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Abstract: In the present paper the favorable fit for exceedances related to the accidental snow loads, described in a companion paper,
is studied. In particular, the Hill, t-Hill and modified Hillestimators are used and the quality of their distributionalfits is assessed.
Also t-estimation methods are considered. Assuming that the data is driven by Pareto or exponential distribution, respectively, the exact
likelihood ratio tests for homogeneity to validate the results of regression fits are applied. Further, the statisticaldependence between
the exceedances and the corresponding altitudes is studied.
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1 Introduction

An approach to the assessment of accidental snow loads
on structures is suggested in the companion paper
Sadovský et al. [10], see also [7]. The approach combines
engineering and climatology aspects using the data of
collection and analysis of snow loads in Slovakia carried
out recently Sadovský et al. [8] and Sadovský et al. [9].
The long-term weekly measurements of snow water
equivalent (SWE) of snow cover at 660 rain-gauge
stations are employed. Out of the rain-gauge stations, 55
meteorological stations were selected at which daily SWE
values have been recalculated using other climatological
measurements, like depth of snow cover etc. (Sadovský et
al. [9]). Preliminary statistical analysis has been made in
Stehlı́k and Sadovský [14].

The SWE records of 52 to 56 winter seasons are well
suited for the assessment of the characteristic snow load
on the ground, which is defined as 98 % quantile of a
suitable extreme value distribution fitted to the yearly
snow load maxima. Nevertheless, at some stations an
outlying yearly maximum may occur as a result of
exceptional heavy snowfalls. It is assumed that the
maximum is a member of the same population, however,
with a mean return period of say about 1000 years and
more. Following Sanpaolesi et al. [11] the largest snow
load value is exceptional if the ratiok of the load to the

characteristic snow load determined without that value is
greater than 1.5. The snow loads identified as exceptional
should be treated in accidental design situations as
accidental actions (loads), cf. Eurocode EN 1990.

The novelty of the approach for the assessment of the
accidental snow loads by Sadovský et al. [10] can be
briefly described. First thek values in excess of 1.5 are
identified. Then by the expertise of climatologists based
on the geomorphology of Slovakia, regions of similar
climate conditions for the occurrence of accidental snow
loads are determined, see Figure 1. Within a studied
region, the values of the empirical distribution functionF
restricted to the N orderedk values in excess of 1.5 is
calculated as

F(ki) =
i

NR+1
, (1)

whereNR is the sum of winter seasons over all stations in
the region andi ∈ (NR − N + 1, ...,NR). The obtained
empirical upper tail fork ratios is approximated by
nonlinear regression analysis using Pareto, exponential
and Gumbel distributions. The 0.999 and 0.9999 quantiles
of the distributions are of particular interest.

In the present paper tests on the quality of the
distributional fits performed in the companion paper
(Sadovský et al. [10]) are applied. Particularly the Region
2 and the composite Region 4, within which the mountain
basins are considered as one region, are studied. For the
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Fig. 1: Regions of exceptional snow loads (Sadovský et al. [7]).

exceptional snow loads and their correspondingk values
in Region 1, treated in Sadovský et al. [7], a statistical
dependence on the altitude is studied. The idea is to check
the anticipated low dependence ofk values on the altitude
inferred from their definition, which comprises the
altitude dependence already in the characteristic values.

2 STATISTICAL ASPECTS OF THE
ANALYSIS OF EXCEEDANCES

There are many important issues which should be
addressed from the theoretical point of view.

1.Which kind of tails is statistically significant in the
data? Authors used Pareto, exponential and Gumbel
types. Here we may apply potentially the test based
on the ratio between the maximum and mean of the
sample of the excesses above some random threshold.
Such a test turns out to be useful in the construction of
an asymptotical size of the test for the null hypothesis
that the distribution comes from the Gumbel domain
of attraction, see Neves, Picek and Alves [6].

2.Open question remains, which of the distribution fits
better for the quantiles 0.9999 estimation.

3.If a Pareto tail fits well, we may use the statistical
inference based on Stehlı́k et al. [15].

4.Quantile regression.

Related problems:

a)Classical statistics of extremes is largely univariate,
but simple modelling is inadequate for many events of
interest, which have a temporal aspect, a spatial
aspect, or both.

b)Environmental/regulatory changes add urgency:
changing probabilities for acceptable design
reliability of private and societal structures.

c)Fundamental to all characterizations of extreme value
processes is the concept of stability: a model for
exceedances over a high threshold should remain
valid for exceedances of higher thresholds.

2.1 Testing for Pareto tail Homogeneity

In statistical hypothesis testing, the p-value is the
probability of obtaining a test statistic at least as extreme
as the one that was actually observed, assuming that the
null hypothesis is true. The fact that p-values are based on
this assumption is crucial to their correct interpretation.
One often rejects a null hypothesis if the p-value is less
than 0.05 or 0.01, corresponding to a 5% or 1% chance,
respectively, of an outcome at least that extreme, given
the null hypothesis.

The following theorem (derived in Stehlı́k et al.[13])
gives the exact likelihood ratio test (ELRT) statistics of
shape parameter homogeneity

H0 : a1 = ...= aNversus non H0 (2)

for the sample from the ParetoP(λ ;a) family.
Let x1, ...,xN be i.i.d. from the ParetoP(λ ;a) family:

F(x) = 1− (λ/x)a where the scale parameterλ is known.
Then the likelihood ratio (LR) statistics− lnL of the
hypothesis (2) has the form

− ln N = N ln

(
N

∑
i=1

yβ
i

)
−N ln N−

N

∑
i=1

lnyβ
i (3)

with β = 1 and yi = lnxi − lnλ , L being the
corresponding likelihood ratio. The likelihood ratio
incorporates both the sensitivity and specificity of the test
and provides a direct estimate of how much a test result
will change the odds of having homogeneity. In statistics,
a likelihood ratio test is used to compare the fit of two
models one of which is nested within the other. Both
models are fitted to the data and their log-likelihood is
recorded. In our situation, homogeneity by Pareto model
means that we have no statistically significant variation in
the tail shape parametera.

2.2 Testing for exponential tail Homogeneity

Let x1, ...,xN be i.i.d. from the exponentialExp(a,b)
family, with cumulative distribution function (CDF)
F(x) = 1−exp(−a(x−b)) . Then the LR statistics− lnL
of the scale homogeneity hypothesis has the same form as
(3) with yi = x−b andb as known location parameter (for
details see Stehlı́k [12]). Notice, that the difference
between exponential and Pareto tail testing is that original
Pareto data are first transformed toyi and then plugged in
(3).

For future work:
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1)Two parametric families are used by Pareto and
exponential in Sadovský et al. [10]. Therefore it will
be of interest to modify the test for Pareto and
exponential to have a free lower bound.

2)Develop test alternative for another snow load model,
e.g. for Gumbel attraction family.

2.3 Pareto tail estimation

Assuming that the data are driven by Pareto, we may
employ various estimators to get a good quality of the
parametera estimation. In Stehlı́k et al. [13] an extensive
discussion to the favourable estimation of Pareto tail is
given. We will employ here

1)t-estimatorgiven by

â=
1

xh−1
, (4)

where xh stands for the harmonic mean. This is a
t-score moment method of estimating introduced by
Fabián [3]. Note that the harmonic mean is calculated
only for the studied upper tail.

2)t-Hill estimator introduced by Fabián and Stehlı́k [4]
and later studied in Stehlı́k et al. [15]. This is a
t-modification of a classical Hill estimator. We have

1
â
=

k/X(n−k,n)

∑k
i=1

1
X(n−i+1,n)

−1, (5)

Here X(1,n) < ... < X(n,n) are order statistics.
Notice that data is taken over thresholdX(n− k,n).
Fabián and Stehlı́k [4]) has proven consistency of the
t-Hill estimator, for generalization of t-Hill estimator
see Beran et al. [2].

3)Hill estimatordeveloped by Hill [5]:

1
â
=

1
k

[
ln(

X(n,n)

X(n−k,n)
)+ ...+ ln(

X(n−k+1,n)

X(n−k,n)
)

]
. (6)

2.4 Estimation of parameters of exponential
distribution

Let x1, ...,xN be i.i.d. from the exponentialExp(a,b)
family, with densitya.exp(a(x− b)) and support(a,∞).
Then the best linear unbiased scale estimator is (see
Balakrishnan and Basu, [1]):

â=
N−1

N(ar(X)−X(1,n))
. (7)

wherear(X) is the arithmetic mean of the data.

Table 1: LR statistics of homogeneity for Pareto on(λ ,∞) and
exponential family with support on(λ ,∞) in Region 2 (ki > 1.2,
N = 8).

Pareto Exponential
LR statistics 0.0363 0.0398

Table 2: LR statistics of homogeneity for Pareto on(λ ,∞) and
exponential family with support on(λ ,∞) in Region 4.

Pareto Exponential
LR statistics (ki > 1.5, N = 11) 0.0891 0.1346
LR statistics (ki > 1.3, N = 17) 0.1621 0.2312

3 REGRESSION FITS USING PARETO
AND EXPONENTIAL SCALE
ESTIMATORS

Since in the Region 2 only two exceedanceski above 1.5
have been detected, the threshold has been lowered to 1.2
increasing their number to 8. For the Region 4 two
thresholds of 1.5 and 1.3 have been considered resulting
in 11 and 17 exceedances. By this choice the influence of
threshold level on results of regression fits has been
checked (Sadovský et al. [10]).

The LR statistics of homogeneity tests for Pareto and
exponential family are shown in Tables 1, 2. For the
known parametersλ andb their estimates by non-linear
regressions in Sadovský et al. [10] are taken. In all cases
shown, very good results are obtained with LR statistics
values yielding p-value of 1, which means that it is almost
perfect fit (which is in coherence with practical
observations).

In the following subsections estimators for Pareto
shape parameter (see 2.3) and exponential scale
parameter (see 2.4) are calculated. The remaining scale or
location parameter is estimated by non-linear regression.
The least squares and absolute deviation minimizations
by the software Xact (SciLab GmbH) are performed. The
results are compared to the non-linear regression of both
parameters carried out in Sadovský et al. [10]. For
comparison the correlation coefficientr defined as the
square root of the determination coefficientr2

r2 = 1−
∑i(yi − ŷi)

2

∑i(yi − y)2 i ∈ (NR−N+1, ...,NR), (8)

where yi = F(ki), ŷi is an approximation ofyi by the
nonlinear regression andy the average ofyi values, is
used. Plotted values of empirical cdf and of the theoretical
cdf curves allow visual check of approximation.

3.1 Results for the Region 2

The estimators for Pareto shape parameter and exponential
scale parameter described in the Subsections 2.3 and 2.4
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Table 3: Tail approximation in Region 2 (ki > 1.2, N = 8).
Pareto on(λ ,∞) a λ R
a,λ regression 5.197 0.4254 0.9949
t-estimator,λ regression 2.578 0.1356 0.8972
t-Hill estimator, 6.389 0.5210 0.9860
λ regression
Hill estimator, 6.585 0.5355 0.9822
λ regression
Exponential on(b,∞) a b R
a, b regression 3.787 -0.2291 0.9953
a estimator, 4.697 0.0593 0.9874
b regression

Table 4: Estimations of Region 2 quantiles,ki > 1.2, N = 8.
Quantile 0.999 0.9999
Pareto a,λ , on(λ ,∞) 1.61 2.50
regression
Pareto on(λ ,∞) 1.54 2.20
t-Hill estimator, regression
Pareto on(λ ,∞) 1.53 2.17
Hill estimator, regression
Exponential on(b,∞) a, b 1.60 2.20
regression
Exponential on(b,∞) a 1.53 2.02
estimator, b regression

are shown in Table 3 along with the parameters estimated
by non-linear regression and the corresponding correlation
coefficient.

Tail approximations are plotted in Figures 2, 3. Table
4 shows 0.999 and 0.9999 quantiles of approximations
performed. Due to inferior approximation, the t-estimator
results are not included. The Pareto and exponential
distributions provide comparable approximation. Slightly
better figures of the variance of residua and of the
correlation coefficient are obtained for the exponential
distribution, see Table 3 and Sadovský et al. [10].
Moreover, the choice of the exponential distribution with
parameters estimated by non-linear regression is
supported by the visual check of particularly the upper
sample quantiles approximation as well as the values of
calculated quantiles based on estimators, see Table 4.

3.2 Results for the Region 4

The parameters of tail approximations forki > 1.5, N =
11 are shown in Table 5. The approximations are plotted
in Figures 4, 5 and the corresponding 0.999 and 0.9999
quantiles are in Table 6.

For the alternative threshold of 1.3 yielding N = 17
exceedances, the parameters of tail approximations are

Fig. 2: Tail approximation by Pareto cdf.

Fig. 3: Tail approximation by exponential cdf.

shown in Table 7. The corresponding plots and 0.999 and
0.9999 quantiles are in Figures 6, 7 and Table 8.

The reasons for favouring the Pareto distribution with
regression fit of parameters in Sadovský et al. [10], which
have been the superior tail approximation and its obvious
stability by threshold change, are not challenged by the
consideration of estimators.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1L, 19-27 (2015) /www.naturalspublishing.com/Journals.asp 23

Table 5: Tail approximation in Region 4(ki > 1.5, N = 11).
Pareto on(λ ,∞) a λ R
a,λ regression 4.630 0.5019 0.9791
t-estimator,λ regression 1.331 - -
t-Hill estimator, 2.882 0.2488 0.9462
λ regression
Hill estimator, 3.211 0.2436 0.9592
λ regression
Exponential on(b,∞) a b R
a, b regression 2.635 -0.4320 0.9725
a estimator, 3.016 -0.1784 0.9716
b regression

Fig. 4: Tail approximation by Pareto cdf.

Fig. 5: Tail approximation by exponential cdf.

Table 6: Estimations of Region 4 quantiles,ki > 1.5, N = 11.
Quantile 0.999 0.9999
Pareto a,λ , on (λ ,∞) 2.23 3.67
regression
Pareto on(λ ,∞) 2.73 6.08
t-Hill estimator, regression
Pareto on(λ ,∞) 2.59 5.31
Hill estimator, regression
Exponential on(b,∞) a, b 2.19 3.06
regression
Exponential on(b,∞) a 2.11 2.88
estimator, b regression

Table 7: Tail approximation in Region 4(ki > 1.3, N = 17).
Pareto on(λ ,∞) a λ R
a,λ regression 4.471 0.4881 0.9800
t-estimator,λ regression 1.619 - -
t-Hill estimator, 4.091 0.4413 0.9785
λ regression
Hill estimator, 4.292 0.4664 0.9796
λ regression
Exponential on(b,∞) a b R
a, b regression 3.014 -0.1645 0.9803
a estimator, 2.929 -0.2122 0.9802
b regression

Fig. 6: Tail approximation by Pareto cdf.
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Table 8: Estimations of Region 4 quantiles,ki > 1.3, N = 17.
Quantile 0.999 0.9999
Pareto a,λ , on(λ ,∞) 2.29 3.83
regression
Pareto on(λ ,∞) 2.39 4.19
t-Hill estimator, regression
Pareto on(λ ,∞) 2.33 3.99
Hill estimator, regression
Exponential on(b,∞) a, b 2.13 2.89
regression
Exponential on(b,∞) a 2.15 2.93
estimator, b regression

Fig. 7: Tail approximation by exponential cdf.

Fig. 8: The dependence of Maximal loads from the altitude.

Fig. 9: The dependence of logarithm of the Maximal loads from
the altitude.

4 MODELLING THE DEPENDENCE
BETWEEN THE ALTITUDE AND THE
YEARLY SNOW LOAD MAXIMA.

4.1 Data from Region 1

Figure 8 and Figure 9 show the dependences of maximal
loads (M) and logarithm of the Maximal loads from the
altitude (A), respectively.

We apply the ordinary least squares (OLS) for the
logarithm of M and obtain that the estimated line of
regression is

log(M) est= 4.1824413+0.0023254∗A.

The standard errors of the coefficients are
correspondingly 0.0787975 of the intercept and
0.0003547 for the regression coefficient. The coefficient
of determination isR2 = 0.5374. Therefore

M est= exp(4.1824413).exp(0.0023254∗A)

Further we will consider the error term

ε = log(M)− log(M) est.

Its chart is given on fig. 10.
The normal QQ plot, together with the

Kolmogrov-Smirnov test, show that the errors could be
considered as normal (D = 0.1129, p-value = 0.6615).
However further we show that there exists a better fit.

We made Generalized Extreme Value distribution
(GEV) fit and obtain the following MLE of the
parameters

c© 2015 NSP
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Fig. 10: The error termε.

µ σ ξ
-0.09073322 0.21786729 -0.17540496

with the corresponding standard errors

0.03793636 0.02528167 0.08263649.

The Kolmogorov-Smirnov test shows D = 0.0915 and
p-value = 0.87, which is better than in the normal model.

The dependency of M on the altitude is illustrated by
estimating its 0.99-quantiles for the given altitudes using
this fitting. The results plotted in Figure 11 show that the
0.99-quantiles significantly depend on the altitude. Using
the estimated line of the regression and the GEV
distribution of the errors we immediately obtain the
quantiles of the largest snow loads. For the case of 0.99
they are given on Fig. 11.

4.2 Modelling the dependence between the
altitude and k.

The scatter plot from Figure 12 shows that almost there is
no dependence between these variables.

We consider the linear model

k(A) = k est(A)+ ε, (9)

where the coefficients a and b in the regression line

k est(A) = a+b∗A (10)

have been estimated by OLS method. The termε in (9) is
the random error of that estimation. The estimated line of
the regression is

k est(A) = 1.6472866+0.0001339∗A

Fig. 11: The estimators for the 0.99 quantiles of the largest snow
loads with respect to the altitudes.

Fig. 12: The scatter plot of the dependence between the altitude
of a station andk.

Table 9: Quality of the estimation.
Parameters Estimate Std. Error
a 1.6472866 0.0493978
b 0.0001339 0.0002224

The estimators of the parameters are given in Table 10.
The coefficient of determination isR2 = 0.0097.

Further we consider the error termε. Its dependence
on the altitude is given on Figure 13.
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Fig. 13: Scatter plot of the dependence of the residuals on the
altitude.

The Kolmogorov-Smirnov test shows that the error
term could be considered as normal. More precisely D =
0.1175 and p-value = 0.6123. It turns out that we could
make a better fit. We made stable and GEV fit. The GEV
fit seems the best of the considered models. Using the
software R we obtain the following MLE of the
parameters:

µ σ ξ
-0.07531348 0.09941563 0.17254121

with the corresponding standard errors

0.01977435 0.01599755 0.19653951

The Kolmogorov-Smirnov test shows relatively good results
D = 0.0795 and p-value = 0.9499. Both the normal and the GEV
distributions fit the error term well, but the second one is closer
to the empirical distribution due to the value of the Kolmogorov-
Smirnov test statistic D. Using the regression line, described in
(9) and (10) and the GEV distribution fit of the error term we
calculate the estimators of the quantiles of the distribution of k
given the altitude. They are such that

P(k(A)< x0.99|A= x) = 0.99,

i.e.

P(1.6472866+0.0001339∗A+ ε < x0.99|A= x) = 0.99.

In case of 0.99 for different altitudes these quantiles are given on
Figure 14. It shows that the dependence of the 0.99-quantiles of
k on the altitude is insignificant.

5 CONCLUSIONS

For the method of the assessment of accidental snow loads for
the design of structures developed in the companion paper by

Fig. 14: The estimators for the 0.99 quantiles of k with respect to
the altitude.

Sadovský et al. [10] complementary statistical tests and
calculations of heavy and light tail parameters estimatorshave
been carried out.

For all situations, homogeneity of the data can be accepted
at critical significance level of 0.05. Homogeneity tests show
very good results meaning almost perfect fit by the
corresponding Pareto and exponential distribution, conditionally
that these distributions are fitting well. The reason why the
t-estimator (in case of Pareto) differs from the others is its
bounded influence function, i.e. its natural robustness.

Parameter estimators used in tails distributional fits yield
somewhat worse approximation than by the direct non-linear
regression of parameters (Sadovský et al. [10]). However, they
can be used as starting values for minimization as well as
supporting information for the choice of a heavy or light tail
approximation.

We also provided study of dependence oflogM and k on the
altitude (see section 4). In the case of Region 1, the ratiok of
exceptional to characteristic snow loads is Fréchet (almost
Gumbel) distributed and the dependence on altitude is not
statistically significant.

Throughout the paper several open questions for future
work and related problems are outlined. Particularly, the
following research tasks are of interest:

1.Development of exact testing procedures (exact mainly
because of small samples) for these situations, e.g.
considering only exceedances above threshold with
inclusion of nonlinear regression issues.

2.Analysis of correlation in the temporal and spatial context
and checking whether theory for extremes of stationary
processes is adaptable to this situation.
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exceedances related to the accidental snow loads, Reliability,
Risk and Safety - Ale, Papazoglou & Zio (eds), Taylor &
Francis Group, London, 1210-1215 ISBN 978-0-415-60427-
7 (2010).

[15] M. Stehlı́k, Z. Fabián and L. Střelec, Small Sample Robust
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