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Abstract: In the present paper we develop noncommutative approachctmmaection which is based on a notion of graded
differential algebra, where is a primitive N'th root of unity. We define the curvature of connection fornd @nove Bianchi identity.
We construct a gradegtdifferential algebra to calculate the curvature of conioecfor any integerN > 2. Making use of Bianchi
identity we introduce the Chern character form of connectiom and show that this form is closed. We study the dsise 3 which

is the first non-trivial generalization because in the cdse- 2 we have a classical theory. We calculate the curvature afiexciion
form and show that it can be expressed in terms of gragdesmmutators, where is a primitive cubic root of unity. This allows us to
prove an infinitesimal homotopy formula, and making use isf filrmula we introduce the Chern-Simons form.
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1. Introduction sider a grading one element of graded differential algebra
) .. as analogous to a connection form then we can develop a
A noncommutative approach to a concept of connection is,sncommutative approach to a concept of connection. We
based on a graded differential algebt#][ One can gen- .4 generalize this approach considering a grading one el-
eralize a notion of graded differential algebra by gener-ement of gradeg-differential algebra, whereis a primi-
alizing a notion of cochain complex. This generalization g6 Nth root of unity. In the present paper we develop this
was proposed inl{3], and the basic |de%}$f this general- ghhroach and show that as in the case of graded differential
ization is to take a more general equatibh =0, N > 2 gjgepra we can define the curvature of connection form in
thand® = 0. This generalization of cochain complex is he case of gradegtdifferential algebra as well. We con-
known under the name aWV-complex. A generalization  gict 4 graded-differential algebra which is very useful
of graded differential algebra in which the basic propertyfor ca|culation of the curvature of connection for any inte-
of differentiald” = 0 is replaced by a more general one ger v > 2. Moreover we show that the curvature of con-
d” =0,N > 2was introduced in] and studied in1,  pection form satisfies the Bianchi identity. Despite the fac
2,14,15. This generalization of graded differential alge- that oyr approach is based on a gragetifferential alge-
bra is called a gradegtdifferential algebra, wherg is @ 5 \which is more general structure than a graded differen-
primitive N'th root of unity. Let us mention that a con- 5| gigebra we have all the basic components of classical
cept of graded;-differential algebra is closely related to theory. The Bianchi identity gives us a possibility to define
a monoidal structure introduced i&3 for a category of 4o Chern character form of connection form and to show
N-complexes, and it is proved ir{] that the monoids  ha¢ this form is closed. For this purpose making use of
of the category qu—compIexes.can be identified as the N-complex we introduce a notion of trace on a graged
grad'edq-dlﬁe'rentlal algebras. Itis vyeII known that a con- jifferential algebra. We study the ca¥e= 3 which is the
nection and its curvature are basic elements of the thegst non-trivial generalization because in the case- 2
ory of fiber bundles, and they play an important role not,ye haye a classical theory. We calculate the curvature of

only in a modern differential geometry but also in theo- ,nnection form and show that it can be expressed in terms
retical physics namely in a gauge field theory. If we con-
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of graded;-commutators, whergis a primitive cubic root  Let B[0,¢] be the polynomial algebra generated by the
of unity. This fact allows us to prove an infinitesimal ho- variables 8) which obey the commutation relationd)(
motopy formula, and making use of this formula we intro- Let us denote byt the identity element of this algebra. Itis
duce the Chern-Simons form. It is worth mentioning that worth mentioning that there are no commutation relations

for any integerN > 3 the curvature of connection form
can not be expressed in terms of gradecbmmutators,

between the variableg, &, . . ., &, - . ., and the subalge-
bra of the algebr&3[o, ¢] freely generated by these vari-

and this is an obstacle to prove an infinitesimal homotopyables will be denoted b3 [¢].

formula and to define the Chern-Simons form. In the last

We can endow the polynomial algeb}Ho, ] with a

section we define and study connections constructed bgraded structure if we assign grading zero to the identity

means of gradegtdifferential algebra on modules.

2. Polynomial algebra

Let 2l = @,2™ be an associative unital graded algebra

overC andd be a graded-derivation of degree one of this
algebra, i.ed : A" — A"+ is an endomorphism of de-
gree one of the graded vector space of alg@bsatisfying
the graded-Leibniz rule

d(AB) = d(A) B+ ¢4l Ad(B), (1)
whereA, B € 2, |A] is the grading of homogeneous el-
ementA, ¢ is a complex number different from zero. Let
us denote byZ () = @,.2"(2) the graded algebra of
endomorphisms of the graded vector space of alg&bra
Clearlyd € Z1(21).

elementl, grading one to variable gradingn to variable
&,, Wheren > 1, and define the grading of any product of
variables, &1, &, ..., &y, ... as the sum of gradings of its
factors. Hence we have

Let us denote by [0, ¢] the subspace of homogeneous
polynomials of grading: of graded algebr&3[o, £]. For
example the subspad@?[o, ¢] is spanned by the polyno-
mialso?,0&1, €10, &, £2. We can write

‘B[O, 6] = @nZOmn [Dv 5] .

Take the elemend € P[o,£] and define the endomor-
phism of vector spacé: P[] — PB[¢] by means of graded
g-commutator as follows

=0, n > 2.

5(p) =[0.plg =0p—q"Ipa, (6)

Let A € A be an element of grading one of graded wherep ¢ 3[¢] is a homogeneous polynomial of variables

algebra?l. The subalgebra of graded algeRftayenerated
by the elementsd, dA, d? A4, . .. will be denoted byl 4.
Obviously 24 is the graded algebra. Ldty € Z*(2)

&1,82,...,&n, ... and|p| is the grading ofp. Obviously
0 is the graded;-derivation of degree one and it follows
from the commutation relationg) of the algebraj[o, ¢]

be the endomorphism of degree one of graded alg&ibra that§(¢,,) = £,.1. Next we define the endomorphism of

induced by the left multiplication by, i.e. L 4(B) = AB,
whereB € 2. Now the graded-Leibniz rule () can be
written in the form

doLs=q?Lsod+ Laa, 2

degree onel : P[] — P[¢] by A = § + Lg,, whereLg,
is the endomorphism of left multiplication lgy. It is easy
to show thatA has the property

Alpp') = Alp) P’ +dPlps(p).

whereo is the composition of endomorphisms of degree Wherep, p’ € B[¢] are homogeneous polynomials. We de-

one. Obviously the endomorphisms of degree draend
L4, whered is a graded;-derivation of degree one of
graded algebrdl andL 4 is the endomorphism of left mul-
tiplication by an elementi € 21!, generate the subalge-
bra of graded algebra of endomorphisf#&2l), which
will be denoted byZ{(2). The subalgebra of this alge-
bra freely generated b/ 4, Lga, L2 4 - . . Will be denoted
by Z4(21). Let us mention that”{ () is the graded alge-

bra, and its gradation is induced by the graded structure o,

algebra? ().
The structure of algebr&’¢ (2() can be described with

the help of new variables
Da 517 627 s

- 3)

fine the polynomialsy, f1, ...
current formula

fO = ]lafl = fl,fn-&-l = A(fn)a

Clearly|f,| = n.

Before we give an explicit expansion formula for the
polynomialsfy, f1, ..., fn, ... letus remind the notions of
g—binomial coefficients and composition of integer. Given

complex numbeg # 0 one defines the mappirid, :
n € N — [n], € C by setting[0], = 0 and

s fn, .. € B[€] by the re-

n>1.

()

n—1
g =1+q+q+...+¢""'=> ¢ n>1
k=0

if we assume that these variables are subjected to the conlN€¢-factorial of[n], € K, wheren € N, is defined by

mutation relations

afn - qn fna + fn—&-la n Z 1. (4)

[O]q! =1, [n]q! = [l]q [2]11 [n]q = H[k]qv n>1.
k=1
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If k,n are integers satisfying < k& < n,n > 1 then the
Gaussiany-binomial coefficients are defined by

i,

The Gaussiag-binomial coefficients satisfy the recursion

]!
Fa o — Fl

relation

e [l ®

A R P ©
q q q

Next we remind a notion of composition of integernlis
a positive integer then a composition of an integas a
way of writing n as the sum of strictly positive integers.
For example if» = 3 then there are three compositions

3=3,3=2+1,3=1+2,3=1+1+1.

Let ¥, be the set of all compositions of an integerWe
will write a composition of an integes in the form of a
sequence of strictly positive integers= (i1, s, ..., 4.),
wherei, + iz + ...+ i, = n. Let us denote

ny = 1,

ng = i1 + g,

ng = i1 + 12 + i3,

Ny = 11 +22+ ...+ 1.

Obviouslyn,. = n. It should be mentioned that the num-
ber of elements in the sét, is 2! [12]. The following
proposition gives an explicit formula for the polynomials

[

Theorem 1For any integem > 2 we have the following
expansion of power of the operatdr and the expansion
of a polynomialf,, in terms of generators;:

n

ar =y |7 g (10
1=0 q

-1 -1 -1
-2 0 ) [

) [m;ll] §ir&in - &iys (11)

n

whereo = (i1,12,...
n.

, i) IS @ composition of an integer

ProofWe will prove the expansion formulae of this the-

Now we assume that the first expansion formula holds for
some integer. > 1 and show that it also holds when+

1 is substituted fom. It is easy to see that for any two
homogeneous polynomiglsp’ € [¢] it holds

Alpp') = Ap)p’ + q*'psp).

Making use of the propertyl@) of the operatorA and the
recurrent formula fog-binomial coefficientsq) we have

e

i=0 q

— Z {:”] (A(fi)(;nfi 4 fi5n+17¢)
i=0 q

= Z [ZL] (fi—H " g fi5"+1_i)
i—0 q
= fup1+ 6"+

+ifi6"+“([if1} +q [ﬂ )
i=1 q q

_ fnJrl + Z |:TZL:| fi 5n+17i + 5n+1
i=1 q

n+1
+1
zz[”i

=0

(12)

:| f1 5n+1—i.
q

Thus the expansion formula(@) is proved. Now if we ap-
ply the both sides of the proved formula 4o we obtain

fn+1 - Z
=0
and this is the recurrent formula for the polynomigis
which we will use in order to prove the expansion formula
(1D for f,,.
We start the proof of expansion formulhlf with the
base case = 2. From the definitiomA = § + &, it follows

fa=A(f1)) =AG) =66+ =&+ &

On the other hand if = 2 then there are two compositions
2 =2, 2=1+ 1, and the expansion formulal) gives

#=fo] o+ o], [

Hence in the base case of mathematical inductica 2
the formula (1) is correct. Now we assume that the second
expansion formula holds for some positive integer 2

[?}ﬂ&wbu (13)

]ﬁ=&+ﬁ.
q

orem by the method of mathematical induction. First we gnd show that it also holds whent 1 is substituted for..

prove the power expansion formulaQj for D™. Taking
into account the definitio = d + & we see that in the
case ofn = 1 the expansion formulalQ) is correct. In-
deed in this case we have

a=[g] wovi] n=sve

Let us consider the sum
> [
ny q nao q

S
n
| n,

] §irkin - Ginnys  (14)
q
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whereo = (i1, 19,..., 1, iy41) IS @ cOMposition of an in-
tegern+1. Hencei; +...4+4,+4,4+1 = n+1. Ouraimis
to show that this sum is equal to the polynomjial ;. Let
us fix an integef € {0,1,...,n} and a generatd, +1_;.

It is clear that if we select the compositions of an integer

n+1which have the fornfiy, is, . .., i, n+1—1),i.e. the

last integer of each composition is previously fixed integer f; — ¢5 4 ¢, ¢, + 2], & & + €,
n + 1 — 4, and we remove in each composition the last in-

teger then the set of compositiofis, i, . . . , i) iS the set
of all compositions of an integéri.e.{(i1,i2,...,i,)} =
;. Indeed we have

it i dntl—i=n+1,

which impliesiy + iz + ... + i, = i. Consequently if we
select all terms of the sumi4) with i1 =n+1—i (i.e.
containing a generatay, 1 _; at the end of a product of
generators) then we get the sum

D Kl L I

cEVy 1
X &ir&iy - - CinEnt1—is (15)

where the sum is taken over the compositions of intege

n + 1 which have the formv = (i1,42,...,%,n + 1 —
1) € ¥,,+1. We would like to point out that the product of

binomial coefficients of each term in this sum contains the

factor
]
il
q
Hence we can write the surt§) as follows
n ng — 1 ng — 1 1—1
RO i R S
4 rey; q q q
X &ir iy - -fz;) Enti1—is

wherer = (i1,42,...,%,) € ¥,; and the sum is taken
over all compositions of integer Now we make use of

which in turn is equal tof,, 1 (see the recurrent relation
(13)). This ends the proof.

For the first values of, the formula (1) gives the polyno-
mials

fo =&+, (16)
(17)

fa=&+&& + 3,68+ 3,4
+ &G+ Bl L+ 2 a&b +&. (18)

3. Polynomial algebra at/Nth root of unity

In this section we will study the structure of the graded
polynomial algebrg3[o, £] introduced in the previous sec-
tion in the case whedqis a primitive N'th root of unity and
prove that in this case the graded polynomial alg&bjg
can be endowed with a structure of gradedifferential
algebra.

Let N > 2 be an integer ang be a primitiveNth root
of unity. A graded vector spacé = ¢, 7" is said to be a
I;ochainN-compIex or simplyV-complex if it is endowed
with an endomorphism of degree ode. ¥ — 7"+l
satisfyingd™ = 0 [7,8,13]. A graded associative unital
algebracs with graded;-derivation of degree ongis said
to be a gradeg-differential algebra iff satisfiesd’¥ = 0
[6]. A gradedg-derivation of degree onéwill be referred
to as N-differential of graded;-differential algebra. Par-
ticularly if N = 2 then graded;-differential algebra is a
graded differential algebra with graded differentiatat-
isfying d> = 0. One can construct a gradedlifferential
algebra with the help of the following theore# |

Theorem 2Let .« be a graded associative unital algebra
o = @pa/*, andq be a primitive Nth root of unity. If
there exists an element of grading one 7! which sat-
isfies the condition” € 2°(«), where 2() is the
graded center ofy, then a graded algebra’ endowed

the assumption of an inductive step that the expansion forwith the inner graded-derivationd = ad! is the graded

mula for a polynomialf,, holds for each integem ¢

{1,2,...,n}. Hence the sum in the previous formula is
equal tof;, i.e
Z ng — 1 ng — 1 1—1 %
ny ng e
TEY; q q q

X &iy&iy - i = fi-

Thus the sumX5) is equal to

7

[n] filnvi—is

and summing up all these terms with respect tee get
the sum {4). Consequently the suni4) we started with
is equal to the sum

> [ﬂ fi&nt1-i,
q

=0

g-differential algebra and! is its V-differential.

Making use of the theoren2) we prove the following the-
orem:

Theorem 3If ¢ is a primitive Nth root of unity and the
variable d satisfiesos™ = \ - 1, where\ is any complex
number, then for any integér > N a variable &, van-
ishes, i.e. the polynomial algebga[v, £] is generated by
the finite set of variable$, &}, which obey the rela-
tions

061 = q&10 + &, 0 = ¢* &0 + &,
Wn_1 =gV T v+ &y, N = EnD,
N =1

The graded;-derivationd = [, |, : B[¢] — B[¢] is the

N-differential, i.e.dN = 0, and the graded polynomial
algebraf3[¢] is the graded;-differential algebra.
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Prooflt follows from Theoren2 that the inner gradeg-
derivation of polynomial algebrg3[o, £] determined by
the graded;-commutator with the element, i.e. the in-
ner graded;-derivation[o, |, : B0, £ — P[0, <], is the
N-differential of the polynomial algebrg[o, {] because
the elemend satisfieso¥ = X - 1 which means that it
lies in the graded center @80, ¢]. Now if we consider
the restriction of this inner gradegdderivation ofj3[o, ¢]
to the subalgebrgg[¢] € P3[o, £] then we have the graded
g-derivation (not inner) of the algebra[¢] which obvi-
ously satisfies’V = 0. Hences is the N-differential of
P[¢] andP[¢] is a graded;-differential algebra. Finally
0 has the property (k) = &pr1 andéni1 = d(En) =
oM (&) = 0 which proves that for any integér > N a
variable¢;, vanishes.

For any integeil < i < N — 1 theg-binomial coefficient
in (19 labelled withi vanishes becausgis a primitive
Nth root of unity. Thus the above relation takes the form

fns1 = foéns1 + fnéa.

From Theoren3 follows that{ 1 = 0, and the first term
at the right-hand side of the above relation vanishes. Hence

0= fnri—fn&=AN)—In&
=0(fn)+& fn — [n& = 0(fn) +ad (fv) = 0.

4. Chern-Simons forms

The aim of this section is to develop a noncommutative

From now and until the end of this Section we will assume analog of Chern-Simons form with the help of graded

thatq is a primitive Nth root of unity, the conditions of
TheorenB are satisfied ang8[¢] is a graded-differential
algebra withN-differential 5 generated by the set of vari-
ables&l, 62, C
morphismA defined on the algebf[¢] by the formula
A =6+ L¢,. HenceA is a differential operator of the al-
gebraB[¢] but the following theorem shows that tiéth
power of this differential operator is not a differential-op

,€n. Let us remind that there is the endo-

differential algebra. We will introduce the Chern characte
form and prove the infinitesimal homotopy formula for the
Chern character form.

Let us remind thafl is a graded algebra witfrderiva-
tion d, wheregq is a complex number different from zero,
andA is a grading one element of this algebra. Riet be
the subalgebra of algebfh freely generated by the ele-
mentsA, dA, d? A, .. .. Itis clear that the algebra&, and

erator but the endomorphism of left multiplication by the 2, (2l) are free algebras, and they are isomorphic if we

polynomialf .

Theorem 4The Nth power of endomorphismé = ¢ +
Le, : B[E] — P[¢] is the endomorphism of left multipli-
cation by the polynomiafy, i.e. AN = L.

identify their generators as follows

d"A <> Lgng < &nq1, n>0. (20)

Moreover the algebraZ4(2l) is isomorphic to the alge-

ProofWe prove this theorem with the help of expansion bra®3[o, ] if in addition to 20) we identify the generator

formula (10). We have
N

AN _ Z |:]7\;]:|qfi6Ni~

=0

Theg-binomial coefficients in this expansion formula with
i€{1,2,...,N — 1} vanish becausgis a primitive N'th

d viewed as the element a#’¢(2() with the generatob.
This follows immediately from the gradegdLeibniz rule
(1) and the commutation relationd)( Hence considering
d as an element of algebr#{(2() we can identify the in-
ner graded;-derivation ad = [d, ], of £4{(21) with the
inner graded;-derivation ag = [0, ] of P[0, ¢]. Let us
remind that the restriction of the inner gradgederivation

root of unity. The first term in this expansion also vanishesad! = [0, ] to the subalgebrg3[¢] generated by, is

becausé is anN-differential and satisfie§" = 0. Hence
AN = Ly,

Theorem 5The polynomialfy € B[¢] satisfies the iden-

tity

5(fn) +ad! (fx) =0,
where ad, = (&1, g : B[¢] — P[] is an inner graded
g-derivation of algebrap[¢].

ProofLet us remind that there is the recurrent relativ8) (
for the polynomialsf;, which has the form

k

frr1 = Z {ﬂ fiErr1—i-

=0
Takingk = N in this relation we obtain

N

EEDY []j] fiEng1—i.
q

=0

(19)

the graded;-derivations of B[¢]. If we restrict the inner
graded;-derivation ad = [d, |, to the subalgebra&’s ()
which is isomorphic to the algebga[¢] and according to
(20) replace each generatdr» 4 of Z4(21) with corre-
sponding generatal® A of 2( 4 then the restriction of inner
graded;-derivation ad = [0, | to the subalgebrg8[¢] can
be identified with graded-derivationd of 2 4. This im-
mediately follows from the gradegtLeibniz rule written
in the form

ad,(La) =[d,Lal,=doLa—q*Laod=Lya.

Hence if we identify each generatgy, of algebraf3[¢]
with corresponding generatdf—' A of isomorphic alge-
bra®l 4 then the gradeg-derivations is identified with the
gradedg-derivationd of 2 4. Consequently the calculus
developed in Section 2 for the algelg&] can be applied
to the algebra&l 4 if we replaces,, .1 — d"A,§ — d. For
instant we can introduce an endomorphiBml 4 — 2 4
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which can be viewed as an analog&f= ¢ + L¢, giving
it by the formulaD = d + L 4. It is worth mentioning that
D has the remarkable property
D(PP')=D(P)P +¢F'Pd(P), (21)
whereP, P’ € A 4. We can also introduce the polynomials
F,, € 2 4 defining them by the recurrent formula
Fo=1, Fi=A, F,,=D{F,). (22
It is obvious that the polynomialg;, can be viewed as
analogs of polynomialg,, and we can calculate a polyno-
mial F}, by replacing each generatéy in f,, with gener-
atord*—1 A. It follows from Theorenil that the following
expansion formulae fab and the polynomial#’, hold

|:TL:| E dn—i’
7
q

Dn:Z

i=0

_ n1—1 ng—l TL3—].
e ]
ocevy, q q q
. {" B 1] A AdPTIAL L A,

Nyr—1

If n =2,3,4then we get the polynomials

Fy = dA+ A?,

Fy=d?A+dAA+ 2], AdA + A3,

Fy=d*A+d*AA+ 3], Ad*A + [3], (dA)?
+dAA? + [3], A2dA + 2], AdA A + A*.(25)

It should be pointed out that from the beginning of this

section and up to now is a complex number different

from zero. From now and until the end of this section we

will assume that; is a primitive Nth root of unity. In this
case we can prove the following theorem:

(23)
(24)

Theorem 6If ¢ is a primitive N'th root of unity then an al-
gebra2l with gradedy-derivationd is a graded;-differen-
tial algebra with N-differential d if and only if for any
element of grading ond € 2 the generatob of algebra
P[¢] satisfied™ = A - 1, where) is any complex number.

In what follows we will assume that the necessary and suf-

ficient condition of Theorerd is satisfied, and henc®is
a graded-differential algebra withV-differentiald. Since
a graded differential algebra can be viewed as an analog
algebra of differential forms on a manifold or in a noncom-

curvature of connection form, and the polynomiaFy
will be referred to as the curvature of connection fadm
It follows from Theorenb that the curvaturd’y satisfies
the identity

d(Fn)+[A, Fnlq =0, (26)

this identity will be referred to as Bianchi identity for the
curvature of connection form.

Particularly if N = 2 theng is a primitive quadratic
root of unity, i.e.g = —1, and an algebral is a graded
differential algebra with differential which satisfiesl® =
0. In this case the curvatur, of connection formA4 is
given by the formulaF, = dA + A? = dA + 1[A, 4],
where[ , ] is the graded commutator.

If N = 3theng is a primitive cubic root of unity satis-
fying the identityl + ¢+ ¢? = 0. In this caseé is a graded
g-differential algebra withs-differential d which has the
propertyd® = 0. The curvaturet; of connection formA
is given byFs = d?> A+dA A+[2], AdA+A3. Making use

of the identityl + ¢ + ¢*> = O we get[2], = 1 + ¢ = —¢*.
Thus the curvature can be written in the form
Fs=d?A+dAA—¢> AdA+ A3

= d?A+[dA, A + A%, (27)

where][, |, is the graded-commutator.

Let us denote by2(, 2], the subspace ol spanned
by graded;-commutatorsP, P'],, whereP, P’ are homo-
geneous elements of gradedlifferential algebral. Let
¥V = &, Y™ be anN-complex with an endomorphism of
degree onel : ¥ — ¥"*! satisfyingd™ = 0. A ho-

mogeneous degree zero homomorphism of vector spaces

7 A" — Y™ which satisfies
T([2A,A]4) =0, (28)

will be referred to as a trace on a gradgdifferential al-
gebrall. For any positive integet the element (F /n!)

of N-complex? will be referred to as the Chern character
form of connection formy.

Theorem 7The Chern character form of connection form
A is closed form, i.e.

dor=r71o0od,

. Fn
d{r(=5")} =o0. (29)
n.
ProofLet us show that'y; satisfies the identity
d(Fy) + [A, Fylg = 0. (30)

In the case ofV = 1 we have the Bianchi identity. Now

ASsuming thaF]@*1 satisfies 80) we will show thatF%

satisfies the same identity. We have

mutative case as an analog of algebra of matrix-valued dif- d(Fx) + [A, Fn], = d(Fx Fo™ ') +[A, FR,

ferentials forms we can use a terminology of modern dif-

ferential geometry interpreting an element of grading one

A € 2 as analogous to a connection for@6]. Then the
endomorphisnD = d+ L 4 satisfying 1) will be referred
to as a covarian¥ -differential. It follows from Theorerd
that theNth power of covarianiV -differential D is the en-
domorphism of left multiplication by the polynomiély.
Thus we can view the polynomi#ly as analogous to the

=d(FN)FR "t +¢N Fnd(Fe )+ AFG — FL A
= {d(Fn) + [A, Fnlg} Fy~ ' +

+Fy {d(Fy ") +[A Frt],) = 0.
Thus
Fy

J{T( o

= ()} = (- (4, FRl,) = 0.
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Theorem 8Let ¢ be a primitive cubic root of unity and Now we calculate the right-hand side of formuB). We
A(t) = t A be a family of grading one elements of graded obtain

g-differential algebra2(. Then the following infinitesimal .
homotopy formula holds At)F3(t) =t Ad®A+ 1> AdA A — ¢*t* A2 dA +1* A*.

o  T(F3(t o T(ARET (¢t Differentiating twice byd and comparing with the left-
E{M} = dQ{M}- (31)  hand side we conclude that the formutd) holds if three
o polynomials can be expressed in terms of grageedm-
Prooflf n = 1 then the infinitesimal homotopy formula mutators. Because of the limited space of the present arti-
takes the form cle we will show only one of these polynomials and repre-

0 - . sent it by graded-commutators. This polynomial is
g TUB(O)} = T (A} B2 A P RAA L AP RA L A,
Making use of formulae27) and and this polynomial can be written in the form
[A, [A, Alg]q 2

n! n—1!

3 Lo bmiilelg q 1
=0 ga- @3 (1T ad), 44 AR, +
we can write the left-hand side d32) as follows +g(q2 — 1)[A2%d?A, A, — fqz [A,[A%, d?A]],
3 ) 3 ) ) .
0 0
i TUs()) = E{T(dzA(t) + [dA(t), A(t)]q + Integrating both sides of the formula4) we obtain
[A(2), [AQt), A(t)]q]q

=d? T . .

We show how to prove the infinitesimal homotopy formula
in the caser = 2 and for integers: > 2 this formulacan  Of

3 | twona- [ Ertéonm)

1
be proved in a similar way. I = 2 then the formula3l) ET(Fg (t)) = 32/ T{A(t) F5(t)} dt. (36)
takes the form 2 0
19 The integral at the right-hand side of the previous formula

55{7(%2(15))} =d*{r(A(t)F3(t))}.  (34)  will be referred to as the Chern-Simons form and it will be
- denoted by CHA, 7), i.e.

For A(t) = t A we calculate the polynomial afin the

left-hand side of infinitesimal homotopy formula

S} (A, r) = / AW By (37)

10, o ok °
20t {r(F5 1)} = ; Bt (35) SinceA(t) = t A we can find an explicit formula for the
B Chern-Simons form
where
2 4\2 _ 1 2 2 2(]2 2 1 4
P = (d2A)?, CS(A,7) = STAA+ZAdA A== A?dA+5 AY),
2
Py = gdZAdAA — S%dQAAdA + ;dAAdQA -
3¢° 5. Connection on module
— " d?AdAd?A,
o i3 ) 2 ) We begin this section by recalling the notionf@fconnec-
Py =2(d"AA”+dAAdAA —q dAA™dA — tion given in B]. Suppose thafl is an unital associative
—> A(dA)?A — > AdAAdA + A3d*A), algebra over the field of complex numbers & a left
5 4 9 5 5 5 4 module overl. Let {2 be a graded differential algebra with
Py = §(dAA —q" AdAA® + A”dA A — ¢~ A%dA), differential d, such that2° = 2, it means that the map

o 46 d : A — ' is a differential calculus ove. Since an
Ps =3 A°. ; .

subspace of elements of grading one can be viewed as a
Obviously there are no terms with and¢® in the right-  (2(, 2)-bimodule, the tensor produf! @y £ clearly has
hand side of formulad4), and the polynomial&y, Ps have  the structure of lef2(-module.

to be expressed in terms of gradedommutators. Indeed
P grade Definition 1.A linear mapV : £ — 2! @y £ is called an

we have . o
5 f2-connectiornif it satisfies
Py = —(2[dA, A%, + [A3,dA A], — ¢°[AdA, A3],),
4 2( [ ]q [ ]q q [ ]q) V(us) = du @ 5 + uV(s)
3 2 2 2
b= (1_q)(1_q2)[[A s A%lg, A% foranyu € 2 ands € £.
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Similarly to the case of connections on vector bundles, thiggives us the algebraic analog of a classical connection. We
map has a natural extensi@n: 2 Qg & = 2 ®q £ by see that connection on vector bundle can be viewed as a

setting linear map on a left module of sections of vector bundle,
taking values in algebra of differential 1-forms with val-
V(w ®@gq 8) = dw Qg s+ (—1)PwV (s), ues in this vector bundle, which clearly has a structure of
a left module over an algebra of smooth functions on a
wherew € (2P ands € £. base manifold. Hence a concept aVaconnection can be

o . . . viewed as a generalization of a classical connection.
Now our aim is to generalize a notion 8fconnection tak-

ing gradedy-differential algebra instead of graded differ- One can define aiv-connection on right modules. &%
ential algebra?. Let2l be an unital associatiié-algebra, s a right2-module, aN-connection ores = £F @y 12,

12, is a gradedj-differential algebra withV-differentiald is a linear mapv, : & — & of degree one such that
and2l = Qg. Let& be_a left?(-module. Considering alge- V(€ @aw) = € @ dw + ¢V (€)w for anyé € £F and
bra (2, as the(2, 2()-bimodule we take the tensor product homogeneous elemente 2,

of left 2-modulesf2, ®y £ which clearly has the structure

of left A-module. To shorten the notation, we denote thisLet £ be a left2-module. The set of all homomorphisms
left 2--module bygF. Taking into account that an algebra of £ into 2 has the structure of the dual module of the left
2, can be viewed as the direct sum(@f, 2()-bimodules ~ 2l-module€ and is denoted bg*. Itis evident that™ is a
!2;' we can split the lef?2-moduleF into the direct sum of  right2-module.

the left2-modulesy’ = 2} ®q &, i.e.§ = @', which
means thaf inherits the graded structure of algelseg,
andg is the graded leff(-module. It is worth noting that

Definition 3.A linear mapV; : £ — £ @y (2; defined
as follows

the left2l-submodulg® = A ®y € of elements of grading Vi) (&) = d(n(€)) — n(V4(€)),
zero is isomorphic to a lefif-module&, where isomor- !
phismy : £ — F° can be defined for any € £ by where¢ € £, n € £ andV, is an N-connection orf, is

said to be the dual connection ®f,.

s) = e ®gq S, 38 . . .
#(s) o (38) Itis easy to verify tha¥/; has a structure aV-connection

wheree is the identity element of algebga Since agraded on the right module’™. Indeed, for anyf € 2, 7 € &7,
¢-differential algebra2, can be viewed as th@?,, £2,)- &€ &we have

bimodule, the lefRl-module3 can be also considered as —d _ v

the left £2,-module, and we will use this structure to de- 1)) (n718) = (1) (V)

scribe a concept d¥-connection. Let us mention that mul- = d(n()f) = n(Ve)f

tiplication by elements of2, wherei # 0, does not pre- =dn(&))f +n(&) @adf —n(V&)f
serve the graded structure of the |&ff-moduleg. =n(§) @adf +V;(n(€)) [

The tensor producF has also the structure of the vector ) . .

space ovef® where this vector space is the tensor product!l Order to define a Hermitian structure on arighmodule

of the vector space€, and&. It is evident thatg is a ¢ We assumel to be a graded-differential algebra with

graded vector space, i.§.= &5, where§' = 2 @¢ £ involution = such that the largest linear subset contained
y O (2 1 - q . . * .

Due to the structure of vector spacegive can introduce I the convex cong’ € 2 generated byi"a is equal to

the notion of linear operator of. We denote the vector Z2€r0: .60 (=C) = 0. The righti-modulef is called a

space of linear operators @by £(). The structure of the Hermitian module_ i€ is e.nd_owed with a sesquilinear map

graded vector space gfinduces the structure of a graded ' : € % € — 2 which satisfies

vector space o&(F), and we shall denote the subspace of h(€w, €w') = w*h(€, €', Vw,w' €A, VE, € € E,

homogeneous linear operators of degrbg £ (F). hE€) e O, Vee& and h(€,6) =0 = £ = 0.

Definition 2.An N-connectioron the left(2,-moduleg is
alinear operatorV, : § — § of degree one satisfying the
condition

We have used the convention for sesquilinear map to take
the second argument to be linear, therefore we define a
Hermitian structure on right modules. In a similar manner

one can define a Hermitian structure on left modules.
Vy(w @ s) = dw @9 s + ¢l wV,(s), (39)

. _ Definition 4.An N-connectior’V, on a Hermitian rightl-
wherew € 27, s € £, and|w| is the degree of the homo- module€ is said to beconsistent with a Hermitian struc-

geneous element of algebfz,. ture of £ if it satisfies

Making use of the previously introduced notations we can dh(€,€") = h(V4(£),€) + h(E,Vq(£)),
write V, € £'(F). It is worth pointing out that ifV = 2 &2 (Val&),£) & Val&)
theng = —1, and in this particular case the Definiti@n  where¢, ¢’ € £.
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Our next aim is to define a curvaturefconnection. Fol-  Proposition 2 For any N-connectionV, the curvaturel’
lowing [3] we start with of this connection satisfies the Bianchi idenfty(F) =

Proposition 1.The N-th power of anyV-connectiorV, is 0.

the endomorphism of degréé of the left(2,-moduleg.
. ) ProofWe have
Prooflt suffices to verify that for any homogeneous ele-

mentw € {2, an endomorphisiv, € £!(3) satisfies the (F)=V,0F —¢N Fov, = VN+l _yN+l _
condition I I ¢ T e '

N _ N
Vi (W@ s) =wVy(s). The following theorem shows that not every [gfimodule
We expand thé-th power ofV, as follows admits anV-connectiond]. In analogy with the theory of
£2-connection 9] we can prove that there is ai-connec-

k , A )
_ tion on every projective module. Let us first prove the fol-

k m|w| k—m m
Vi(w ®a ) Z [m} d™"w Vi'(s), (40) lowing proposition.

m=0 q

k . ) o ) . Proposition 3If £ = A ® V is a free-module, wheréd”
where [m} are theg-binomial coefficients. Sincd is is a C-vector space, theW, = d ® Iy is N-connection
p ; L Lo :
the N-differential of a gradeg-differential algebra?, we on¢& and this connection is flat, i.e. its curvature vanishes.

havedVw = 0. According to“ﬂ =0forl <m <
_ q _ ProofindeedV, : A® V — 2, ® (A® V) and

N — 1, we see that in the case bf= N the expansion

(40) takes the following form Vi (flg@v) = doIy)(flg®v) =d(fg) @v =

VN (w @ s) =gV w v (s) =w VD (s) (41) = (dfg) @ v+ f(dg®v)

=df ® Q)+ fV,(9 @),
and this clearly shows th&tff is the endomorphism of the f @ulg®v) +/Volg®v)
left (2,-moduleg. wheref, g € A, v € V. Sinced satisfies?V = 0 andgq is

This proposition allows us to define the curvatureNsf & Primitive Nth root of unity, we get

connection as follows

N m
Definition 5.The endomorphisif = V2 of degreeN of Vilflgoo)= ) [m} d"f(d"g®v) =0,
the left {2,-module§ is said to be theurvature of aN- k+m=N q

connectiorv,. ) . .
i. e. the curvature of such&-connection vanishes.

Suppose tha€(F) is the graded vector space. We proceed
to show that£(§) has a structure of graded algebra. To
this end, we take the produdto B of two linear operators
A, B of the vector spacg as an algebra multiplication. If - Theorem 9Every projective module admits a@#connec-
A : § — Fis a homogeneous linear operator than we canon.
extend it to the linear operatdry : £(§F) — £(F) on the
whole graded algebra of linear operatal§§) by means  proof| et P be a projective module. From the theory of
of the graded;-commutator as follows modules it is known that a moduf@ is projective if and
_ _ __|A||B| only if there exists a modul&/ such thatt = P & N is
La(B) =4, Bly = AeB—q Bo4, (42) a free module. A free lefl-module€ can be represented
whereB is a homogeneous linear operator. It makes allow-as the tensor produgt @ V, whereV is aC-vector space.
able to extend av-connectiorV, to the linear operator A linear mapV, = 1o (d® Iy) : P — (2; ®g Pis a
on the vector spacg(¥) N-connection on a projective moduig whered ® I, is
A a N-connection on a left-module&, = is the projection
Ve(A) =[Vg, Al =V40A—¢""AoVy,  (43)  onthe first summand in the direct St N andr (w @«
(9®v)) = w (g ®v) = w Ry m, Wherew € £,

where A is a homogeneous linear operator. As it follows
g b ,v € V, m € P. Taking into account Proposmdh

from the Definition(2), V, is the linear operator of degree g

one on the vectorspadE(S) ie.Vy: £(F) — £71(F), get
andV, satisfies the gradegiLeibniz rule with respect to o - o
the algebra structure a¥(F). Consequently the curvature Vo(fm) = 7(d @ Iv)(fm)) = m(df @am+ fdm) =

F of an N-connection can be viewed as the linear opera- = df @ w(m) + fVq(m)
tor of degreelV on the vector spacg, i.e. F € £V (). =df @y m+ fVq(m),
Therefore one can act afi by N-connectionV,, and it
holds that wheref € 21, m € P.
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