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Abstract: The numerical integration of Hamiltonian systems is considered in this paper. Diagonally implicit Symplectic Runge-Kutta
methods with special properties are presented. The methodsdeveloped have six and seven stages algebraic order up to 5thand dispersion
order up to 8th.

Keywords: Runge Kutta methods, symplectic methods, Diagonally implicit, Phase-lag

1 Introduction

The numerical integration of Hamiltonian systems by
symplectic methods has been considered by many
authors. LetU be an open subset ofℜ2d, I an open
subinterval of ℜ then the hamiltonian system of
differential equations is given by

p′ =−
∂H
∂q

(p,q), q′ =
∂H
∂ p

(p,q),

where(p,q) ∈ U , x ∈ I , the integerd is the number of
degrees of freedom andH(p,q,x) be a twice continously
differentiable function onU × I . The q variables are
generalized coordinates, thep variables are the
conjugated generalized momenta andH(p,q) is the total
mechanical energy. The solution operator of a
Hamiltonian system is a symplectic transformation. Since
symplecticity is a characteristic property of Hamiltonian
systems, it is natural to search for numerical methods that
share this property. The theory of these methods can be
found in the books of Hairer, Lubich, Wanner [1] and
Sanz Serna, Calvo [2].

The first work on symplectic numerical methods is
due to de Vogelaere (1956) [3] and Ruth (1983) [4]. Ruth
[4] constructed a symplectic Partitioned Runge-Kutta
(PRK) method of third algebraic order. Work on
symplectic Runge-Kutta methods started around 1988

when order conditions for symplecticity were derived
independently by Suris [5], Lasagni [6] and Sanz-Serna
[7].

Additionally the solution of Hamiltonian systems often
has an oscillatory behavior and have been solved in the
literature with methods which take into account the nature
of the problem (see [8-14]).

There are two categories of such methods with
coefficients depending on the problem and with constant
coefficients. For the first category a good estimate of the
period or of the dominant frequency is needed, such
methods are exponetially and trigonometrically fitted
methods, phase-fitted and amplification fitted methods
(see [15-27]). In the second category are methods with
minimum phase-lag and P-stable methods and are
suitable for every oscillatory problem (see [28-29]).

The idea of combining symplecticity with exponential
fitting was first introduced by Simos and Aguiar [30] for
RKN methods. Since then a lot of work has been done in
the construction of symplectic RK, PRK and RKN
methods that are also exponetially fitted or
trigonometrically fitted (see [31-34]). Van de Vyver [35]
constructed a symplectic RKN method with minimum
phase-lag. The authors -constructed symplectic PRK
methods with minimum phase-lag (Monovasilis et. al.
[36], Monovasilis [37]).
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It is well known that symplectic Runge-Kutta
methods cannot be explicit. Sanz-Serna and Abia (1991)
[38] constructed a fourth order symmetric and symplectic
Diagonally Implicit RK (DIRK) method with three
stages. Here we construct symplectic DIRK methods of
algebraic orders 4 and 5 and phase-lag orders up to 8.

The theory of symplectic RK methods is given in
section 2, phase-lag analysis of RK methods is given in
section 3 and the new methods are constructed in section
4. Numerical results are given for the harmonic oscillator,
the cubic oscillator, the pendulum problem and the
two-body problem (section 5).

2 Symplectic Runge-Kutta methods

The RK method is symplectic when the coefficients of the
method satisfy the relations (see Sanz-Serna [2])

biai j −b ja ji −bib j = 0. (1)

The above relations imply that symplectic RK methods
cannot be explicit. Under the assumption thatbi 6= 0 there
exist symplectic diagonally implicit RK methods. In that
case the coefficientsbi fully determine the method, since
the coefficientsai j can be written as

ai j = b j for i 6= j, ai j = bi/2 for i = j.

For the diagonally implicit symplectic method each stage
can be expressed in terms of the previous stage

Y1 = yn+b1h f1,

Yi+1 = Yi +
h
2
(bi fi +bi+1 fi+1)

yn+1 = Ys+
h
2

bs fs

where fi = f (xn + cih,Yi). For each stage a non linear
system of equations needs to be solved while for implicit
method for each step a non linear system of equations.
The symplecticness requirments act as simplifying
assumptions on the order conditions and the number of
order conditions needed for each order are reduced
significantly.

Number of order conditios

Order RK SRK
1 1 1
2 2 1
3 4 2
4 8 3
5 17 6
6 37 10

The order conditions up to order 5 are

(1st)
s

∑
i=1

bi = 1,

(3rd)
s

∑
i=1

bic
2
i = 1/3,

(4rd)
s

∑
i=1

bic
3
i = 1/4,

(5th)
s

∑
i=1

bic
4
i = 1/5,

s

∑
i=1

bic
2
i ai j c j = 1/10,

s

∑
i=1

biciai j a jkaklcl = 1/5!.

Another helpfull result is that if a method is symmetric
and has even orderp then the algebraic order conditions of
the p+1 order are also satisfied.

3 Phase-lag analysis of Runge-Kutta methods

The phase-lag (or dispersion) property was introduced by
Brusa and Nigro (1980) [39] and was extended to RK(N)
methods by Van der Houwen and Sommeijer in their
works [40], [41]. Based on the reasons fully described in
Van der Houwen and Sommeijer [40] we shall confine our
considerations to homogeneous phase-lag. Letω a real
number and the test equationy′ = iωy with analytical
solution y(x) = y0exp(iωx). Application of the Runge
Kutta method to the test equation produces the numerical
solution

yn+1 = R(iv)yn R(v) = 1+ vb(I − vA)−1e

wherev= ωh.
The phase lag order of a RK method is defined as the

order of approximation of the argument of the exponential
function by the argument of P along the imaginary axis
φ(v) = v− arg(R(iv)). Then the method is said to be
dispersive of orderq if

φ(v) = O(vq+1).

We collect the real and imaginary partsR(iv) = A(v2) +
ivB(v2) then the dispersion can be written as

φ(v) = v−arctan

(

v
B(v2)

A(v2)

)

.

We consider Taylor expansion of the stability function
R(z)

R(z) = β0+β1z+β2z
2+ · · ·+βnzn+ · · · .

The following result is due to Franco et. al. [42]
although an equivalent form is given by Van Der Houwen
and Sommeijer in [40].
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A RK method is dispersive of order q if the coefficients
β j in the Taylor expansion of R(z) satisfy the following
conditions:
β0

j!
−

β1

( j −1)!
+

β2

( j −2)!
−·· ·+(−1) jβ j = 0,

j = 1,3, . . . ,q−1,

and in addition q is even.
A method of algebraic orderp has at least dispersion

orderp+1 if p odd andp if p even.

4 Construction of the new methods

We shall consider methods with six and seven stages. The
stability function for the s stage diagonally implicit
symplectic method is

R(v) =
∏s

i=1(2+biv)

∏s
i=1(−2+biv)

Since the method is symmetric only the two
conditions for algebraic order 3 are needed to ensure
fourth algebraic order we also solve the phase-lag
conditions of order 6 which becomesβ5 = 1/5!. We
obtain the following coefficients (Meth546, the first
number denotes the number of stages, the second the
algebraic order and the third the dispersion order of the
method):

b1 = −2.150611289942181,

b2 = 1.452223059167718,

b3 = 2.3967764615489258.

Here we constructed a six stages method with
algebraic order 5 since there are 6 order conditions for
algebraic order 5. This method also has phase-lag order 6
(Meth656). The coefficients of the method are:

b1 = 0.5080048194000274,

b2 = 1.360107162294827,

b3 = 2.0192933591817224,

b4 = 0.5685658926458251,

b5 = −1.4598520495864393,

b6 = −1.9961191839359627.

We have constructed a fifth order method with seven
stages with the assumptionb7 = b1 and imposing the six
order conditions of order 5 (Meth756)

b1 = −1.9119528632302611

b2 = 1.7330487520694027

b3 = 1.7978839093830516

b4 = 1.2522794817510428

b5 = 2.87965671639611

b6 = −2.8389631331390848.

We also construct a symmetric method with seven
stages, we have four coefficients to determine

(b1,b2,b3andb4). We impose the two conditions of order
three then the method has algebraic order four. The
conditions for dispersin order 6 and 8 are

β5 =
1
5!
, β6−β7 =

6
7!

we also impose these conditions. The coefficients of this
method (Meth748) are:

b1 = 1.4944291445422252

b2 = −2.3484252147655893

b3 = 2.8982950506987870

b4 = 1−2b1−2b2−2b3.

5 Numerical Results

The new methods as well as the fourth order method of
Sanz Serna and Abia [38] (Meth344) are tested for the
harmonic oscillator, the cubic oscillator, the pendulum
problem and the two-body problem. The hamiltonian for
all problems considered is separable with quadratic
kinetic energy

H(p,q,x) = T(p)+V(q,x), T(p) =
1
2

pT p.

This leads to a favourable implementation in terms of the
non linear system. For the one dimensional problems
(harmonic, cubic oscillator and pendulum) only a non
linear equation needs to be solved at each stage while for
the two body problem a system of two non linear
equations needs to be solved at each stage.

5.1 Harmonic Oscillator

The Hamiltonian of this problem is

H(p,q) =
1
2
(p2+q2)

and the equations of motion are

p′ =−q, q′ = p.

We consider the initial conditionsp(0) = 1,q(0) = 0, then
the exact solution isp(x) = cosx, q(x) = sinx.

The problem has been solved numerically in the
interval [0,103] with several steps. In Table 1 we present
the maximum absolute error of the solution. The error of
the Hamiltonian for all methods is less than 10−15.

Table 1:Maximum absolute error of the solution of the
Harmonic Oscillator.

h Meth344 Meth546 Meth656 Meth748 Meth756
0.5 −− −− 1.2610−1 5.5110−1 1.0610−2

0.2 1.0210−1 7.3010−3 6.9010−4 8.9110−4 4.8410−5

0.1 6.5610−3 1.2210−4 1.1310−5 4.0510−6 7.7010−7
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5.2 Cubic Oscillator

The Hamiltonian of this problem is

H(p,q) =
1
2
(p2+q2)− ε

q4

4
and the equations of motion are

p′ =−q+ εq3, q′ = p.

We consider the initial conditionsp(0) = 0, q(0) = 1.
The problem has been solved numerically in the

interval [0,103] for ε = 0.01 andε = 0.1 with several
steps. In tables 2 and 3 (upper partε = 0.01, lower part
ε = 0.1)we present the maximum absolute error of the
Hamiltonian and the solution (all methods tested gave
error greater than 1 forh= 1).

Table 2:Maximum absolute error of the Hamiltonian of
the Cubic Oscillator forε = 0.01, 0.1.

h Meth344 Meth546 Meth656 Meth748 Meth756
1 4.6210−4 4.4510−4 1.3910−3 4.3610−4 3.9210−5

0.5 2.1710−6 2.7510−7 3.6910−6 3.8910−8 9.3210−8

0.1 1.4210−7 3.7510−9 1.0610−7 1.1510−9 1.1110−8

1 4.4810−3 4.3310−3 1.0710−2 4.2610−3 3.1410−4

0.5 1.8910−5 2.1010−6 3.1810−5 2.3310−7 8.4910−7

0.1 1.2310−6 2.6410−8 8.9610−7 1.1310−8 1.0210−7

Table 3:Maximum absolute error of the solution of the
Cubic Oscillator forε = 0.01, 0.1.

h Meth344 Meth546 Meth656 Meth748 Meth756
0.5 9.6410−2 6.5610−3 6.3510−4 7.6110−4 4.3310−5

0.1 6.1910−3 1.1010−4 1.0410−5 3.4310−6 6.6010−7

0.5 5.3910−2 2.0510−3 1.7110−3 2.3610−4 2.0510−4

0.1 3.6010−3 2.2710−4 2.2910−4 1.9810−4 1.9710−4

5.3 Standard Pendulum

The Hamiltonian of this problem is given by

H(p,q) =
p2

2
−acos(q), a> 0.

The equations of motion are

p′ =−asin(q), q′ = p.

We consider the problem with initial conditions

p(0) = 1, q(0) = 0.

In tables 4, 5 we give the maximum absolute error of the
solution and the Hamiltonian for this problem fora = 1
with several steps; the integration interval is[0,103].

Table 4:Maximum absolute error of the solution of the
Pendulum.

h Meth344 Meth546 Meth656 Meth748 Meth756
0.2 7.3210−3 1.1110−4 1.6210−3 2.6810−5 2.2110−5

0.1 4.7110−4 1.2110−6 3.9210−5 9.9810−7 1.5310−6

0.01 4.7110−8 3.2310−10 5.6610−10 2.1410−10 1.0610−9

Table 5:Maximum absolute error of the Hamiltonian of the
Pendulum.

h Meth344 Meth546 Meth656 Meth748 Meth756
0.2 3.1010−5 2.9910−6 6.5910−5 1.7810−7 1.9410−6

0.1 2.0010−6 3.2710−8 1.9410−6 3.4310−8 2.0910−7

0.01 2.0310−10 1.1310−11 3.3310−11 6.7410−12 2.1110−10

5.4 The two-body problem

The Hamiltonian of this problem is

H(p1, p2,q1,q2) =
1
2
(p2

1+ p2
2)−

1
√

q2
1+q2

2

.

The equations of motion are

p′1 = −
q1

√

(q2
1+q2

2)
3
, q′1 = p1

p′2 = −
q2

√

(q2
1+q2

2)
3
, q′2 = p2.

with initial conditions

p1(0) = 0, q1(0) = 1−e,

p2(0) =
√

1+e
1−e, q2(0) = 0.

The exact solution is

q1(x) = cos(E)−e, q2(x) =
√

1−e2 sin(E),

wheree is the eccentricity of the orbit and the eccentricity
anomalyE is expressed as an implicit function ofx by
Kepler’s equation

x = E − esin(E).

In tables 6, 7 (upper parte= 0, middle parte= 0.1, lower
part e = 0.3) we give the numerical evidence for this
problem with stepsh = π/16, h = π/32 the integration
interval is[0,320π ].
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Table 6:Maximum absolute error of the solution of the
Two-Body Problem for e= 0, 0.1, 0.3.

h Meth344 Meth546 Meth656 Meth748 Meth756
π/16 −− 6.3810−1 9.7410−2 6.2410−1 2.9210−4

π/32 7.8810−2 6.3810−1 9.7410−2 6.2410−1 2.9210−4

π/16 −− −− 2.3110−1 −− 3.6310−3

π/32 1.1510−1 1.3510−2 4.0510−3 2.8210−3 1.8810−4

π/16 −− −− −− −− 8.6110−2

π/32 3.8410−1 1.0010−1 3.3310−1 5.2610−2 4.8510−3

Table 7:Maximum absolute error of the Hamiltonian of the
Two-Body Problem for e= 0, 0.1, 0.3.

h Meth344 Meth546 Meth656 Meth748 Meth756
π/16 1.0910−6 2.0710−7 2.4110−7 2.0510−7 3.0110−9

π/32 3.0210−9 2.3710−11 3.9410−10 1.1910−12 4.6610−11

π/16 1.6410−4 8.5310−5 1.2410−4 1.2310−5 5.7010−6

π/32 8.7910−6 8.6210−7 4.2110−6 2.1710−7 6.4710−7

π/16 1.5210−3 −− −− −− 6.4710−5

π/32 6.9610−5 1.3910−5 1.8510−4 7.3510−6 6.5410−6

5.5 Long time integration

In this section we examine the performance of methods as the
integration interval increases. We shall consider the two body
problem with eccentricitye = 0 and the pendulum problem
(Figure 1, Figure 2). The methods used are the classical fourth
order RK methodRK444, Meth344, Meth748. The integration
interval is[0,32000π] for the two body problem and[0,105] for
the pendulum problem.

0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004 1.005 1.006

x 10
5

−14

−12

−10

−8

−6

−4

−2

0

x

lo
g(

ab
s(

er
r 

H
))

Conservation of the Hamiltonian

Meth344

Meth748

RK444

Fig. 1: Two body problem. Conservation of Hamiltonian.

6 Conclusions

Here we have constructed diagonally implicit symplectic
RK methods with algebraic order up to five and dispersion
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Fig. 2: Pendulum problem. Conservation of Hamiltonian.

order up to eight. Numerical tests have been performed
on the harmonic and cubic oscillator, the pendulum and
the two-body problem. In future work we shall consider
symplectic DIRK methods with variable coefficients.
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