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1 Introduction when order conditions for symplecticity were derived
independently by Surisg], Lasagni p] and Sanz-Serna
The numerical integration of Hamiltonian systems by [7].
symplectic methods has been considered by many
authors. LetU be an open subset di®, | an open
subinterval of 0 then the hamiltonian system of

Additionally the solution of Hamiltonian systems often
has an oscillatory behavior and have been solved in the
literature with methods which take into account the nature

differential equations is given by of the problem (see [8-14]).
I _0H I oH There are two categories of such methods with
p (p,g). ¢ (p,q), e : .
aq op coefficients depending on the problem and with constant

where (p,g) € U, x € |, the integerd is the number of coefficients. For the first category a good estimate of the

degrees of freedom artd(p,g,x) be a twice continously ~Period or of the dominant frequency is needed, such
differentiable function onU x I. The q variables are Methods are exponetially and trigonometrically fitted
generalized coordinates, the variables are the methods, phase-fitted and amplification fitted methods
conjugated generalized momenta ap, q) is the total (s_ee [15-27]). In the second category are methods with
mechanical energy. The solution operator of aMinimum phase-lag and P-stable methods and are
Hamiltonian system is a symplectic transformation. SinceSUitable for every oscillatory problem (see [28-29]).
symplecticity is a characteristic property of Hamiltonian The idea of combining symplecticity with exponential
systems, it is natural to search for numerical methods thafitting was first introduced by Simos and Agui&d] for
share this property. The theory of these methods can b&KN methods. Since then a lot of work has been done in
found in the books of Hairer, Lubich, Wannet][and  the construction of symplectic RK, PRK and RKN
Sanz Serna, Calva@]. methods that are also exponetially fitted or
The first work on symplectic numerical methods is trigonometrically fitted (see [31-34]). Van de Vyve3q
due to de Vogelaere (19563][and Ruth (1983)4]. Ruth constructed a symplectic RKN method with minimum
[4] constructed a symplectic Partitioned Runge-Kuttaphase-lag. The authors -constructed symplectic PRK
(PRK) method of third algebraic order. Work on methods with minimum phase-lag (Monovasilis et. al.
symplectic Runge-Kutta methods started around 19883€], Monovasilis B7]).
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It is well known that symplectic Runge-Kutta The order conditions up to order 5 are
methods cannot be explicit. Sanz-Serna and Abia (1991) s
[38] constructed a fourth order symmetric and symplectic (1st) Zlbi =1,
Diagonally Implicit RK (DIRK) method with three i
stages. Here we construct symplectic DIRK methods of s
algebraic orders 4 and 5 and phase-lag ordersupto 8. (3rd) Zlbiciz =1/3,
The theory of symplectic RK methods is given in =
section 2, phase-lag analysis of RK methods is given in (4rd) > bic? — 1/4
section 3 and the new methods are constructed in section i; i ’
4. Numerical results are given for the harmonic oscillator, s
the cubic oscillator, the pendulum problem and the (5th) Zlbici“ =1/5,
two-body problem (section 5). i=

s
biC-zaijj =1/10,
2,26

2 Symplectic Runge-Kutta methods s
_Zlbicia;jajkamq =1/5L
1=

The RK method is symplectic when the coefficients of the

method satisfy the relations (see Sanz-Se?ija [ Another helpfull result is that if a method is symmetric

and has even ordgrthen the algebraic order conditions of

biay — bjaj — bibj = 0. (1) the p+ 1 order are also satisfied.

The above relations imply that symplectic RK methods .
cannot be explicit. Under the assumption thag 0 there 3 Phase-lag analysis of Runge-Kutta methods
exist symplectic diagonally implicit RK methods. In that ) ) .
case the coefficients, fully determine the method, since The phase-lag (or dispersion) property was introduced by

the coefficientsyj can be written as Brusa and Nigro (198080] and was extended to RK(N)
methods by Van der Houwen and Sommeijer in their
aj=b; for i#], aj=b/2 for i=j. works [40], [41]. Based on the reasons fully described in

Van der Houwen and Sommeijet(] we shall confine our
For the diagonally implicit symplectic method each stageconsiderations to homogeneous phase-lag. chet real
can be expressed in terms of the previous stage number and the test equatigh = iwy with analytical
solution y(x) = ypexp(iwx). Application of the Runge
Kutta method to the test equation produces the numerical
Y, = Yo+ bihfy, solution
; -1
Vi =Yt g (b i+ bis fra1) Yni1=R(iV)yn R(V)=1+vb(l—vA)le
h wherev = wh.
Vi1 = Ys+ 5 bsfs The phase lag order of a RK method is defined as the
2 order of approximation of the argument of the exponential
function by the argument of P along the imaginary axis

where fi = f(xn +Gh,Y;). For each stage a non linear ) _ \ " arg(R(iv)). Then the method is said to be
system of equations needs to be solved while for 'mpl'c'tdispersive of ordeg if

method for each step a non linear system of equations.
The symplecticness requirments act as simplifying@(v) = O(v41).

assumptions on the order conditions and the number o,

. . A
order conditions needed for each order are reduce(.{{ve cgllect the real and imaginary paRéiv) = A(V) +
ivB(v) then the dispersion can be written as

significantly.
B(V?)
Number of order conditios ¢(v) = v—arcta VA(VZ) :
Order RK_SRK We consider Taylor expansion of the stability function
1 1 1 R(2)
g i ; R(2) = Bo+ Prz+ B+ + Bu + -
4 8 3 The following result is due to Franco et. akZ
5 17 6 although an equivalent form is given by Van Der Houwen
6 37 10 and Sommeijer in4Q].
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A RK method is dispersive of order q if the coefficients
Bj in the Taylor expansion of (R) satisfy the following
conditions:
B B

B
TR e

(i-2)

—"'+(—1)ij=0,

and in addition q is even.
A method of algebraic ordgp has at least dispersion
orderp+ 1if podd andp if p even.

4 Construction of the new methods

We shall consider methods with six and seven stages. Th
stability function for thes stage diagonally implicit
symplectic method is

_ Ma+hbv)

C Ma(=2+bw)

Since the method is symmetric only the two

R(v)

(bg,b2,bzandby). We impose the two conditions of order
three then the method has algebraic order four. The
conditions for dispersin order 6 and 8 are

Bs= é; ﬁe—ﬁ7=%

we also impose these conditions. The coefficients of this
method Meth74§ are:

by = 1.4944291445422252

b, = —2.3484252147655893

bz = 2.8982950506987870

b4 =1- 2b1 — 2b2 — 2b3.

e
5 Numerical Results

The new methods as well as the fourth order method of
Sanz Serna and Abia&38] (Meth344 are tested for the

harmonic oscillator, the cubic oscillator, the pendulum
problem and the two-body problem. The hamiltonian for

conditions for algebraic order 3 are needed to ensurgy| problems considered is separable with quadratic
fourth algebraic order we also solve the phase-lagkinetic energy

conditions of order 6 which becomes = 1/5!. We
obtain the following coefficients Meth546, the first

number denotes the number of stages, the second the

algebraic order and the third the dispersion order of the
methodg:

b; = —2.150611289942181
b, = 1.452223059167718
bs = 2.3967764615489258

Here we constructed a six stages method with

H(p,a,x) = T(p) +V(a.x), Umzéﬂp

This leads to a favourable implementation in terms of the
non linear system. For the one dimensional problems
(harmonic, cubic oscillator and pendulum) only a non
linear equation needs to be solved at each stage while for
the two body problem a system of two non linear
equations needs to be solved at each stage.

algebraic order 5 since there are 6 order conditions for

algebraic order 5. This method also has phase-lag order
(Meth65§. The coefficients of the method are:

b; = 0.5080048194000274
b, = 1.360107162294827
b = 2.0192933591817224
b, = 0.5685658926458251
bs = —1.4598520495864393
bg = —1.9961191839359627
We have constructed a fifth order method with seven
stages with the assumptidn = by and imposing the six
order conditions of order SMeth75§
b; = —1.9119528632302611
b, = 1.7330487520694027
b = 1.7978839093830516
by = 1.2522794817510428
bs = 2.87965671639611
bg = —2.8389631331390848

We also construct a symmetric method with seven
stages, we have four coefficients to determine

B.1 Harmonic Oscillator

The Hamiltonian of this problem is
1

H(p.a) = 5(p*+ %)

and the equations of motion are

p=-0, d=p

We consider the initial condition(0) = 1, q(0) = 0, then
the exact solution ip(x) = cosx, q(X) = sinx.

The problem has been solved numerically in the
interval [0,10% with several steps. In Table 1 we present
the maximum absolute error of the solution. The error of
the Hamiltonian for all methods is less tharr 1@

Table 1:Maximum absolute error of the solution of the
Harmonic Oscillator

h Meth344 Meth546 Meth656 Meth748 Meth756
05 —— 1.261015511011.0610°2
0.21.021017.301026.901048911044.8410°
0.165610321.221041.1310°4.0510°7.7010°7
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5.2 Cubic Oscillator

The Hamiltonian of this problem is

1 4
Fﬂpﬂ)=§uf+q5—8%

and the equations of motion are
p=-q+ed’, d=p
We consider the initial conditions(0) = 0,q(0) = 1.

Table 4:Maximum absolute error of the solution of the
Pendulum

h  Meth344 Meth546 Meth656 Meth748 Meth756
0.2 732103 11110% 162103 2.6810° 22110°
0.1 47110%41.2110°% 3.9210° 998107 1.5310°
0.01 471108 3231005661010 2141010 1.0610°°

The problem has been solved numerically in the Table 5:Maximum absolute error of the Hamiltonian of the

interval [0,10%] for € = 0.01 ande = 0.1 with several
steps. In tables 2 and 3 (upper part 0.01, lower part

€ = 0.1)we present the maximum absolute error of the

Pendulum

Meth344 Meth546 Meth656 Meth748 Meth756

Hamiltonian and the solution (all methods tested gave 35 310105 29910° 659105 178107 1.9410°

error greater than 1 fdr= 1).

Table 2:Maximum absolute error of the Hamiltonian of
the Cubic Oscillator fore = 0.01, 0.1.

h  Meth344 Meth546 Meth656 Meth748 Meth756
1 46210%4.45107%1.3910°4.36107%3.9210°
052171027510 73.6910°3.891089.3210°8
0.1 1.421073.7510°1.0610 7 1.1510°1.1110°8
1 44810°4.331031.071024.261033.14107
0.51.8910°2.1010°3.1810°2.3310 784910’
0.11.2310%2641088961071.131081.0210°7

Table 3:Maximum absolute error of the solution of the
Cubic Oscillator fore = 0.01, 0.1.

h  Meth344 Meth546 Meth656 Meth748 Meth756
0.59.641026.5610°6.3510%7.6110 % 4.3310°
0.16191021.1010%1.0410°3.431066.6010°7
0.55.391022.0510°1.7110°2.3610 ¥ 2.0510 %
0.1 360103227104 229104198104 1.9710*

5.3 Standard Pendulum

The Hamiltonian of this problem is given by

p2
H(p,q) = 5 —acos(q),

The equations of motion are

p'=-asin(a), d=p

We consider the problem with initial conditions
p(0)=1, q(0)=0.

a> 0.

0.1 20010°% 327108 1.9410° 343108 2.09107
0.01 20310710 1.1310°11 3331011 6741012 2.1110°10

5.4 The two-body problem

The Hamiltonian of this problem is

1 1
H(pla p2;Q1aQ2) = i(pi—'_ p%) - ﬁ
i +0d5
The equations of motion are
Py = —%, 0= p1
(97 +05)3
ph = —%, % = P2
(a1 +a3)3
with initial conditions
p1(0) =0, 1(0)=1-¢,

p2(0) = \/%, g2(0) =0.

The exact solution is
qi(X) =cos(E) —e, g(x) = v 1-—€%sin(E),

whereeis the eccentricity of the orbit and the eccentricity
anomalyE is expressed as an implicit function afby
Kepler's equation

x = E —esin(E).

In tables 6, 7 (upper paet= 0, middle pare= 0.1, lower
part e = 0.3) we give the numerical evidence for this
problem with step$ = 11/16, h = 11/32 the integration

In tables 4, 5 we give the maximum absolute error of theinterval is[0,320r1].

solution and the Hamiltonian for this problem far= 1
with several steps; the integration interval@s10°).
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Table 6:Maximum absolute error of the solution of the . Conservation of the Hamiltonian
Two-Body Problem for e- 0, 0.1, 0.3. ‘ ‘ ‘
’

h Meth344 Meth546 Meth656 Meth748 Meth756 N |
/16 —— 6.38101 974107 624101 292104
/32 788102 6.3810°1 9.741072 6.2410°% 2.9210* ~ Y |
/16 —— — 231101 —— 363103 o

1 2 3 3 4 7 -6
"? ié 115107" 1.3510°° 4.0510° 2.8210° ;2? igz 2 S A
TT, - — —— g -Meth748
/32 3841071 1. 001crl 3. 33101 5261072 4.8510°3 -8}

Table 7:Maximum absolute error of the Hamiltonian of the
Two-Body Problem for e- 0, 0.1, 0.3. _12 . . . .

9.75 9.8 9.85 9.9 9.95 10

h~ Meth344 Meth546 Meth656 Meth748 Meth756
/16 10910° 2.0710 7 241107 2.0510 7 3.0110°

/32 30210° 2371011 3.941010 1.19101? 46610 ¢ Fig. 2: Pendulum problem. Conservation of Hamiltonian.
/16 16410 % 85310° 1.2410% 1.2310° 57010°

/32 87910°° 862107 421106 217107 6.4710°7

m/16 152103 —— — 6.4710°

/32 696107 1.3910°5 185104 7.3510° 6.5410°© order up to eight. Numerical tests have been performed
on the harmonic and cubic oscillator, the pendulum and
the two-body problem. In future work we shall consider

5.5 Long time integration symplectic DIRK methods with variable coefficients.

In this section we examine the performance of methods as the

integration interval increases. We shall consider the tedyb Acknowledgement
problem with eccentricitye = 0 and the pendulum problem
(Figure 1, Figure 2). The methods used are the classicathfour
order RK methodRK444 Meth344 Meth748 The integration
interval is[0,3200071 for the two body problem anf, 10°] for
the pendulum problem.
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