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Abstract: In the present paper we develop noncommutative approach to aconnection which is based on a notion of gradedq-
differential algebra, whereq is a primitiveN th root of unity. We define the curvature of connection form and prove Bianchi identity.
We construct a gradedq-differential algebra to calculate the curvature of connection for any integerN ≥ 2. Making use of Bianchi
identity we introduce the Chern character form of connection form and show that this form is closed. We study the caseN = 3 which
is the first non-trivial generalization because in the caseN = 2 we have a classical theory. We calculate the curvature of connection
form and show that it can be expressed in terms of gradedq-commutators, whereq is a primitive cubic root of unity. This allows us to
prove an infinitesimal homotopy formula, and making use of this formula we introduce the Chern-Simons form.
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1. Introduction

A noncommutative approach to a concept of connection is
based on a graded differential algebra [16]. One can gen-
eralize a notion of graded differential algebra by gener-
alizing a notion of cochain complex. This generalization
was proposed in [13], and the basic idea of this general-
ization is to take a more general equationdN = 0, N ≥ 2
thand2 = 0. This generalization of cochain complex is
known under the name ofN -complex. A generalization
of graded differential algebra in which the basic property
of differentiald2 = 0 is replaced by a more general one
dN = 0, N ≥ 2 was introduced in [7] and studied in [1,
2,14,15]. This generalization of graded differential alge-
bra is called a gradedq-differential algebra, whereq is a
primitive N th root of unity. Let us mention that a con-
cept of gradedq-differential algebra is closely related to
a monoidal structure introduced in [13] for a category of
N -complexes, and it is proved in [11] that the monoids
of the category ofN -complexes can be identified as the
gradedq-differential algebras. It is well known that a con-
nection and its curvature are basic elements of the the-
ory of fiber bundles, and they play an important role not
only in a modern differential geometry but also in theo-
retical physics namely in a gauge field theory. If we con-

sider a grading one element of graded differential algebra
as analogous to a connection form then we can develop a
noncommutative approach to a concept of connection. We
can generalize this approach considering a grading one el-
ement of gradedq-differential algebra, whereq is a primi-
tiveN th root of unity. In the present paper we develop this
approach and show that as in the case of graded differential
algebra we can define the curvature of connection form in
the case of gradedq-differential algebra as well. We con-
struct a gradedq-differential algebra which is very useful
for calculation of the curvature of connection for any inte-
gerN ≥ 2. Moreover we show that the curvature of con-
nection form satisfies the Bianchi identity. Despite the fact
that our approach is based on a gradedq-differential alge-
bra which is more general structure than a graded differen-
tial algebra we have all the basic components of classical
theory. The Bianchi identity gives us a possibility to define
the Chern character form of connection form and to show
that this form is closed. For this purpose making use of
N -complex we introduce a notion of trace on a gradedq-
differential algebra. We study the caseN = 3 which is the
first non-trivial generalization because in the caseN = 2
we have a classical theory. We calculate the curvature of
connection form and show that it can be expressed in terms
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of gradedq-commutators, whereq is a primitive cubic root
of unity. This fact allows us to prove an infinitesimal ho-
motopy formula, and making use of this formula we intro-
duce the Chern-Simons form. It is worth mentioning that
for any integerN > 3 the curvature of connection form
can not be expressed in terms of gradedq-commutators,
and this is an obstacle to prove an infinitesimal homotopy
formula and to define the Chern-Simons form. In the last
section we define and study connections constructed by
means of gradedq-differential algebra on modules.

2. Polynomial algebra

Let A = ⊕nA
n be an associative unital graded algebra

overC andd be a gradedq-derivation of degree one of this
algebra, i.e.d : An → An+1 is an endomorphism of de-
gree one of the graded vector space of algebraA satisfying
the gradedq-Leibniz rule

d(AB) = d(A)B + q|A| Ad(B), (1)

whereA,B ∈ A, |A| is the grading of homogeneous el-
ementA, q is a complex number different from zero. Let
us denote byL (A) = ⊕nL n(A) the graded algebra of
endomorphisms of the graded vector space of algebraA.
Clearlyd ∈ L

1(A).
Let A ∈ A1 be an element of grading one of graded

algebraA. The subalgebra of graded algebraA generated
by the elementsA, dA, d2A, . . . will be denoted byAA.
ObviouslyAA is the graded algebra. LetLA ∈ L 1(A)
be the endomorphism of degree one of graded algebraA
induced by the left multiplication byA, i.e.LA(B) = AB,
whereB ∈ A. Now the gradedq-Leibniz rule (1) can be
written in the form

d ◦ LA = q|A|LA ◦ d+ LdA, (2)

where◦ is the composition of endomorphisms of degree
one. Obviously the endomorphisms of degree oned and
LA, whered is a gradedq-derivation of degree one of
graded algebraA andLA is the endomorphism of left mul-
tiplication by an elementA ∈ A1, generate the subalge-
bra of graded algebra of endomorphismsL (A), which
will be denoted byL d

A(A). The subalgebra of this alge-
bra freely generated byLA, LdA, Ld2A . . . will be denoted
by LA(A). Let us mention thatL d

A(A) is the graded alge-
bra, and its gradation is induced by the graded structure of
algebraL (A).

The structure of algebraL d
A(A) can be described with

the help of new variables

d, ξ1, ξ2, . . . , ξn, . . . (3)

if we assume that these variables are subjected to the com-
mutation relations

dξn = qn ξnd+ ξn+1, n ≥ 1. (4)

Let P[d, ξ] be the polynomial algebra generated by the
variables (3) which obey the commutation relations (4).
Let us denote by1 the identity element of this algebra. It is
worth mentioning that there are no commutation relations
between the variablesξ1, ξ2, . . . , ξn, . . ., and the subalge-
bra of the algebraP[d, ξ] freely generated by these vari-
ables will be denoted byP[ξ].

We can endow the polynomial algebraP[d, ξ] with a
graded structure if we assign grading zero to the identity
element1, grading one to variabled, gradingn to variable
ξn, wheren ≥ 1, and define the grading of any product of
variablesd, ξ1, ξ2, . . . , ξn, . . . as the sum of gradings of its
factors. Hence we have

|1| = 0, |d| = |ξ1| = 1, |ξn| = n, n ≥ 2. (5)

Let us denote byPn[d, ξ] the subspace of homogeneous
polynomials of gradingn of graded algebraP[d, ξ]. For
example the subspaceP2[d, ξ] is spanned by the polyno-
mialsd2, dξ1, ξ1d, ξ2, ξ21 . We can write

P[d, ξ] = ⊕n≥0P
n[d, ξ].

Take the elementd ∈ P[d, ξ] and define the endomor-
phism of vector spaceδ : P[ξ] → P[ξ] by means of graded
q-commutator as follows

δ(p) = [d, p]q = d p− q|p|p d, (6)

wherep ∈ P[ξ] is a homogeneous polynomial of variables
ξ1, ξ2, . . . , ξn, . . . and |p| is the grading ofp. Obviously
δ is the gradedq-derivation of degree one and it follows
from the commutation relations (4) of the algebraP[d, ξ]
thatδ(ξn) = ξn+1. Next we define the endomorphism of
degree one∆ : P[ξ] → P[ξ] by∆ = δ + Lξ1 , whereLξ1

is the endomorphism of left multiplication byξ1. It is easy
to show that∆ has the property

∆(p p′) = ∆(p) p′ + q|p|p δ(p′),

wherep, p′ ∈ P[ξ] are homogeneous polynomials. We de-
fine the polynomialsf0, f1, . . . , fn, . . . ∈ P[ξ] by the re-
current formula

f0 = 1, f1 = ξ1, fn+1 = ∆(fn), n ≥ 1. (7)

Clearly|fn| = n.
Before we give an explicit expansion formula for the

polynomialsf0, f1, . . . , fn, . . . let us remind the notions of
q-binomial coefficients and composition of integer. Given
a complex numberq 6= 0 one defines the mapping[ ]q :
n ∈ N → [n]q ∈ C by setting[0]q = 0 and

[n]q = 1 + q + q2 + . . .+ qn−1 =
n−1
∑

k=0

qk, n ≥ 1.

Theq-factorial of[n]q ∈ K, wheren ∈ N, is defined by

[0]q! = 1, [n]q! = [1]q [2]q . . . [n]q =

n
∏

k=1

[k]q, n ≥ 1.
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If k, n are integers satisfying0 ≤ k ≤ n, n ≥ 1 then the
Gaussianq-binomial coefficients are defined by

[

n
k

]

q

=
[n]q!

[k]q! [n− k]q!
.

The Gaussianq-binomial coefficients satisfy the recursion
relation
[

n+ 1
k

]

q

= qk
[

n
k

]

q

+

[

n
k − 1

]

q

, (8)

[

n+ 1
k

]

q

=

[

n
k

]

q

+ qn+1−k

[

n
k − 1

]

q

. (9)

Next we remind a notion of composition of integer. Ifn is
a positive integer then a composition of an integern is a
way of writing n as the sum of strictly positive integers.
For example ifn = 3 then there are three compositions

3 = 3, 3 = 2 + 1, 3 = 1 + 2, 3 = 1 + 1 + 1.

Let Ψn be the set of all compositions of an integern. We
will write a composition of an integern in the form of a
sequence of strictly positive integersσ = (i1, i2, . . . , ir),
wherei1 + i2 + . . .+ ir = n. Let us denote

n1 = i1,

n2 = i1 + i2,

n3 = i1 + i2 + i3,

. . .

nr = i1 + i2 + . . .+ ir.

Obviouslynr = n. It should be mentioned that the num-
ber of elements in the setΨn is 2n−1 [12]. The following
proposition gives an explicit formula for the polynomials
fn:

Theorem 1.For any integern ≥ 2 we have the following
expansion of power of the operatorD and the expansion
of a polynomialfn in terms of generatorsξi:

∆n =
n
∑

i=0

[

n
i

]

q

fi δ
n−i, (10)

fn =
∑

σ∈Ψn

[

n1 − 1
0

]

q

[

n2 − 1
n1

]

q

[

n3 − 1
n2

]

q

. . .

. . .

[

nr − 1
nr−1

]

q

ξi1ξi2 . . . ξir , (11)

whereσ = (i1, i2, . . . , ir) is a composition of an integer
n.

Proof.We will prove the expansion formulae of this the-
orem by the method of mathematical induction. First we
prove the power expansion formula (10) for Dn. Taking
into account the definitionD = d + ξ1 we see that in the
case ofn = 1 the expansion formula (10) is correct. In-
deed in this case we have

∆ =

[

1
0

]

q

f0 δ +

[

1
1

]

q

f1 = δ + ξ1.

Now we assume that the first expansion formula holds for
some integern > 1 and show that it also holds whenn+
1 is substituted forn. It is easy to see that for any two
homogeneous polynomialsp, p′ ∈ P[ξ] it holds

∆(pp′) = ∆(p)p′ + q|p|p δ(p′). (12)

Making use of the property (12) of the operator∆ and the
recurrent formula forq-binomial coefficients (9) we have

∆n+1 = ∆(∆n) = ∆
(

n
∑

i=0

[

n
i

]

q

fi δ
n−i

)

=
n
∑

i=0

[

n
i

]

q

(

∆(fi) δ
n−i + qi fiδ

n+1−i
)

=

n
∑

i=0

[

n
i

]

q

(

fi+1 δ
n−i + qi fiδ

n+1−i
)

= fn+1 + δn+1 +

+

n
∑

i=1

fi δ
n+1−i

(

[

n
i − 1

]

q

+ qi
[

n
i

]

q

)

= fn+1 +
n
∑

i=1

[

n
i

]

q

fi δ
n+1−i + δn+1

=
n+1
∑

i=0

[

n+ 1
i

]

q

fi δ
n+1−i.

Thus the expansion formula (10) is proved. Now if we ap-
ply the both sides of the proved formula toξ1 we obtain

fn+1 =
n
∑

i=0

[

n
i

]

q

fi ξn+1−i, (13)

and this is the recurrent formula for the polynomialsfn
which we will use in order to prove the expansion formula
(11) for fn.

We start the proof of expansion formula (11) with the
base casen = 2. From the definition∆ = δ+ξ1 it follows

f2 = ∆(f1) = ∆(ξ1) = δξ1 + ξ21 = ξ2 + ξ21 .

On the other hand ifn = 2 then there are two compositions
2 = 2, 2 = 1 + 1, and the expansion formula (11) gives

f2 =

[

1
0

]

q

ξ2 +

[

1
0

]

q

[

1
1

]

q

ξ21 = ξ2 + ξ21 .

Hence in the base case of mathematical inductionn = 2
the formula (11) is correct. Now we assume that the second
expansion formula holds for some positive integern > 2
and show that it also holds whenn+1 is substituted forn.
Let us consider the sum

∑

σ∈Ψn+1

[

n2 − 1
n1

]

q

[

n3 − 1
n2

]

q

. . .

. . .

[

n
nr

]

q

ξi1ξi2 . . . ξir+1
, (14)
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whereσ = (i1, i2, . . . , ir, ir+1) is a composition of an in-
tegern+1. Hencei1+ . . .+ ir+ ir+1 = n+1. Our aim is
to show that this sum is equal to the polynomialfn+1. Let
us fix an integeri ∈ {0, 1, . . . , n} and a generatorξn+1−i.
It is clear that if we select the compositions of an integer
n+1 which have the form(i1, i2, . . . , ir, n+1−i), i.e. the
last integer of each composition is previously fixed integer
n+ 1− i, and we remove in each composition the last in-
teger then the set of compositions(i1, i2, . . . , ir) is the set
of all compositions of an integeri, i.e.{(i1, i2, . . . , ir)} =
Ψi. Indeed we have

i1 + i2 + . . .+ ir + n+ 1− i = n+ 1,

which impliesi1 + i2 + . . .+ ir = i. Consequently if we
select all terms of the sum (14) with ir+1 = n+1− i (i.e.
containing a generatorξn+1−i at the end of a product of
generators) then we get the sum

∑

σ∈Ψn+1

[

n2 − 1
n1

]

q

[

n3 − 1
n2

]

q

. . .

[

n
i

]

q

×

× ξi1ξi2 . . . ξirξn+1−i, (15)

where the sum is taken over the compositions of integer
n + 1 which have the formσ = (i1, i2, . . . , ir, n + 1 −
i) ∈ Ψn+1. We would like to point out that the product of
binomial coefficients of each term in this sum contains the
factor

[

n
i

]

q

.

Hence we can write the sum (15) as follows
[

n
i

]

q

(

∑

τ∈Ψi

[

n2 − 1
n1

]

q

[

n3 − 1
n2

]

q

. . .

[

i− 1
nr−1

]

q

× ξi1ξi2 . . . ξir

)

ξn+1−i,

whereτ = (i1, i2, . . . , ir) ∈ Ψi and the sum is taken
over all compositions of integeri. Now we make use of
the assumption of an inductive step that the expansion for-
mula for a polynomialfm holds for each integerm ∈
{1, 2, . . . , n}. Hence the sum in the previous formula is
equal tofi, i.e
∑

τ∈Ψi

[

n2 − 1
n1

]

q

[

n3 − 1
n2

]

q

. . .

[

i− 1
nr−1

]

q

×

× ξi1ξi2 . . . ξir = fi.

Thus the sum (15) is equal to
[

n
i

]

q

fi ξn+1−i,

and summing up all these terms with respect toi we get
the sum (14). Consequently the sum (14) we started with
is equal to the sum

n
∑

i=0

[

n
i

]

q

fi ξn+1−i,

which in turn is equal tofn+1 (see the recurrent relation
(13)). This ends the proof.

For the first values ofn the formula (11) gives the polyno-
mials

f2 = ξ2 + ξ21 , (16)

f3 = ξ3 + ξ2 ξ1 + [2]q ξ1 ξ2 + ξ31 , (17)

f4 = ξ4 + ξ3 ξ1 + [3]q ξ1ξ3 + [3]q ξ
2
2

+ ξ2ξ
2
1 + [3]q ξ

2
1ξ2 + [2]q ξ1ξ2ξ1 + ξ41 . (18)

3. Polynomial algebra atN th root of unity

In this section we will study the structure of the graded
polynomial algebraP[d, ξ] introduced in the previous sec-
tion in the case whenq is a primitiveN th root of unity and
prove that in this case the graded polynomial algebraP[ξ]
can be endowed with a structure of gradedq-differential
algebra.

Let N ≥ 2 be an integer andq be a primitiveN th root
of unity. A graded vector spaceV = ⊕nV n is said to be a
cochainN -complex or simplyN -complex if it is endowed
with an endomorphism of degree oned : V n → V n+1

satisfyingdN = 0 [7,8,13]. A graded associative unital
algebraA with gradedq-derivation of degree oned is said
to be a gradedq-differential algebra ifd satisfiesdN = 0
[6]. A gradedq-derivation of degree oned will be referred
to asN -differential of gradedq-differential algebra. Par-
ticularly if N = 2 then gradedq-differential algebra is a
graded differential algebra with graded differentiald sat-
isfying d2 = 0. One can construct a gradedq-differential
algebra with the help of the following theorem [4]

Theorem 2.Let A be a graded associative unital algebra
A = ⊕kA

k, and q be a primitiveN th root of unity. If
there exists an element of grading onev ∈ A 1 which sat-
isfies the conditionvN ∈ Z (A ), whereZ (A ) is the
graded center ofA , then a graded algebraA endowed
with the inner gradedq-derivationd = adqv is the graded
q-differential algebra andd is itsN -differential.

Making use of the theorem (2) we prove the following the-
orem:

Theorem 3.If q is a primitiveN th root of unity and the
variabled satisfiesdN = λ · 1, whereλ is any complex
number, then for any integerk > N a variableξk van-
ishes, i.e. the polynomial algebraP[d, ξ] is generated by
the finite set of variables{d, ξk}Nk=1 which obey the rela-
tions

dξ1 = q ξ1d+ ξ2, dξ2 = q2 ξ2d+ ξ3,

· · ·

dξN−1 = qN−1 ξN−1d+ ξN , dξN = ξNd,

dN = λ · 1.
The gradedq-derivationδ = [d, ]q : P[ξ] → P[ξ] is the
N -differential, i.e.dN = 0, and the graded polynomial
algebraP[ξ] is the gradedq-differential algebra.
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Proof.It follows from Theorem2 that the inner gradedq-
derivation of polynomial algebraP[d, ξ] determined by
the gradedq-commutator with the elementd, i.e. the in-
ner gradedq-derivation[d, ]q : P[d, ξ] → P[d, ξ], is the
N -differential of the polynomial algebraP[d, ξ] because
the elementd satisfiesdN = λ · 1 which means that it
lies in the graded center ofP[d, ξ]. Now if we consider
the restriction of this inner gradedq-derivation ofP[d, ξ]
to the subalgebraP[ξ] ⊂ P[d, ξ] then we have the graded
q-derivation (not inner)δ of the algebraP[ξ] which obvi-
ously satisfiesδN = 0. Henceδ is theN -differential of
P[ξ] andP[ξ] is a gradedq-differential algebra. Finally
δ has the propertyδ(ξk) = ξk+1 andξN+1 = δ(ξN ) =
δN (ξ1) = 0 which proves that for any integerk > N a
variableξk vanishes.

From now and until the end of this Section we will assume
that q is a primitiveN th root of unity, the conditions of
Theorem3 are satisfied andP[ξ] is a gradedq-differential
algebra withN -differentialδ generated by the set of vari-
ablesξ1, ξ2, . . . , ξN . Let us remind that there is the endo-
morphism∆ defined on the algebraP[ξ] by the formula
∆ = δ + Lξ1 . Hence∆ is a differential operator of the al-
gebraP[ξ] but the following theorem shows that theN th
power of this differential operator is not a differential op-
erator but the endomorphism of left multiplication by the
polynomialfN .

Theorem 4.TheN th power of endomorphism∆ = δ +
Lξ1 : P[ξ] → P[ξ] is the endomorphism of left multipli-
cation by the polynomialfN , i.e.∆N = LfN .

Proof.We prove this theorem with the help of expansion
formula (10). We have

∆N =

N
∑

i=0

[

N
i

]

q

fi δ
N−i.

Theq-binomial coefficients in this expansion formula with
i ∈ {1, 2, . . . , N − 1} vanish becauseq is a primitiveN th
root of unity. The first term in this expansion also vanishes
becauseδ is anN -differential and satisfiesδN = 0. Hence
∆N = LfN .

Theorem 5.The polynomialfN ∈ P[ξ] satisfies the iden-
tity

δ(fN ) + adqξ1(fN ) = 0,

where adqξ1 = [ξ1, ]q : P[ξ] → P[ξ] is an inner graded
q-derivation of algebraP[ξ].

Proof.Let us remind that there is the recurrent relation (13)
for the polynomialsfk which has the form

fk+1 =

k
∑

i=0

[

k
i

]

q

fi ξk+1−i.

Takingk = N in this relation we obtain

fN+1 =

N
∑

i=0

[

N
i

]

q

fi ξN+1−i. (19)

For any integer1 ≤ i ≤ N − 1 theq-binomial coefficient
in (19) labelled withi vanishes becauseq is a primitive
N th root of unity. Thus the above relation takes the form

fN+1 = f0 ξN+1 + fNξ1.

From Theorem3 follows thatξN+1 = 0, and the first term
at the right-hand side of the above relation vanishes. Hence

0 = fN+1 − fN ξ1 = ∆(fN )− fN ξ1

= δ(fN ) + ξ1 fN − fN ξ1 = δ(fN ) + adqξ1(fN ) = 0.

4. Chern-Simons forms

The aim of this section is to develop a noncommutative
analog of Chern-Simons form with the help of gradedq-
differential algebra. We will introduce the Chern character
form and prove the infinitesimal homotopy formula for the
Chern character form.

Let us remind thatA is a graded algebra withq-deriva-
tion d, whereq is a complex number different from zero,
andA is a grading one element of this algebra. LetAA be
the subalgebra of algebraA freely generated by the ele-
mentsA, dA, d2A, . . .. It is clear that the algebrasAA and
LA(A) are free algebras, and they are isomorphic if we
identify their generators as follows

dnA ↔ LdnA ↔ ξn+1, n ≥ 0. (20)

Moreover the algebraL d
A(A) is isomorphic to the alge-

braP[d, ξ] if in addition to (20) we identify the generator
d viewed as the element ofL d

A(A) with the generatord.
This follows immediately from the gradedq-Leibniz rule
(1) and the commutation relations (4). Hence considering
d as an element of algebraL d

A(A) we can identify the in-
ner gradedq-derivation adqd = [d, ]q of L

d
A(A) with the

inner gradedq-derivation adqd = [d, ] of P[d, ξ]. Let us
remind that the restriction of the inner gradedq-derivation
adqd = [d, ] to the subalgebraP[ξ] generated byξn is
the gradedq-derivationδ of P[ξ]. If we restrict the inner
gradedq-derivation adqd = [d, ]q to the subalgebraLA(A)
which is isomorphic to the algebraP[ξ] and according to
(20) replace each generatorLdnA of LA(A) with corre-
sponding generatordnA of AA then the restriction of inner
gradedq-derivation adqd = [d, ] to the subalgebraP[ξ] can
be identified with gradedq-derivationd of AA. This im-
mediately follows from the gradedq-Leibniz rule written
in the form

adqd(LA) = [d, LA]q = d ◦ LA − q|A|LA ◦ d = LdA.

Hence if we identify each generatorξn of algebraP[ξ]
with corresponding generatordn−1A of isomorphic alge-
braAA then the gradedq-derivationδ is identified with the
gradedq-derivationd of AA. Consequently the calculus
developed in Section 2 for the algebraP[ξ] can be applied
to the algebraAA if we replaceξn+1 → dnA, δ → d. For
instant we can introduce an endomorphismD : AA → AA
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which can be viewed as an analog of∆ = δ + Lξ1 giving
it by the formulaD = d+LA. It is worth mentioning that
D has the remarkable property

D(P P ′) = D(P )P ′ + q|P |P d(P ′), (21)

whereP, P ′ ∈ AA. We can also introduce the polynomials
Fn ∈ AA defining them by the recurrent formula

F0 = 1, F1 = A, Fn+1 = D(Fn). (22)

It is obvious that the polynomialsFn can be viewed as
analogs of polynomialsfn and we can calculate a polyno-
mial Fn by replacing each generatorξk in fn with gener-
atordk−1A. It follows from Theorem1 that the following
expansion formulae forD and the polynomialsFn hold

Dn =

n
∑

i=0

[

n
i

]

q

Fi d
n−i,

Fn =
∑

σ∈Ψn

[

n1 − 1
0

]

q

[

n2 − 1
n1

]

q

[

n3 − 1
n2

]

q

. . .

. . .

[

nr − 1
nr−1

]

q

di1−1Adi2−1A . . . dir−1A.

If n = 2, 3, 4 then we get the polynomials

F2 = dA+A2, (23)

F3 = d2A+ dAA+ [2]q AdA+A3, (24)

F4 = d3A+ d2AA+ [3]q Ad2A+ [3]q (dA)
2

+ dAA2 + [3]q A
2 dA+ [2]q AdAA+A4.(25)

It should be pointed out that from the beginning of this
section and up to nowq is a complex number different
from zero. From now and until the end of this section we
will assume thatq is a primitiveN th root of unity. In this
case we can prove the following theorem:

Theorem 6.If q is a primitiveN th root of unity then an al-
gebraA with gradedq-derivationd is a gradedq-differen-
tial algebra withN -differential d if and only if for any
element of grading oneA ∈ A the generatord of algebra
P[ξ] satisfiesdN = λ ·1, whereλ is any complex number.

In what follows we will assume that the necessary and suf-
ficient condition of Theorem6 is satisfied, and henceA is
a gradedq-differential algebra withN -differentiald. Since
a graded differential algebra can be viewed as an analog of
algebra of differential forms on a manifold or in a noncom-
mutative case as an analog of algebra of matrix-valued dif-
ferentials forms we can use a terminology of modern dif-
ferential geometry interpreting an element of grading one
A ∈ A as analogous to a connection form [16]. Then the
endomorphismD = d+LA satisfying (21) will be referred
to as a covariantN -differential. It follows from Theorem4
that theN th power of covariantN -differentialD is the en-
domorphism of left multiplication by the polynomialFN .
Thus we can view the polynomialFN as analogous to the

curvature of connection formA, and the polynomialFN

will be referred to as the curvature of connection formA.
It follows from Theorem5 that the curvatureFN satisfies
the identity

d(FN ) + [A,FN ]q = 0, (26)

this identity will be referred to as Bianchi identity for the
curvature of connection formA.

Particularly ifN = 2 thenq is a primitive quadratic
root of unity, i.e.q = −1, and an algebraA is a graded
differential algebra with differentiald which satisfiesd2 =
0. In this case the curvatureF2 of connection formA is
given by the formulaF2 = dA + A2 = dA + 1

2
[A,A],

where[ , ] is the graded commutator.
If N = 3 thenq is a primitive cubic root of unity satis-

fying the identity1+q+q2 = 0. In this caseA is a graded
q-differential algebra with3-differentiald which has the
propertyd3 = 0. The curvatureF3 of connection formA
is given byF3 = d2A+dAA+[2]q AdA+A3. Making use
of the identity1+ q+ q2 = 0 we get[2]q = 1+ q = −q2.
Thus the curvature can be written in the form

F3 = d2A+ dAA− q2 AdA+A3

= d2A+ [dA,A]q +A3, (27)

where[ , ]q is the gradedq-commutator.
Let us denote by[A,A]q the subspace ofA spanned

by gradedq-commutators[P, P ′]q, whereP, P ′ are homo-
geneous elements of gradedq-differential algebraA. Let
V = ⊕nV n be anN -complex with an endomorphism of
degree onêd : V n → V n+1 satisfyingd̂N = 0. A ho-
mogeneous degree zero homomorphism of vector spaces
τ : An → V n which satisfies

d̂ ◦ τ = τ ◦ d, τ([A,A]q) = 0, (28)

will be referred to as a trace on a gradedq-differential al-
gebraA. For any positive integern the elementτ(Fn

N/n!)
of N -complexV will be referred to as the Chern character
form of connection formA.

Theorem 7.The Chern character form of connection form
A is closed form, i.e.

d̂{τ(
Fn
N

n!
)} = 0. (29)

Proof.Let us show thatFn
N satisfies the identity

d(Fn
N ) + [A,Fn

N ]q = 0. (30)

In the case ofN = 1 we have the Bianchi identity. Now
assuming thatFn−1

N satisfies (30) we will show thatFn
N

satisfies the same identity. We have

d(Fn
N ) + [A,Fn

N ]q = d(FN Fn−1

N ) + [A,Fn
N ]q

= d(FN )Fn−1

N + qN FN d(Fn−1

N ) +AFn
N − Fn

N A

= {d(FN ) + [A,FN ]q}F
n−1

N +

+FN {d(Fn−1

N ) + [A,Fn−1

N ]q} = 0.

Thus

d̂{τ(
Fn
N

n!
)} =

1

n!
τ{d(Fn

N )} =
1

n!
τ(−[A,Fn

N ]q) = 0.
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Theorem 8.Let q be a primitive cubic root of unity and
A(t) = t A be a family of grading one elements of graded
q-differential algebraA. Then the following infinitesimal
homotopy formula holds

∂

∂t
{
τ(Fn

3 (t))

n!
} = d̂ 2{

τ(Ȧ(t)Fn−1
3 (t))

n− 1!
}. (31)

Proof.If n = 1 then the infinitesimal homotopy formula
takes the form

∂

∂t
{τ(F3(t))} = d̂ 2{τ(Ȧ(t))}. (32)

Making use of formulae (27) and

A3 =
[A, [A,A]q ]q

(1 − q)(1− q2)
, (33)

we can write the left-hand side of (32) as follows

∂

∂t
{τ(F3(t))} =

∂

∂t
{τ(d2A(t) + [dA(t), A(t)]q +

+
[A(t), [A(t), A(t)]q ]q

(1− q)(1 − q2)
)} = d̂ 2{τ(Ȧ(t))}.

We show how to prove the infinitesimal homotopy formula
in the casen = 2 and for integersn > 2 this formula can
be proved in a similar way. Ifn = 2 then the formula (31)
takes the form

1

2

∂

∂t
{τ(F 2

3 (t))} = d̂ 2{τ(Ȧ(t)F3(t))}. (34)

For A(t) = t A we calculate the polynomial oft in the
left-hand side of infinitesimal homotopy formula

1

2

∂

∂t
{τ(F 2

3 (t))} =

5
∑

k=1

Pk t
k, (35)

where

P1 = (d2A)2,

P2 =
3

2
d2AdAA−

3q2

2
d2AAdA+

3

2
dAAd2A−

−
3q2

2
d2AdAd2A,

P3 = 2 (d2AA3 + dAAdAA − q2 dAA2 dA−

−q2 A (dA)2A− q2 AdAAdA+A3d2A),

P4 =
5

2
(dAA4 − q2 AdAA3 +A3 dAA− q2 A4dA),

P5 = 3A6.

Obviously there are no terms witht4 andt5 in the right-
hand side of formula (34), and the polynomialsP4, P5 have
to be expressed in terms of gradedq-commutators. Indeed
we have

P4 =
5

2
(2[dA,A4]q + [A3, dAA]q − q2[AdA,A3]q),

P5 =
3

(1− q)(1 − q2)
[[A2, A2]q, A

2]q.

Now we calculate the right-hand side of formula (34). We
obtain

Ȧ(t)F3(t) = t A d2A+ t2 AdAA− q2t2 A2 dA+ t3 A4.

Differentiating twice byd and comparing with the left-
hand side we conclude that the formula (34) holds if three
polynomials can be expressed in terms of gradedq-com-
mutators. Because of the limited space of the present arti-
cle we will show only one of these polynomials and repre-
sent it by gradedq-commutators. This polynomial is

q2 AdAA2 + q A2 d2AA+A3 d2A+ d2 A3,

and this polynomial can be written in the form

(1−
q2

3
)[A2, d2AA]q +

1

3
[A2, A d2A]q +

+
2

3
(q2 − 1)[A2d2A,A]q −

4

3
q2[A, [A2, d2A]]q.

Integrating both sides of the formula (34) we obtain

1

2

∫ 1

0

∂

∂t
{τ(F 2

3 (t))} dt =

∫ 1

0

d̂ 2{τ(Ȧ(t)F3(t))} dt,

or
1

2
τ(F 2

3 (t)) = d̂ 2

∫ 1

0

τ{Ȧ(t)F3(t)} dt. (36)

The integral at the right-hand side of the previous formula
will be referred to as the Chern-Simons form and it will be
denoted by CS3q(A, τ), i.e.

CS3q(A, τ) =
∫ 1

0

τ{Ȧ(t)F3(t)} dt. (37)

SinceA(t) = t A we can find an explicit formula for the
Chern-Simons form

CS3q(A, τ) =
1

2
τ(Ad2A+

2

3
AdAA−

2q2

3
A2 dA+

1

2
A4).

5. Connection on module

We begin this section by recalling the notion ofΩ-connec-
tion given in [9]. Suppose thatA is an unital associative
algebra over the field of complex numbers andE is a left
module overA. LetΩ be a graded differential algebra with
differentiald, such thatΩ0 = A, it means that the map
d : A → Ω1 is a differential calculus overA. Since an
subspace of elements of grading one can be viewed as a
(A,A)-bimodule, the tensor productΩ1 ⊗A E clearly has
the structure of leftA-module.

Definition 1.A linear map∇ : E → Ω1 ⊗A E is called an
Ω-connectionif it satisfies

∇(us) = du ⊗A s+ u∇(s)

for anyu ∈ A ands ∈ E .
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Similarly to the case of connections on vector bundles, this
map has a natural extension∇ : Ω ⊗A E → Ω ⊗A E by
setting

∇(ω ⊗A s) = dω ⊗A s+ (−1)pω∇(s),

whereω ∈ Ωp ands ∈ E .

Now our aim is to generalize a notion ofΩ-connection tak-
ing gradedq-differential algebra instead of graded differ-
ential algebraΩ. LetA be an unital associativeC-algebra,
Ωq is a gradedq-differential algebra withN -differentiald
andA = Ω0

q . Let E be a leftA-module. Considering alge-
braΩq as the(A,A)-bimodule we take the tensor product
of left A-modulesΩq ⊗A E which clearly has the structure
of left A-module. To shorten the notation, we denote this
left A-module byF. Taking into account that an algebra
Ωq can be viewed as the direct sum of(A,A)-bimodules
Ωi

q we can split the leftA-moduleF into the direct sum of
the leftA-modulesFi = Ωi

q ⊗A E , i.e.F = ⊕iF
i, which

means thatF inherits the graded structure of algebraΩq,
andF is the graded leftA-module. It is worth noting that
the leftA-submoduleF0 = A⊗A E of elements of grading
zero is isomorphic to a leftA-moduleE , where isomor-
phismϕ : E → F0 can be defined for anys ∈ E by

ϕ(s) = e⊗A s, (38)

wheree is the identity element of algebraA.Since a graded
q-differential algebraΩq can be viewed as the(Ωq, Ωq)-
bimodule, the leftA-moduleF can be also considered as
the leftΩq-module, and we will use this structure to de-
scribe a concept ofN -connection. Let us mention that mul-
tiplication by elements ofΩi, wherei 6= 0, does not pre-
serve the graded structure of the leftΩq-moduleF.

The tensor productF has also the structure of the vector
space overC where this vector space is the tensor product
of the vector spacesΩq and E . It is evident thatF is a
graded vector space, i.e.F = ⊕iF

i, whereFi = Ωi
q ⊗C E .

Due to the structure of vector space ofF we can introduce
the notion of linear operator onF. We denote the vector
space of linear operators onF byL(F). The structure of the
graded vector space ofF induces the structure of a graded
vector space onL(F), and we shall denote the subspace of
homogeneous linear operators of degreei byLi(F).

Definition 2.AnN -connectionon the leftΩq-moduleF is
a linear operator∇q : F → F of degree one satisfying the
condition

∇q(ω ⊗A s) = dω ⊗A s+ q|ω| ω∇q(s), (39)

whereω ∈ Ωk
q , s ∈ E , and|ω| is the degree of the homo-

geneous element of algebraΩq.

Making use of the previously introduced notations we can
write ∇q ∈ L1(F). It is worth pointing out that ifN = 2
thenq = −1, and in this particular case the Definition2

gives us the algebraic analog of a classical connection. We
see that connection on vector bundle can be viewed as a
linear map on a left module of sections of vector bundle,
taking values in algebra of differential 1-forms with val-
ues in this vector bundle, which clearly has a structure of
a left module over an algebra of smooth functions on a
base manifold. Hence a concept of aN -connection can be
viewed as a generalization of a classical connection.

One can define anN -connection on right modules. IfER

is a rightA-module, aN -connection onG = ER ⊗A Ωq

is a linear map∇q : G → G of degree one such that
∇q(ξ ⊗A ω) = ξ ⊗A dω + qω∇q(ξ)ω for anyξ ∈ ER and
homogeneous elementω ∈ Ωq.

Let E be a leftA-module. The set of all homomorphisms
of E intoA has the structure of the dual module of the left
A-moduleE and is denoted byE∗. It is evident thatE∗ is a
rightA-module.

Definition 3.A linear map∇∗
q : E∗ → E∗ ⊗A Ω1

q defined
as follows

∇∗
q(η)(ξ) = d(η(ξ)) − η(∇q(ξ)),

whereξ ∈ E , η ∈ E∗ and∇q is anN -connection onE , is
said to be the dual connection of∇q.

It is easy to verify that∇∗
q has a structure ofN -connection

on the right moduleE∗. Indeed, for anyf ∈ A, η ∈ E∗,
ξ ∈ E we have

∇∗
q(ηf)(ξ) = d(ηf(ξ))− (ηf)(∇qξ)

= d(η(ξ)f)− η(∇qξ)f

= d(η(ξ))f + η(ξ) ⊗A df − η(∇qξ)f

= η(ξ)⊗A df +∇∗
q(η(ξ))f.

In order to define a Hermitian structure on a rightA-module
E we assumeA to be a gradedq-differential algebra with
involution ∗ such that the largest linear subset contained
in the convex coneC ∈ A generated bya∗a is equal to
zero, i.e.C ∩ (−C) = 0. The rightA-moduleE is called a
Hermitian module ifE is endowed with a sesquilinear map
h : E × E → A which satisfies

h(ξω, ξω′) = ω∗h(ξ, ξ′)ω′, ∀ω, ω′ ∈ A, ∀ξ, ξ′ ∈ E ,
h(ξ, ξ) ∈ C, ∀ξ ∈ E and h(ξ, ξ) = 0 ⇒ ξ = 0.

We have used the convention for sesquilinear map to take
the second argument to be linear, therefore we define a
Hermitian structure on right modules. In a similar manner
one can define a Hermitian structure on left modules.

Definition 4.AnN -connection∇q on a Hermitian rightA-
moduleE is said to beconsistent with a Hermitian struc-
ture ofE if it satisfies

dh(ξ, ξ′) = h(∇q(ξ), ξ
′) + h(ξ,∇q(ξ

′)),

whereξ, ξ′ ∈ E .
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Our next aim is to define a curvature ofN -connection. Fol-
lowing [3] we start with

Proposition 1.TheN -th power of anyN -connection∇q is
the endomorphism of degreeN of the leftΩq-moduleF.

Proof.It suffices to verify that for any homogeneous ele-
mentω ∈ Ωq an endomorphism∇q ∈ L1(F) satisfies the
condition

∇N
q (ω ⊗A s) = ω∇N

q (s).

We expand thek-th power of∇q as follows

∇k
q (ω ⊗A s) =

k
∑

m=0

qm|ω|

[

k
m

]

q

d k−mω ∇m
q (s), (40)

where

[

k
m

]

q

are theq-binomial coefficients. Sinced is

theN -differential of a gradedq-differential algebraΩq we

havedNω = 0. According to

[

N
m

]

q

= 0 for 1 ≤ m ≤

N − 1, we see that in the case ofk = N the expansion
(40) takes the following form

∇N
q (ω ⊗A s) = qN |ω|ω∇N

q (s) = ω∇N
q (s) (41)

and this clearly shows that∇N
q is the endomorphism of the

left Ωq-moduleF.

This proposition allows us to define the curvature ofN -
connection as follows

Definition 5.The endomorphismF = ∇N
q of degreeN of

the leftΩq-moduleF is said to be thecurvature of aN -
connection∇q.

Suppose thatL(F) is the graded vector space. We proceed
to show thatL(F) has a structure of graded algebra. To
this end, we take the productA◦B of two linear operators
A,B of the vector spaceF as an algebra multiplication. If
A : F → F is a homogeneous linear operator than we can
extend it to the linear operatorLA : L(F) → L(F) on the
whole graded algebra of linear operatorsL(F) by means
of the gradedq-commutator as follows

LA(B) = [A,B]q = A ◦B − q|A||B|B ◦A, (42)

whereB is a homogeneous linear operator. It makes allow-
able to extend anN -connection∇q to the linear operator
on the vector spaceL(F)

∇q(A) = [∇q, A]q = ∇q ◦A− q|A| A ◦ ∇q, (43)

whereA is a homogeneous linear operator. As it follows
from the Definition(2),∇q is the linear operator of degree
one on the vector spaceL(F), i.e.∇q : Li(F) → Li+1(F),
and∇q satisfies the gradedq-Leibniz rule with respect to
the algebra structure ofL(F). Consequently the curvature
F of anN -connection can be viewed as the linear opera-
tor of degreeN on the vector spaceF, i.e.F ∈ LN (F).
Therefore one can act onF by N -connection∇q, and it
holds that

Proposition 2.For anyN -connection∇q the curvatureF
of this connection satisfies the Bianchi identity∇q(F ) =
0.

Proof.We have

∇q(F ) = ∇q ◦ F − qN F ◦ ∇q = ∇N+1
q −∇N+1

q = 0.

The following theorem shows that not every leftA-module
admits anN -connection [5]. In analogy with the theory of
Ω-connection [9] we can prove that there is anN -connec-
tion on every projective module. Let us first prove the fol-
lowing proposition.

Proposition 3.If E = A⊗ V is a freeA-module, whereV
is a C-vector space, then∇q = d ⊗ IV is N -connection
onE and this connection is flat, i.e. its curvature vanishes.

Proof.Indeed,∇q : A⊗ V → Ω1
q ⊗ (A ⊗ V ) and

∇q(f(g ⊗ v)) = (d⊗ IV )(f(g ⊗ v)) = d(fg)⊗ v =

= (dfg)⊗ v + f(dg ⊗ v)

= df ⊗A (g ⊗ v) + f∇q(g ⊗ v),

wheref, g ∈ A, v ∈ V. Sinced satisfiesdN = 0 andq is
a primitiveN th root of unity, we get

∇N
q (f(g ⊗ v)) =

∑

k+m=N

[

N
m

]

q

dkf(dmg ⊗ v) = 0,

i. e. the curvature of such aN -connection vanishes.

Theorem 9.Every projective module admits anN -connec-
tion.

Proof.Let P be a projective module. From the theory of
modules it is known that a moduleP is projective if and
only if there exists a moduleN such thatE = P ⊕ N is
a free module. A free leftA-moduleE can be represented
as the tensor productA⊗ V, whereV is aC-vector space.
A linear map∇q = π ◦ (d ⊗ IV ) : P → Ω1

q ⊗A P is a
N -connection on a projective moduleP , whered⊗ IV is
aN -connection on a leftA-moduleE , π is the projection
on the first summand in the direct sumP⊕N andπ(ω⊗A

(g ⊗ v)) = ω ⊗A π(g ⊗ v) = ω ⊗A m, whereω ∈ Ω1
q ,

g ∈ A, v ∈ V, m ∈ P . Taking into account Proposition3
we get

∇q(fm) = π((d ⊗ IV )(fm)) = π(df ⊗A m+ fdm) =

= df ⊗A π(m) + f∇q(m)

= df ⊗A m+ f∇q(m),

wheref ∈ A, m ∈ P .
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