. Lundgren vortex has a spectrum involving an exponential function and has been used inLES. Çinlar
velocity spectrum which is based on the truncated Gamma distribution indicates a good match with the spectrum estimatedfrom real
data. The results of this study can be used for designing a method for representing the small scale structures in LES by modeling the
subgrid stress.
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1 Introduction

The turbulence theory examines continuous change of
eddy sizes. The largest eddies break down to the smaller
eddies which further break down to even smaller ones.
This process is defined as the kinetic energy transfer from
the large-scale flow to the smaller. The turbulent flow is
determined by Navier-Stokes equations. However, exact
solution of these equations is still impossible. The most
precise approach to solve the full Navier-Stokes equations
is direct numerical simulation (DNS), which requires to
represent all the scales from the smallest to the largest.
Clearly, this is expensive in time and computer capacity.
An efficient approach is large eddy simulation (LES)
based on numerical solution of larger eddies while only
modeling the smaller ones. In LES, a filtering operation is
used to separate the large scales (low frequency) from
small scales (high frequency). Then, the subgrid stress
which remains unresolved is modeled by various
approaches.

LES has been introduced by Smagorinsky [42] firstly
for simulating atmospheric and oceanic models. Based on
Boussinesq hypothesis for energy transfer and turbulence
proposed by Richardson [38] and Kolmogorov [24] to
subgrid modeling, Smagorinsky’s subgrid model was the

first to use eddy viscosity for subgrid stress. Lilly [29,30]
and Deardorff [18] were among the first to further develop
and use the LES models. Leonard [27] introduced the
filter function form used today. In 1970’s Kraichnan [26]
developed an eddy viscosity concept for spectral space.
Bardina et al. [3] developed scale similarity model which
is based on the assumption that structure of the smallest
resolved scales is similar to structure of the largest
unresolved scales. In 1991, Germano, Piomelli, Moin and
Cabot [22] introduced dynamic eddy viscosity model in
which the eddy viscosity coefficient is computed
dynamically. Domaradzki and Saiki [19] focused on the
estimation of the unresolved velocity field for LES.
Several variations of these subgrid scale models have also
been proposed [34,40].

Different from the above models, Misra and Pullin
[35] developed a subgrid model based on stretched
vortices. The orientation of the vortices is determined by
the resolved scales and randomized parameters. The
origin of this model is the study of Lundgren [31] where
it has been shown that the energy spectrum of spiral
vortex structures includes an exponential function as well
as the scalingk−5/3. In 1941, Kolmogorov [24] proposed
the asymptotic form of energy spectrum of
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incompressible turbulent flow as

E (|k|) = ε2/3|k|−5/3F(η |k|) (1)

for large wavenumbersk whereε is dissipation rate per
unit mass, η is called Kolmogorov length with

η =
(

ν3/ε
)1/4

and ν is viscosity. In the inertial range,
this should reduce to the formE (|k|) = Cε2/3|k|−5/3

where C is a constant. Townsend [44], Corrsin [17],
Tennekes [43] and Saffman [39] have revealed specific
models of fine-scale structure. Burger has given stretched
vortex solutions of the 3D Navier-Stokes (and Euler)
equations, and Townsend [44] has used this solution in
the turbulence application based on a random collection
of vortex tubes and vortex sheets. The stretched spiral
vortex solution for fine scale structure proposed by
Lundgren [31] is based on Burgers’ vortices and
Townsend collection. The resulting energy spectrum of
small scale structure is given by

E (|k|) =Cε2/3|k|−5/3exp

[

−2ν
3a

|k|2
]

(2)

whereC is a universal constant anda is the strain rate.
Chung [13] has first used Lundgren energy spectrum for
the stretched-vortex subgrid stress model.

In this paper, our aim is to derive the small scale
energy spectrum of Çinlar velocity field which is also
based on vortex structures. It has been studied in a series
of papers [6,7,8,9,10,11] as a model for small to medium
scale turbulent flow. In Çağlar [9], Çinlar velocity field is
validated with high frequency radar data. Its parameters
have been statistically estimated and it has been shown to
represent the Eulerian dynamics in approximately an
11kmx11km area very well. This scale would correspond
roughly to a single grid in LES and would remain
unresolved if not modeled. Therefore, Çinlar velocity has
been put forward as a promising subgrid velocity field.
The compliance with the Kolmogorov−5/3 rule of the
energy spectrum of Çinlar velocity field has also been
investigated for the inertial range [10].

The results of the present work are useful for
designing a subgrid algorithm for LES based on the
energy spectrum, which is used to approximate the
subgrid stress. The ultimate aim is to link the parameters
of the spectrum to the resolved scales in order to solve the
filtered equations of motion. It can be argued that
consideration of only a second order quantity such as the
spectrum makes the result indistinguishable from a
Gaussian velocity field. However, the subgrid stress also
involves the covariance of the resolved velocity with the
subgrid velocity. Using a subgrid velocity consistent with
real data makes a difference at this stage. Çinlar velocity
model originates from observed structures of eddies and
randomness in the ocean at small scales. In particular, the
statistics of velocity increments and velocity gradients
indicate that small scale turbulence is highly
non-Gaussian [20, Sec.8], [28]. With a Gaussian velocity

field, the third moment of the velocity increments would
vanish, contradicting with the 4/5 law proved by
Kolmogorov [20]. Çinlar velocity captures negative
skewness predicted by this law. Let the velocity increment
be defined byδu‖ = (u(x+ r)−u(x)) · r

|r| . The third order
structure function of Çinlar velocity field is found as

E(δu‖
3) =

λE(a3)

cΓB/ζ (θ )ζ θ

∫

R2

∫ B

0
dzdbbθ−1e−b/ζ

·

[(

z1r2− z2r1

|r|

)(

m(|(z+ r)/b|)
|z+ r|

−
m(|z/b|)

|z|

)]3

the derivation of which is given in Appendix. For this
expression to be negative, the distribution ofa can be
chosen negatively skewed so thatE(a3) is negative. This
follows because the integral turns out to be positive
except for very small values ofr corresponding to much
smaller scales than the inertial range.

We investigate the energy spectrum for small scale
structures by using a Gamma distribution for eddy radius.
Since Gamma density has both a power term and an
exponential term, it is considered as a comparable choice
for generating an energy spectrum with exponential
function as in (2) for Lundgren vortex. In fact, a widely
proposed form forE (|k|) is

E (|k|)∼ (|k|η)α exp(−β (|k|η)n) (3)

in the dissipation range [33]. The power of |k| is not
necessarily−5/3 in (3) since the spectrum may not have
an inertial range as in Burger’s vortex tube which has a
spectrum∼ |k|−1exp(−β (|k|η)2) [31]. We show that our
energy spectrum has a similar form to (1) as suggested by
Kolmogorov while the functionF remains implicit as

E (|k|)∼ |k|−θ−4F(B|k|)

where θ > 0 is the shape parameter of the Gamma
distribution andB plays the role of Kolmogorov length
scale. SinceF remains unspecified, the power of|k| is not
necessarily−5/3. Therefore, we use the spectrum of real
subgrid velocity data for a numeric fit ofF. As a result, a
Gamma distribution for eddy sizes is validated due to a
close fit in the wavenumber space. More precisely, a
truncated Gamma distribution is used for the subgrid
scale under consideration. The parameters of the
distribution are estimated directly from the radius data.

There has been considerable debate about the values
of the parametersα, β andn of (3) in the literature. The
energy spectrum with respect ton has been examined by
many scientists. Townsend [44] and Novikov [36]
suggestedn = 2 at scales much smaller thanη , the
dissipation length scale [33]. There are only few studies
for determiningα andβ . Most models suggestα =−5/3
for lower wavenumber because of its consistency with
Kolmogorov’s scaling. On the other hand, Kraichnan [25]
and Orszag [37] have predictedα = 3. As a result of
numerical studies, Kida et al. [23] found thatα < 0. Kida
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et al. argue that the negative value forα is connected to
energy transfer in the dissipation range. In particular,
Martinez et al. [33] have investigated the possible values
of α and β for high frequency depending on|k|η by
high-resolution, direct numerical simulations of
three-dimensional incompressible Navier-Stokes
equations. It has been found thatβ is fairly constant at a
value between 5 and 6, except for|k|η ≈ 4. When
|k|η ≈ 4, β drops to about 4. Forα, all results obtained
from the range|k|η < 3 are consistently negative, within
the range−1 to −2. Near the range|k|η ≈ 4, α drops to
about−6, then increases to positive values and remains
fairly constant at a value between 4 and 6 when
8< |k|η < 10.

The paper is organized as follows. In Section 2, a
review of Çinlar velocity field is given. In Section 3, the
energy spectrum of the fine scales is derived using a
truncated Gamma distribution. Real subgrid scale velocity
data are studied to validate the Gamma model in Section
4. Finally, the conclusions are given in Section 5.

2 Subgrid Velocity Model

In this section, we review flows generated by Çinlar
velocity fields. The velocity field is composed of eddies
randomized through their types and arrival times. They
decay exponentially in time to form a stationary,
Markovian velocity field. The motivation comes from
vortex development and decay observed in the ocean [41].
The flow is incompressible and isotropic due to the form
of the eddies. In contrast to Brownian flows where the
Eulerian velocity is delta-correlated, Çinlar velocity field
itself is Markovian, which implies medium to long-term
correlated flows. In this paper, we consider the
generalized form in [10] where the decay rate of each
eddy depends on its type.

Let υ be a deterministic velocity field onR2 called the
basic eddy, and letQ = R

2×R× (0,∞) be an index set.
Eddies of different sizes and amplitudes forq∈ Q , x∈R

2

are obtained by

υq(x) = aυ
(

x− z
b

)

, q= (z,a,b)

whereq represents the type of an eddy and includes its
centerz in space, its amplitudea as well as its radiusb.
Let N be a Poisson random measure on the Borel sets of
R×Q with mean measure

µ(dt,dq)≡ µ(dt,dz,da,db) = λdtdzα(da)β (db)

whereλ is the arrival rate per unit time-unit space, andα
and β are probability distributions. The arrival
(appearance) timet of an eddy, its center, amplitude and
radius are all randomized withN. By the superposition of
these eddies decaying exponentially in time with rate

cq(x) = c

∣

∣

∣

∣

x− z
b

∣

∣

∣

∣

2γ

for q = (z,a,b) and constantc > 0, a stationary velocity
field u is constructed as

u(x, t) =
∫ t

−∞

∫

Q
N(ds,dz,da,db)

· exp
(

−c|(x− z)/b|2γ (t − s)
)

aυ
(

x− z
b

)

wherex∈R
2, t ∈R, c> 0, γ > 0, as the generalized form

of Çinlar velocity field [10].
We consider an incompressible and isotropic flow in

R
2. Therefore, the basic eddyυ = (υ1,υ2) is taken as a

rotation around 0 with magnitudem(r) at distancer from
0, wherem : R→R+ is continuous and has support[0,1].
For example, m(r) can be taken as
m(r) = (1 − cos2πr)/2, 0 ≤ r ≤ 1, and m(r) = 0
otherwise, as in [6]. The specific equations forυ are

υ1 (x) =−
x2

r
m(r), υ2 (x) =

x1

r
m(r)

wherex= (x1,x2) andr = |x| ∈ [0,1]. Then, every eddy is
a rotation, since it is translation, amplification and dilation
of υ . Although this form of Çinlar velocity field onR2 has
been extensively studied, it can be extended toR

3 when
the basic eddy is chosen in three dimensions. A simple
choice would be to take the support of the basic eddy as
the unit sphere inR3, in analogy with the unit disk used in
two dimensions, where the planar motion can be taken as
a rotation.

The correlation tensor of the velocity field is computed
as

Ri j (x, t) =
λ
c

∫

R2
dz

∫

R

α(da)a2 (4)

·

∫

R+
β (db)

b2exp
(

−c|z|2γ |t|
)

|z|2γ + |z+ x
b|

2γ υi (z)υ j

(

z+
x
b

)

for x∈R
2 andt ∈R, where the time integral has already

been taken. In [10], a piecewise Pareto distribution is
chosen for the eddy radius as

β (db) =

{

δ lδ
1 b−δ−1db if l1 ≤ b≤ l2

θ lδ
1 lθ−δ

2 b−θ−1db if b≥ l2

whereδ ,θ > 0 are the parameters to capture power-law
dependence, andl1, l2 > 0 serve as the cutoff scales. Then,
the energy spectrum is obtained as

E (|k|) =
λ δ lδ

1Ea2

4πc
|k|δ−3

∫ |k|l2

|k|l1
dbb3−δ f (b)

+
λ θ lδ

1 lθ−δ
2 Ea2

4πc
|k|θ−3

∫ ∞

|k|l2
dbb3−θ f (b)

where

f (b|k|) :=
2

∑
j=1

∫

R2
dzeibk·zυ j(z)

∫

R2
dxe−ibk·x υ j(x)

|z|2γ + |x|2γ
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and is compatible with Kolmogorov−5/3 rule in the
inertial range withδ = 4/3 andγ = 1/3.

In this paper, we choose the distributionβ of b as a
right-truncated Gamma distribution [21] given by

β (db) =
bθ−1exp(−b/ζ )

ΓB/ζ (θ )ζ θ db, 0< b< B (5)

where θ > 0 and ζ > 0 are the shape and scale
parameters, respectively, andΓB/ζ (θ ) is the incomplete
Gamma function with parameterθ and integration
bounds from 0 toB/ζ . It follows that only small scale
eddies up to some cutoffB are considered. Gamma
distribution, which involves an exponential term in
contrast to Pareto, is used for the purpose of capturing an
energy spectrum of the form (1) possibly involving an
exponential term like the vortex tube and Lundgren
vortex. Moreover, a truncated Gamma distribution is
indicated by an analysis of real data in [9, Fig.6]. We now
substitute (5) in (4) to get

Ri j (x, t) =
λ

cΓB/ζ (θ )ζ θ

∫

R

α (da)a2
∫

R2
dzexp

(

−c|z|2γ |t|
)

·

∫ B

0
dbbθ+1exp(−b/ζ )

υi (z)υ j
(

z+ x
b

)

|z|2γ +
∣

∣z+ x
b

∣

∣

2γ . (6)

3 The Energy Spectrum

The Fourier transformE of R is called the spectral density
tensor given by

Ei j (k,w) =
1

(2π)2

∫

R

∫

R2
exp(−i (k ·x+wt))Ri j (x, t)dxdt .

Turbulent energy per unit mass is defined by

1
2

∫

R2
(E11+E22)dk =

1
2

∫

R2

2

∑
j=1

1
4π2

·

∫

R2
exp(−ik ·x)Rj j (x,0) dxdk

and is equivalent to

1
2

∫

R2

2

∑
j=1

1
4π2

∫

R2
exp(−ik ·x)Rj j (x,0) dxdk

=:
∫ ∞

0
E (|k|) d |k|

whereE (|k|) is the energy spectrum and a function of only
|k| due to isotropy.

We use the truncated Gamma distribution (5) to find
the form of the turbulent energy spectrum. By puttingb′ =

b/ζ , we get
∫

R2
exp(−ik ·x)Rj j (x,0) dx=

λE
(

a2
)

ζ 2

cΓB/ζ (θ )

∫

R2
dzυ j (z)

·
∫ B/ζ

0
dbbθ+1exp(−b)

∫

R2
dx

exp(−ik ·x)υ j

(

z+ x
bζ

)

|z|2γ +
∣

∣

∣
z+ x

bζ

∣

∣

∣

2γ

from (6). By rearranging the integrals and making a change
of variablex′ = z+ x

bζ , we find
∫

R2
exp(−ik ·x)Rj j (x,0) dx=

λE
(

a2
)

ζ 4

cΓB/ζ (θ )

·

∫

R2
dzexp(ibζk ·z)υ j (z)

∫ B/ζ

0
dbbθ+3exp(−b)

·
∫

R2
dx

exp(−ibζk ·x)υ j (x)

|z|2γ + |x|2γ .

Then, we get the energy spectrum as

E (|k|) =
λE

(

a2
)

ζ 4

8π2cΓB/ζ (θ )

∫ B/ζ

0
dbbθ+3exp(−b)

·
∫

R2
dzexp(ibζk ·z)

·
∫

R2
dx

exp(−ibζk ·x)(υ1 (x)υ1 (z)+υ2(x)υ2 (z))

|z|2γ + |x|2γ .

In the rest of this section, we derive the asymptotical
form of the energy spectrumE for large |k|, as large|k|
values correspond to subgrid scales. We first do a radial
transform as follows
k = (k1,k2) = (|k|cosα, |k|sinα) (7)

x = (x1,x2) = (|x|cosϕ , |x|sinϕ)

z= (z1,z2) = (|z|cosψ , |z|sinψ)

to obtain

E (|k|) =
2

∑
j=1

λE
(

a2
)

ζ 4

8π2cΓB/ζ (θ )

∫ B/ζ

0
e−bbθ+3db

·

∫ 2π

0
dψ

∫ 1

0
d|z|

∫ 2π

0
dϕ

·

∫ 1

0
d |x|exp(iζb|k| |z|cos(ψ −α)) |z|υ j (|z| ,ψ)

· exp(−iζb|k| |x|cos(ϕ −α)) |x|
υ j (|x| ,ϕ)
|x|2γ + |z|2γ .

The following expansion of the exponential function with
Bessel functions will be useful. We have

exp(izcos(θ )) =
∞

∑
n=−∞

inJn(z)exp(inθ )

=
∞

∑
n=0

Jn(z)
[

inexp(inθ )+ (−1)n i−nexp(−inθ )
]
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sinceJ−n(x) = (−1)nJn(x). Using (4) and substituting (7),
we get

E (|k|)=
λE

(

a2
)

ζ 4

8π2cΓB/ζ (θ )

∫ B/ζ

0
e−bbθ+3db

∫ 1

0
d |z|

∫ 2π

0
dψ

·

∫ 1

0
d |x|

∫ 2π

0
dϕm(|z|)m(|x|) |z| |x|

cos(ψ −ϕ)
|x|2γ + |z|2γ

·
∞

∑
n=0

Jn (ζb|k||z|)
[

inein(ψ−α)+(−1)n i−ne−in(ψ−α)
]

·
∞

∑
m=0

Jm(ζb|k||x|)
[

imeim(π−(ϕ−α))

+ (−1)m i−me−im(π−(ϕ−α))
]

.

After algebraic computations and in view of
trigonometric properties, the above expression is
simplified due to orthogonality of sine and cosine
functions. Only the term corresponding tom= 1, n = 1
remain as

E (|k|) =
4π2λE

(

a2
)

ζ 4

cΓB/ζ (θ )

∫ B/ζ

0
e−bbθ+3db

·

∫ 1

0
m(|z|)|z|J1 (ζb|k||z|) d|z|

·

∫ 1

0
m(|x|) |x|

J1 (ζb|k||x|)
|x|2γ + |z|2γ d|x| .

The Bessel functionJ1 has the following asymptotic form
as|k| → ∞ [1]

J1 (|k|)∝
1

√

2π |k|

[

expi
(

|k|−
1
2

π −
1
4

π
)

(8)

+ exp−i
(

|k|−
1
2

π −
1
4

π
)]

.

Using (8), we compute the product of Bessel functions as

J1 (ζb|k||z|)J1 (ζb|k||x|)≈
1

πζb|k|
√

|x||z|

· [−sin(ζb|k|(|x|+ |z|))+ cos(ζb|k|(|x|− |z|))] .
Based on the above computations, we get

E (|k|) ∝
4πλE

(

a2
)

ζ 3

c|k|ΓB/ζ (θ )

∫ B/ζ

0
e−bbθ+2db

·

∫ 1

0

∫ 1

0
m(|z|)m(|x|)

(|x||z|)1/2

|x|2γ + |z|2γ

·[−sin(ζb|k|(|x|+ |z|))+ cos(ζb|k|(|x|− |z|))] d|z|d|x|.
Making a change of variable asζb|k|= b′, yields

E (|k|) ∝
4πλE(a2)

cζ θΓB/ζ (θ ) |k|θ+4

∫ B|k|

0
e−b/(|k|ζ )bθ+2db

·

∫ 1

0

∫ 1

0
m(|z|)m(|x|)

(|x||z|)1/2

|x|2γ + |z|2γ

· (−sin(b(|x|+ |z|))+ cos(b(|x|− |z|))) d|z|d|x|.

After rearrangement, we have

E (|k|) ∝
4πλE

(

a2
)

|k|−θ−4

cζ θ ΓB/ζ (θ )

∫ B|k|

0
e−b/(|k|ζ )bθ+2 f (b) db

where

f (b) =
∫ 1

0

∫ 1

0
m(|z|)m(|x|)

(|x||z|)1/2

|x|2γ + |z|2γ (9)

(−sin(b(|x|+ |z|))+cos(b(|x|− |z|))) d|z|d|x| .

The Maclaurin series of exponential function yields

E (|k|)∝
4πλE(a2)|k|−θ−4

cζ θ ΓB/ζ (θ )

∫ B|k|

0

∞

∑
n=0

(−b/(|k|ζ ))n

n!
bθ+2 f (b)db

=
4πλE(a2)|k|−θ−4

cζ θ ΓB/ζ (θ )

∞

∑
n=0

(−1)n

n!|k|nζ n

∫ B|k|

0
bn+θ+2 f (b)db .

Using integration by parts, we getE (|k|) to be proportional
to

4πλE(a2)|k|−θ−4

cζ θ ΓB/ζ (θ )

[

∞

∑
n=0

(−1)n

n!|k|nζ n (B|k|)
n+θ+2

∫ B|k|

0
f (b)db

−
∞

∑
n=0

(−1)n

n!|k|nζ n (B|k|)
n+θ+1(n+θ +2)

∫ B|k|

0
f1(b)db

+
∞

∑
n=0

(−1)n

n!|k|nζ n (B|k|)
n+θ (n+θ +2)(n+θ +1)

∫ B|k|

0
f2(b)db

−
∞

∑
n=0

(−1)n

n!|k|nζ n (B|k|)
n+θ−1(n+θ +2)(n+θ +1)(n+θ )

·

∫ B|k|

0
f3(b)db+

∞

∑
n=0

(−1)n

n!|k|nζ n (B|k|)
n+θ−2(n+θ +2)

· (n+θ +1)(n+θ )(n+θ −1)
∫ B|k|

0
f4(b)db− . . .

]

where suffixes off denote the number of its indefinite
integrations with respect tob [2, pg.109]. Rearranging
gives

4πλE(a2)|k|−θ−4

cζ θ ΓB/ζ (θ )

[

(B|k|)θ+2
∞

∑
n=0

(−1)n

n!ζ n Bn
∫ B|k|

0
f (b)db

−(B|k|)θ+1
∞

∑
n=0

(−1)n

n!ζ n Bn(θ +n+2)
∫ B|k|

0
f1(b)db

+(B|k|)θ
∞

∑
n=0

(−1)n

n!ζ n Bn(θ +n+2)(n+θ +1)
∫ B|k|

0
f2(b)db

−(B|k|)θ−1
∞

∑
n=0

(−1)n

n!ζ n Bn(θ +n+2)(n+θ +1)(n+θ )

·
∫ B|k|

0
f3(b)db. . .

]

.
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It follows that the energy spectrum has the form

E (|k|) ∝
4πλE(a2)

cζ θΓB/ζ (θ )
|k|−θ−4F(B|k|) . (10)

Since f (b) given in (9) is a periodic and bounded function
of b due to cosine and sine functions, the integrals
involving f (b) are bounded in the expansion ofF(b|k|)
given above. We take them approximately as constants for
large|k| and write the spectrum as

E (|k|) ∝ C1|k|
−2−C2|k|

−3+C3|k|
−4−C4|k|

−5 . . . (11)

4 Comparison with an Empirical Energy
Spectrum

In this section, we investigate the fit of the theoretical
energy spectrum to the empirical spectrum obtained from
real data. As for the data set, we use Eulerian observations
along the Florida coast which have been obtained by
using a radar capable of resolving scales of 250m in space
and 20 minutes in time [41]. These measurements cover a
region bounded by approximately 11km x 11km during
28 days. The data have been subsequently interpolated to
a spatial resolution of 125m and temporal resolution of 15
min in [32] yielding a 91x91 grid. The Eulerian
observations reveal eddies forming and decaying over
time. Eddies which are between about 10 and 500 km in
diameter are known in oceanography as mesoscale eddies
and sometimes they are specified as 50− 200km [16].
Considering these orders of magnitude, sub-mesoscale
(<10-50 km) can be defined as small scale structures in
the ocean. Therefore, Kolmogorov dissipation length
scale is in the order of 10km. The inertial range is
between 50−200km and the integral length scale can be
taken to be 200km or a value up to 500km. Our data
obtained from an area of 11km x 11km pertain to the
dissipation range. In the data set, the mean flow speedU
is about 1m/s. For computing the Reynolds numberRe,
the characteristic length scale can be taken asL ≈ 103m
since the radius of the sub-mesoscale eddies in the data
set is in the order of 1km. As a result, we have
Re= UL/ν ≈ 109 whereν is kinematic viscosity and its
typical value in ocean isν = O(10−6) [12].

The solenoidal part of the interpolated data set has
been filtered and Çinlar velocity field is fitted as a model
in [9]. In particular, the eddy radius distribution is found
to be skewed to the right as in a Gamma distribution.
However, the highest radius is constrained to 5km in the
estimation procedure in order to stay approximately in the
spatial domain of the observations. More recently,
correlation analysis is performed using the same data set
in [11] where the empirical energy spectrum has been
computed. This spectrum is itself a high frequency
spectrum, relative to LES scales where a single grid
corresponds to the whole observation area of the available
data.
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Fig. 1: Energy spectrum of first 14 days marked with * and
estimated spectrum shown as solid lines, in two pieces of the
wavenumber range
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Fig. 2: Energy spectrum of last 14 days marked with * and
estimated spectrum shown as solid lines, in two pieces of the
wavenumber range

The energy spectrum has been obtained by a fast
Fourier transform of the Eulerian data for the first and
second 14-day periods [11]. Since these two parts are
found to have different statistical properties in [9], they
are analyzed separately. The least squares curve fitting
function of MATLAB is employed for fitting (11) to the
empirical energy spectrum. A good match is obtained
when the range of the wave numbersk are considered in
two pieces. The fitted functions as well as empirical
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energy spectrum are plotted in Figures1 and2 for the first
and second 14 day periods, respectively. The cutoffB is
taken as 5km, which is about half the length of the
observation domain 11kmx11km [9]. The residual norm
as reported by least squares function of MATLAB is
given in Table1 for various number of terms used in the
expansion ofF(b|k|). The residual norm is defined as
∑n

i=1(y(|k|i)− yi)
2 whereyi , i = 1, . . . ,n are the observed

values of the empirical spectrum, andy(|k|i) is the
predicted spectrum at wavenumber|k|i . In view of Table1
results, seven terms are used from expansion (11). Note
that the residual norm is large in magnitude as the
spectrum values are in the 105 to 106 range. It follows
that the relative error would be in the magnitude of 10−1

to 10−2.

Table 1: Residual norms as a function of number of terms used
in the expansion ofF(b|k|)

No. First 14 days Last 14 days
of terms lowerk higherk lower k higherk

5 3.55108 3.46108 2.40108 3.97108

6 1.03108 7.0107 2.41108 2.08108

7 3.13107 4.26107 2.09108 4.12108

8 1.051010 2.46107 6.39108 3.51108

9 7.07109 1.09107 9.97109 1.67108

The function (11) that is fit to empirical spectrum is
not informative for θ and ζ . The parameters of the
distribution (5) can be estimated from the radius data
directly. The histogram of eddy radius data was found to
be right skewed with a peak at 5km in [9, Fig.6] since the
estimation was performed with this cutoff. The peak at
5km can be interpreted as the unobserved larger eddies
affecting the subgrid scales. Therefore, a truncated
Gamma distribution is well indicated by real HF radar
data for eddy radius. The eddy radius histogram after
truncation of the peak at 5km in [9, Fig.6] is shown
together with a right-truncated Gamma density fit in
Figure 3. For the fitted density, the parameters are
estimated asθ = 2.76 and ζ = 1.64 using maximum
likelihood estimation. We have formed and solved the
likelihood equations with fsolve function of MATLAB. In
Figure (3), the density fit is better for the smaller radii
which form the dissipation range. A mixture distribution
where a both left and right-truncated Gamma distribution
for b > 2km could fit better to the right hand tail of the
histogram. In fact, this type of two-piece fit would be
consistent with the estimation of the spectrum in two
pieces in Figures1 and 2. Since the smaller scales are
aimed, the estimateθ = 2.76 is valid for the dissipation
range. This impliesE (|k|) ∝ C|k|−6.76F(B|k|) from (10).
It is comparable toα value being about -6 in (3).
However, F(B|k|) remains implicit and might involve
powers of |k|. We can compare the coefficients of the

function in (11), which is fit to the empirical spectrum,
with their numerically evaluated counterparts in (10). We
use the estimated values forθ , ζ , given above, and those
of λ , c, and the second moment ofa given in [9] together
with B= 5km. The results are given in Table
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Fig. 3: Right-truncated Gamma density fit to the density
histogram of eddy radius from HF radar data after truncationof
5km and above

Comparison of our results with the widely used
spectrum (3) would be of interest. Sincen = 2 is
suggested for dissipation scales, we fit onlyα and the
scale parameterβ in (3). This form covers Lundgren
vortex (2) with α = −5/3. The results for the first and
second half of the observation period are given in figures
4 and5, respectively, where the estimated powerα for the
higher frequencies are−1.11 and−0.68. Although the fit
is somewhat less satisfactory for lower|k| in Figure4, it
is good for higher wavenumbers, which are of interest, in
both figures. Therefore, model (3) could be used as well
for the spectrum obtained from our data.

Table 2: Comparison of the coefficientsC1 andC2

First 14 days Last 14 days
Eq (10) Numerical fit Eq (10) Numerical fit

C1 7.12108 7.94108 1.71109 6.26108

C2 6.301011 6.151010 7.561011 4.231010

Using MATLAB, the first two coefficientsC1 andC2 in
(10) are computed and compared with the values obtained
from the numerical fit of (11) for two different periods,
and lower and higherk within these periods. The results
are given in Table2 for only higher wave numbersk since
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Fig. 4: Energy spectrum of first 14 days marked with * and
estimated spectrum from Equation (3) shown as solid lines
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Fig. 5: Energy spectrum of last 14 days marked with * and
estimated spectrum from Equation (3) shown as solid lines

the values from computation and function fit are closer in
this case as consistent with the approximation being for
largek. The parameter values in (10) are taken from [9]
with m(r) = (1− cos2πr)/2 as in [6].

5 Conclusions and Outlook

In this paper, we have derived the energy spectrum of
generalized Çinlar velocity field which was shown to
represent the Eulerian velocity well in the subscales and

put forward as a candidate of a subgrid model for LES in
[9]. We have shown that the velocity field, which is based
on rotational vortex structures, can capture the second
order properties of the subgrid scale with its energy
spectrum. It represents the empirical spectrum obtained
from real data well and is comparable to the widely used
form of energy spectrum for small scales.

We use a right-truncated Gamma distribution to find
the form of the spectrum. For large|k|, it has the form

E (|k|)∼ |k|−θ−4F(B|k|) .

Although our study started with the motivation that
F(b|k|) could be a mixture of power and exponential
functions as in the widely used form
(|k|η)α exp(−β (|k|η)n) of the spectrum, we have found
an expansion forF(b|k|), which remains implicit and
must be evaluated numerically. A good match is obtained
for two parts of the range of the wave numbersk. Both
parts are in the subgrid scale for LES, while the higher
wavenumbers represent the dissipation range. The
parameterθ is estimated directly from the radius data. By
fitting a truncated Gamma density, we have found the
shape parameterθ to be 2.76 by maximum likelihood
estimation. The widely used form of the spectrum in the
literature also fits quite well to the empirical spectrum
even whenn= 2 is fixed as generally accepted.

Our results imply that a right-truncated Gamma
distribution is plausible for the eddy radius. Since the
spectrum does not have an inertial range, the larger eddies
at supergrid scales may have a different distribution. A
Pareto distribution was used in [10] to replicate -5/3
scaling.

Lundgren vortex [31] is a stretched spiral vortex and
has been successfully used as a subgrid model for LES
[35]. Çinlar velocity field being composed of randomized
rotational vortices is a more complete description of the
subgrid dynamics. It is a stochastic process which
captures eddy arrival and decay in contrast to the static
randomness of the parameters of the stretched vortex. In
future work, we aim to take advantage of these features
for devising a comprehensive subgrid scale model in view
of the prior study [35]. From a statistical point of view,
the covariance of the subgrid velocity with the resolved
velocity in each step of LES can be estimated to represent
the subgrid stress. We will pursue this idea to develop a
numerical algorithm based on the subgrid fluctuations
modeled by our velocity field.
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Appendix

Characteristic function is defined byϕu(κ) = E(eiκu)
whereu is the velocity field. The characteristic function
of velocity increments is computed as follows

ϕδu‖(x,r)(κ) = E

[

expiκ
∫ t

−∞

∫

Q
N(ds,dq)e−c(t−s)

·
2

∑
j=1

r j

|r|
(υ j

q(x+ r)−υ j
q(x))

]

= expλ
∫ t

−∞

∫

Q
dsdzα(da)β (db)e−c(t−s)

·

[

expiκ
2

∑
j=1

r j

|r|
(υ j

q(x+ r)−υ j
q(x))−1

]

= expλ
∫ t

−∞
dse−c(t−s)

∫

Q
dzα(da)β (db)

·

[

expaiκ
2

∑
j=1

r j

|r|

[

υ j

(

x+ r − z
b

)

−υ j

(

x− z
b

)]

−1

]

.

Note that δu‖(x, r) = δu‖(0, r) by homogeneity. If we
rename the following functions for simplicity,

h(κ) = aiκ
2

∑
j=1

r j

|r|

[

υ j

(

x+ r − z
b

)

−υ j

(

x− z
b

)]

g(κ) =
λ
c

∫

Q
dzα(da)β (db)

[

eh(κ)−1
]

the characteristic function of velocity increment can be
written asϕδu‖(κ) = eh(κ). Third order derivative should
be taken for skewness. The first derivative of
characteristic function is

dϕδu‖(κ)
dκ

= eg(κ)g′(κ)

whereg′(κ)= λ
c

∫

Q dzα(da)β (db)eh(κ)h′(κ) andh′(κ)=
ai ∑2

j=1
r j
|r| (υ j(

x+r−z
b )−υ j(

x−z
b )). The second derivative of

characteristic function is

d2ϕδu‖(κ)
dκ2 = eg(κ) [(g′(κ))2+g′′(κ)

]

where
g′′(κ) = λ

c

∫

Qdzα(da)β (db)eh(κ) [(h′(κ))2+h′′(κ)
]

and
h′′(κ) = 0. Finally, the third derivative of characteristic
function is

d3ϕδu‖(κ)
dκ3 = eg(κ) [(g′(κ))3+3g′(κ)g′′(κ)+g′′′(κ)

]

whereg′′′(κ) = λ
c

∫

Qdzα(da)β (db)eh(κ) [(h′(κ))3
]

.

For κ = 0

ϕ(3)
δu‖

(0) =

[

λ
c

∫

Q
dzα(da)β (db)ai

·
2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))

]3

+3
λ 2

c2

∫

Q
dzα(da)β (db)ai

·
2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))

·
∫

Q
dzα(da)β (db)

·

[

ai
2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))

]2

+
λ
c

∫

Q
dzα(da)β (db)

[

ai
2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))]3

.

After rearrangement, we have

ϕ(3)
δu‖

(0) =−
λ 3

c3 iE(a)3
[

∫

R2

∫

R+

dzβ (db)

·
2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))

]3

−3
λ 2

c2 iE(a)E(a2)
∫

R2

∫

R+

dzβ (db)

·
2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))

·

∫

R2

∫

R+

dzβ (db)

[

2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))]2

−
λ
c

iE(a3)

∫

R2

∫

R+

dzβ (db)

[

2

∑
j=1

r j

|r|

(

υ j

(

x+ r −z
b

)

−υ j

(

x−z
b

))]3

.
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Due to isotropy property of velocity field, first and second
summed equal to zero. Hence we obtain

ϕ(3)
δu‖

(0) =
λ
c

iE(a3)

∫

R2

∫

R+

dzβ (db)

·

[

2

∑
j=1

r j

|r|

(

υ j

(

x+ r − z
b

)

−υ j

(

x− z
b

))

]3

.

Using the propertyE(u3) = (−i3)ϕ(3)
δu‖

(0)

E(δu3
‖) =

λ
c
E(a3)

∫

R2

∫

R+

dzβ (db)

·

[

2

∑
j=1

r j

|r|

(

υ j

(

x+ r − z
b

)

−υ j

(

x− z
b

))

]3

.

Using truncated Gamma distribution forb

E(δu3
‖) =

λ
c
E(a3)

∫

R2

∫ B

0
dzdb

bθ−1e−b/ζ

ΓB/ζ (θ )ζ θ

·

[

2

∑
j=1

r j

|r|

(

υ j

(

x+ r − z
b

)

−υ j

(

x− z
b

))

]3

.

Making a change of variable asz′ = x− z, yields

E(δu‖
3) =

λE(a3)

cΓB/ζ (θ )ζ θ

∫

R2

∫ B

0
dzdbbθ−1e−b/ζ

·

[

2

∑
j=1

r j

|r|

(

υ j

(

z+ r
b

)

−υ j

( z
b

)

)

]3

.

Using the specific equations forυ given in the text

E(δu‖
3)=

λE(a3)

cΓB/ζ (θ )ζ θ

∫

R2

∫ B

0
dzdbbθ−1e−b/ζ (12)

·

[

r1

|r|

(

−z2− r2

|z+ r|
m

(

|z+ r|
b

)

+

(

z2

|z|
m

(

|z|
b

)))

+
r2

|r|

(

z1+ r1

|z+ r|
m

(

|z+ r|
b

)

−
z1

|z|
m

(

|z|
b

))]3

=
λE(a3)

cΓB/ζ (θ )ζ θ

∫

R2

∫ B

0
dzdbbθ−1e−b/ζ

·

(

z1r2−z2r1

|r|

)3(m(|(z+ r)/b|)
|z+ r|

−
m(|z/b|)

|z|

)3

.

We have evaluated the integral in (12) numerically for
various values of|r| and found positive values as shown
in Figure6. As a result, the sign of (12) is controlled by
the third moment ofa. Note that the integral is constant
for sufficiently large values of|r| sincem has compact
support, and that it is sufficient to consider only|r| since
the velocity field is isotropic.
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Fig. 6: The value of the integral in (12) for various values of|r|.
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[11] M. Çağlar, T. Bilal, L. Piterbarg, Lagrangian Prediction and
Correlation Analysis with Eulerian Data. Turkish J. Earth
Sciences20: 343–358.

[12] T.M. Chin, T. Ozgokmen, A.J. Mariano, Empirical and
stochastic formulations of western boundary conditions.
Ocean Modelling 2007;17:219–238 (2011).

[13] D. Chung, D.I. Pullin, Direct numerical simulation
and large-eddy simulation of stationary buoyancy-driven
turbulence. J. Fluid Mech.643:279–308 (2012).
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