
Appl. Math. Inf. Sci. 9, No. 1L, 1-10 (2015) 1

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/091L01

Geometric Calculus-based Postulates for the Derivation
and Extension of the Maxwell Equations
Gene E. McClellan˚

Applied Research Associates, Inc., 801 N Quincy St, Arlington, Virginia 22203, U.S.A.

Received: 2 Nov. 2013, Revised: 3 Mar. 2014, Accepted: 4 Mar. 2014
Published online: 1 Feb. 2015

Abstract: The geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact
formulation of Maxwells electromagnetic (EM) equations from a set of familiar and physically relevant postulates. This formulation
results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional,
non-EM solutions do not conflict with classical EM experiments and have three properties in common with the apparent properties
of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary
electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by
such a wave is directed oppositely to the direction of energy transport. A gas of such waves generates negative pressure.
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1 Introduction

By employing geometric algebra (GA) and its associated
geometric calculus, this paper extends the Maxwell
equations to a multivector field equation with solutions
having certain characteristics in common with those
attributed to dark energy while maintaining the integrity
of classical electrodynamics. We derive the multivector
field equation from a set of postulates having a clear
correspondence to the principles of classical
electrodynamics.

The formulation of the Maxwell equations as a single
multivector field equation using geometric algebra has
been espoused by many including Hestenes [1], Vold [2],
Baylis [3], and Doran and Lasenby [4]. These works are
uniformly based on straightforward applications of GA
and geometric calculus with the classical Maxwell
equations as the starting point and the assumption that the
multivector field has components limited to those
corresponding to electric and magnetic fields. The four
Maxwell equations are shown to be equivalent to the
multivector grade components of a single, first order,
differential field equation based on the geometric
derivative [2,4,5]. A broader range of ideas relating to
this work have been explored over the last century in the

context of the theory of relativity [6,7], spinors and
quaternions [8,9,10], semivectors [11], Clifford numbers
[10,12,13], and multivector calculus [14]. Gsponer and
Hurni [15] provide a recent review.

There are two main themes in this paper that add to
past work. The first is the derivation of the multivector
field equation from five postulates and the second is the
analysis of energy and momentum conservation for novel
solutions of the field equation. To establish notation and
needed mathematical relationships, Section 2 discusses
the fundamental theorem of calculus. Section 3 presents
the five postulates. Section 4 derives the multivector field
equation and wave equation from these postulates.
Sections 5 and 6 discuss the nature of the fields and
external sources and the nature of the field solutions,
respectively. Section 7 discusses the continuity equation
and Section 8 the conservation equation for energy and
momentum. Section 9 compares the energy flux and
momentum density for plane wave solutions of the field
equation. Finally, Section 10 provides a discussion of
findings and Section 11 a conclusion.
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2 The Fundamental Theorem of Calculus

Following the notation of Hestenes and Sobczyk [5], the
Fundamental Theorem of Calculus using geometric
algebra and geometric calculus is

ż

M

9LpdV 9Bxq “

ż

BM

LpdSq, (1)

where the multivector-valued function LpAq is a
general linear function of its argument A and the overdot
indicates the action of the geometric derivative. The
argument A is also multivector-valued and LpAq may be
a function of time t and spatial position x. LpAq is
assumed to be well behaved over a region M bounded by
the surface BM . dV is the pseudoscalar volume element
in M and dS is the pseudovector surface element of the
boundary BM . Finally, the geometric derivative Bx is
equivalent to and is frequently written as the gradient
operator ∇.

In this paper, we use two forms of the fundamental
theorem. The first is based on the linear function
LpAq “ AF , where F “ F px, tq. Using this LpAq in
Equation (1), we obtain

ż

M

dV BxF “

ż

BM

dSF. (2)

This basic form of the fundamental theorem coupled
with the first two postulates defined below yields a
differential equation for the multivector-valued field F .
The second form of the fundamental theorem is based on
the linear function LpAq “ IGI´1AF , where
G “ Gpx, tq is another multivector-valued function and I
is the unit pseudoscalar of the geometric algebra of M .
Using this LpAq in Equation (1), we obtain

ż

M

I 9GI´1dV 9Bx 9F “

ż

BM

IGI´1dSF. (3)

To put Equation (3) in a more convenient form, we
use the fact that dV “ I|dV | and the convention of
Hestenes and Sobczyk [5] that dS “ I|dS|n, where the
unit vector n is the outward-pointing normal to the
surface element dS. We note that Doran and Lasenby [4]
use the convention that dS “ nI|dS|, which differs from
that of Hestenes and Sobczyk in even-dimensional spaces
where n and I anticommute. In physical
three-dimensional (3-D) space, n and I commute and the
distinction is immaterial. Substituting these expressions
for dV and dS into Equation (3), rearranging factors, and
using the fact that n is its own inverse yields a second
form of the fundamental theorem:

ż

M

dV 9G 9Bx 9F “

ż

BM

dSnpGnF q. (4)

This form is used below in the derivation of energy and
momentum relationships for the field F .

3 Five Postulates for a Multivector-Valued
Field

We put forth the following postulates as a basis for the
theory of a multivector-valued field and associated
sources that exist in physical space. As in relativity
theory, time t is a parameter measured locally in physical
space in terms of the number of cycles of a periodic
physical system (a clock) at that location. The postulates
are developed in an inertial laboratory frame for clarity to
the broadest audience and we express time as a scalar
quantity as did Maxwell. This assumption in no sense
limits us to a non-relativistic approach. We assume that
the region M and its boundary over which we perform
integrals are stationary and that the laboratory frame has
stationary clocks that are synchronized by the usual
procedures of special relativity so that integrals over
space are carried out at a fixed time. Important results of
the development may be expressed in covariant form by
making an algebraic transformation to a spacetime
algebra [16] in which time and physical position are both
vector quantities in the usual four-dimensional spacetime
of indefinite signature.

Postulate 1. The vacuum of physical space supports a
multivector-valued effective field that is a continuous and
twice-differentiable function of time and spatial position.

This postulate expresses the familiar proposition that
mathematical field theory may be used to analyze
observable phenomena in the vacuum. The qualifier
“effective” means that submicroscopic influences such as
quantum fluctuations are averaged out to produce smooth
functions suitable for the application of the calculus as in
classical electrodynamics. For present purposes, the most
significant aspect of Postulate 1 is the invocation of
geometric algebra through the assumption that the field at
any location and time is represented by a multivector of
any grade or mixture of grades without exclusion.

Postulate 2. For any region of physical space enclosed
by a boundary, the integral of the effective field over the
boundary is equal to the integral of a multivector-valued
source density over the enclosed region.

This postulate is a generalization of the Laws of
Gauss and Ampere and, by virtue of the completeness of
geometric algebra and geometric calculus, implies both.
Because the field may be of any multivector grade, the
same may be true for the source of the field. The principle
of linear superposition of fields is implicit in Postulate 2,
as is the central nature of the field relative to its source.

Postulate 3. Charges at rest and moving charges (i.e.,
currents), after multiplication by suitable proportionality
constants, are external sources of the field.

This postulate provides a connection between the
multivector source density and the electric charges and
currents giving rise to electromagnetic fields. The source
is external in the sense of classical electrodynamics,
where sources are assumed to exist separately from, but
give rise to, the field described by the field equations.
Using a multivector density with four grade components
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as stated in Postulate 2 provides for hypothetical magnetic
charge and current densities as well as electric [2,3].

Postulate 4. The time derivative of the
multivector-valued field, multiplied by a suitable
proportionality constant, is an internal (or intrinsic)
source of the field.

This postulate generalizes the magnetic induction
described by Faraday’s Law and the electric displacement
current whose existence was deduced by Maxwell. This
internal source arises from temporal variation of the
multivector field rather than from an external apparatus.
Like the multivector field, the internal source is
associated with the vacuum itself. Just as Maxwell’s
introduction of a displacement current in his equations of
electrodynamics allowed wave solutions for the
electromagnetic field, we shall see that Postulate 4 leads
to the wave equation in vacuum for all components of the
multivector field.

Postulate 5. The multivector field undergoes wave
motion.

This postulate incorporates the experimental
observation of interference phenomena in classical and
quantum physics of elementary particle fields at all
experimentally accessible wavelengths. It determines the
multivector grade of the proportionality constant in
Postulate 4.

From these Postulates, we may construct integral,
differential, and wave equations satisfied by the
multivector-valued field and its sources.

4 The Multivector Field Equation

According to Postulate 1, the multivector-valued field F
is mathematically well-behaved and, therefore, satisfies
the form of the fundamental theorem of calculus given by
Equation (2):

ż

M

dV BxF “

ż

BM

dSF, (5)

where M is any pseudoscalar region of physical space
and BM is the pseudovector boundary enclosing M . BxF
is the geometric derivative [2,5] of F . This result makes
no supposition regarding the field F other than that it is a
continuous and differentiable function of position.

According to Postulate 2, there is a multivector-valued
source density D corresponding to the field F such that
the integral of the field over a closed surface is equal to the
integral of the source density over the enclosed volume:

ż

BM

dSF “

ż

M

dV D. (6)

This integral field equation must be satisfied under all
circumstances. Combining Equations (5) and (6), we have
ş

M

dV BxF “
ş

M

dV D. In order that equality of these two

integrals be satisfied for an arbitrary volume M , it is
necessary that the integrands be equal. Therefore,
Postulates 1 and 2 imply that the field and the source
density satisfy the following differential equation:

BxF “ D. (7)

According to Postulates 3 and 4, the source density D
has both external and internal contributions, which we
write with subscripts ex and in, respectively:
D “ Dex ` Din. According to Postulate 4, the internal
source density is proportional to the time derivative BtF
of the field itself, so Din “ KBtF . A priori, the
proportionality constant K might be of any multivector
grade and might be written to the right or the left of the
time derivative of the field. However, a vector or bivector
value for K would provide a reference direction violating
the isotropy of space, so K is either scalar or
psuedoscalar and therefore commutes with all else. In a
vacuum region free of external sources, the multivector
differential field equation then reduces to

BxF “ KBtF. (8)

From this equation it is clear that the measurement
units of the constant K must be rL´1T s, i.e., it is an
inverse speed. Following procedures from classical
dynamics, we expect that the wave equation may be
derived by taking a second geometric derivative of this
equation, then on the right side, exchanging the order of
differentiation and substituting for the geometric
derivative again from Equation (8):

BxBxF “ BxpKBtF q “ KBtBxF “ K2B2
tF , so that

pB2
x ´ K2B2

t qF “ 0.

This equation would be valid if K were a trivector;
however, the sign of the time derivative term would be
positive, wrong for a wave equation. Therefore, Postulate
5 implies that K is a scalar rather than a trivector. The
wave equation is obtained for K “ ˘c´1 , where c is a
positive constant with units of a speed. We find by
reference to the experiments of classical electrodynamics
that the appropriate sign for this equation is negative and
that c is the speed of light so that Din “ ´c´1BtF .

With this result for in Din, we have the usual wave
equation in vacuum:

pB2
x ´ c´2B2

t qF “ 0. (9)

Because the spatial and temporal second derivatives are
both scalar operators, they do not change the grade of any
component of F . Therefore, Equation (9) shows that each
grade of the field F independently satisfies the
homogeneous wave equation in a source free region of
space.
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Using the explicit form of the internal source density
moved to left side of Equation (7), the generalized
multivector field equation that follows from Postulates 1
through 5 with proportionality constants set for
consistency with classical electrodynamics is expressed in
the laboratory frame by the single multivector field
equation:

BxF ` c´1BtF “ Dex. (10)

While each component of F satisfies the wave equation
independently, this field equation enforces relationships
among the components.

5 The Nature of the Fields and External
Sources

We need to make an explicit connection to experimental
observables by considering the various multivector grade
components of F and D. We express the field F in terms
of its four grade components of as F “ χ ` sE ` uB `
rT . Following the notation of Vold [2], the embellishments
over the letters, when used, designate vectors with bars,
bivectors with arcs, and trivectors with tildes.

For a consistent application of geometric algebra and
geometric calculus while maintaining a clear connection
to customary notation, it is necessary to distinguish
formally between sources on one hand and charges and
currents on the other. We define sources as multivector
quantities conforming to the Postulates while charges and
currents conform to customary experimental definitions.
Consistency is achieved by making sources proportional
to charges (or currents), with the proportionality constant
accounting for both geometric properties (multivector
grade) and units of measure.

We adopt the Gaussian (cgs) system [17] to provide
guidance on units for the non-standard scalar and
pseudoscalar components of F . In the Gaussian system,
both electric and magnetic fields are measured in statvolts
per centimeter, so we assume that the putative scalar and
trivector components of F may be measured in statvolts
per cm, as well. Similarly, both electric charges and
magnetic charges (if they were to exist) are measured in
statcoulombs.

The integral field equation in Equation (6) is useful
for analyzing symmetric situations and for determining
fields from boundary conditions. Examination of static
situations with spherical and cylindrical symmetry
provides insight into the nature of both F and Dex.
Equation (6) may be applied in order to 1) establish
clearly the relationship between the multivector-valued
fields and the electromagnetic fields of the Maxwell
equations, 2) illustrate the proper handling of surface and
volume integrals in multivector analysis, and 3) derive
expressions in Gaussian units for multivector source
densities in terms of customary charge and current

Fig. 1: Symmetric geometry for analyzing multivector source
terms.

densities. Because geometric algebra enables
simultaneous consideration of four multivector grade
components of Equation (6), it is sufficient to consider the
single, symmetric case illustrated in Figure 1. An inner
cylinder extending to infinity in both directions carries
uniform electric and magnetic charges, ρe and rρm,
respectively, moving to the right with uniform axial
velocity sν. A second, concentric, cylindrical surface BM
of larger radius and infinite length defines a volume M
for application of Equation (6).

Considering a unit length of the cylinder in Figure 1,
applying straightforward symmetry arguments for field
components, and comparing each grade of the equality
resulting from Equation (6) to standard expressions in
Jackson [17] for the electromagnetic fields from such a
line source in Gaussian units, we arrive at the following
expression for the multivector external source density:

Dex “ 4πc´1pcρe ´ sJe ´ uJm ` crρmq. (11)

For the situation in Figure 1, the electric and magnetic
current densities are given by sJe “ ρesν and uJm “ rρmsν,
respectively. Interestingly, χ and rT both vanish for this
configuration.

6 The Nature of the Solutions

Substituting Equation (11) into Equation (10) and
separating the four grades provides the following set of
four field equations:

Bx ¨ sE ` c´1Btχ “ 4πρe,

Bx ^ χ ` s∇ ¨ uB ` c´1Bt sE “ ´
4π

c
sJe (12)

Bx ^ sE ` Bx ¨ rT ` c´1Bt uB “ ´
4π

c
uJm

Bx ^ uB ` c´1Bt rT “ 4πrρm .

The Maxwell equations involve neither the scalar nor the
trivector fields χ and rT allowed by Postulate 1. What we
find about χ and rT from considerations like those in the
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previous Section is that these fields satisfy the wave
equation in vacuum and they do not arise from static
sources in either spherically or cylindrically symmetric
situations. If we suppose that under some circumstance χ

and rT are not produced at all, then Equations (10) and
(12) reduce exactly to the Maxwell equations.

If we account for external sources in the derivation of
Equation (9) and separate by grade, we find the following
inhomogeneous wave equations:

pB2
x ´ c´2B2

t qχ “ ´
4π

c
pBx ¨ sJe ` Btρeq

pB2
x ´ c´2B2

t q sE “ ´4πp´Bx ^ ρe ` c´1Bx ¨ uJm

´ c´2Bt sJeq (13)
pB2

x ´ c´2B2
t q uB “ ´4πpc´1Bx ^ sJe ´ Bx ¨ rρm

´ c´2Bt uJmq

pB2
x ´ c´2B2

t q rT “ ´
4π

c
pBx ^ uJm ` Btrρmq .

Interestingly, the driving terms on the right-hand side of
the χ equation in Equation (13) vanish if we abide by the
continuity equation for the external electric charge and
current densities, which is well verified by experiment.
Therefore, wave solutions exist for χ but they cannot be
driven by ordinary matter. Conversely, the field solutions
associated with χ have no effect on ordinary matter.
Similarly, if magnetic charges and currents existed and
satisfied a continuity equation, they could not drive the
wave solutions for rT as shown by the fourth equation in
Equation (13).

In preparation for analyzing the energy and
momentum flow of the multivector field, we write a
general, circularly polarized, plane wave solution of
Equation (10) in free space (Dex “ 0) as

F “ p1 ` k̂qF0e
Iϕ (14)

with the usual phase angle ϕ “ ωt ´ sk ¨ sx and wave
vector sk “ |sk|k̂ “ kk̂. The field amplitude F0 is an
arbitrary multivector constant. It is straightforward to
show that Equation (14) is a solution in free space for an
arbitrary unit vector k̂ as long as the condition ω “ kc is
satisfied. There is no restriction on the grade of F0. The
factor p1 ` k̂q couples a wave component of one grade to
a component of adjacent grade. The composition of the
wave depends on F0. If F0 is a vector ϵ̂ perpendicular to
k̂, then F is an electromagnetic (EM) wave with
oscillating transverse electric (vector) and magnetic
(bivector) components. If F0 is a scalar constant, then F
oscillates between a scalar-vector pair and a
bivector-trivector pair, a decidedly non-electromagnetic
(non-EM) wave. The following sections analyze the
energy and momentum of such wave solutions.

7 Continuity Equation for Energy and
Momentum

It is well known in classical electrodynamics (see, e.g.,
Jackson [17]) that the energy and momentum of
electromagnetic fields are quadratic in the field values.
Jackson provides a traditional, somewhat involved
derivation of this result using the known laws of
mechanics and the transfer of energy and momentum
from electromagnetic fields to external charge densities.
Much more elegant derivations are available in the
Lagrangian formulation of field theory via Noether’s
Theorem, either in traditional field theory or in
Lagrangian formulations with geometric algebra [4,18]. It
is perhaps less well known that, with the aid of geometric
algebra, the continuity and conservation laws for the
energy and momentum of the electromagnetic field may
be derived directly from the field equations even in the
absence of external sources. The derivation is analogous
to the way that continuity and conservation laws for
probability are derived from the Schrödinger or Dirac
equations in quantum mechanics. Here, we follow the
method shown by Vold [2] to derive energy and
momentum relationships for the multivector field F .
These relationships are valid whether or not F includes
the non-electromagnetic scalar and pseudoscalar
components χ and rT .

To begin, we multiply Equation (10) from the left by
the reverse F : of F . The reverse [4,5] in geometric algebra
plays the role of the Hermitian adjoint in matrix theory and
in quantum mechanics. The result is:

c´1F :BtF ` F :BxF “ F :Dex. (15)

Next, we take the reverse of Equation (10), noting that
pABq: “ B:A: and that scalar and vector quantities,
including the operators Bt and Bx, reverse to themselves:

c´1 9F : 9Bt ` 9F : 9Bx “ D:
ex. (16)

Multiplying Equation (16) from the right by F , we have:

c´1 9F : 9BtF ` 9F : 9BxF “ D:
exF. (17)

Adding equations (15) and (17), then applying the rules
for the differentiation of products, we obtain:

c´1BtpF
:F q ` 9F : 9Bx 9F “ F :Dex ` D:

exF. (18)

Note that as a scalar operator, the time derivative Bt
commutes with all geometric quantities and may be
brought to the left in the first term of Equation (18). On
the other hand, the vector operator Bx does not necessarily
commute with all components of F :, so it must remain
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between the factors of F : and F in the second term. The
overdots in this term indicate that the geometric derivative
acts both to the left and to the right.

Equation (18) has the apparent structure of a
continuity equation for a conserved bilinear quantity
F :F . The first term on the left is the rate of change of
F :F at a given point, the second term on the left should
be a divergence of the quantity from that point, and the
right-hand side of the equation should be the production
rate at the point. Such an interpretation is easy to
demonstrate when the conserved quantity is a scalar such
as energy or probability density. However, in 3-D
geometric algebra, the bilinear quantity F :F may have
both scalar and vector components. Given that F :F
reverses to itself, it cannot have either bivector or trivector
components [4,5]. Inspection of Equation (18) shows that
both the second term on the left and the combined terms
on the right hand side have the same property. We shall
see how the scalar and vector components represent
energy and momentum density, respectively.

First, consider the scalar part of Equation (18) in a
source-free region of space:

xc´1BtpF
:F qy ` x 9F : 9Bx 9F y “ 0, (19)

where the angled braces with no subscript indicate the
scalar part of the enclosed expression. The first term is
xc´1BtpF

:F qy “ c´1BtxF
:F y and the second is

x 9F : 9Bx 9F y “ xBxpFF :qy “ Bx ¨ xFF :y1, where the
subscript 1 on the angled braces indicates the vector
(grade 1) component of the enclosed expression. If we use
these expressions in Equation (19) and multiply by c{8π,
we obtain the continuity equation

Btρε ` Bx ¨ sJε “ 0 (20)

for the energy density ρε ” xF :F {8πy having flux density
sJε “ cxFF :{8πy1 in Gaussian units. It is noteworthy that
the flow of energy as needed in Equation (20) is in the
direction of the vector part of FF : rather than the vector
part of F :F .

By direct calculation with F “ χ ` sE ` uB ` rT , we
find

F :F “ pχ2` sE2´ uB2´ rT 2q`2pχ sE` sE ¨ uB´ uB rT q. (21)

Given the bivector grade of uB, we have uB2 “ ´B2, where
B “ | uB|, and from the first set of terms on the right of
this equation we obtain the usual expression for the energy
density of electric and magnetic fields when the scalar and
trivector fields vanish. We expect then that the second set
of terms, the vector part of Equation (21), will yield the
momentum density of the field. The magnetic field vector
sB in the vector algebra of traditional physics is the dual of
the bivector field, i.e., uB “ I sB. The inner product in the

vector part of Equation (21) becomes sE ¨ uB “ ´ sE ˆ sB so
we find that the vector part of F :F is proportional to the
negative of the field momentum [2]. In summary, we have
the energy density ρε, the momentum density sJ

sp, and the
energy flux density sJε given by the following expressions:

ρε “ xF :F {8πy “
χ2 ` E2 ` B2 ` T 2

8π

sJ
sp “ ´xF :F {8πy1 “

´χ sE ´ sE ¨ uB ` uB rT

4π

sJε “ cxFF :{8πy1 “ c
χ sE ´ sE ¨ uB ´ uB rT

4π

. (22)

Comparing the second and third equations of (22), we see
the well known relationship between energy flux (the
Poynting vector) and momentum density for the
electromagnetic term sE ¨ uB with momentum pointed in
the direction of energy flow as expected [17]. However, a
combination of scalar and electric (or of magnetic and
pseudoscalar) fields, were they to exist, would have
momentum directed oppositely to the flow of energy. In
other words such propagating fields would have
retrograde momentum.

To obtain a continuity equation for energy and
momentum density in Gaussian units, we multiply
Equation (18) by c{8π and rearrange as follows:

Bt
F :F

8π
“ ´

c

8π
9F : 9Bx 9F ` c

F :Dex ` D:
exF

8π
. (23)

We recognize the left-hand side as the time derivative of
the energy and momentum density of the electromagnetic
field when F consists of only vector and bivector
components [2]. The first term on the right relates to the
flow of energy and momentum. The second term on the
right gives the production of energy and momentum by
the external source as may be verified by expanding the
term with the aid of Equation (11).

8 Conservation Equation for Energy and
Momentum

To confirm our understanding of the flow of energy and
momentum represented by the geometric derivative term
of the continuity equation, we integrate both sides of
Equation (23) over an arbitrary volume M enclosed by a
boundary BM :

Bt

ż

M

dV
F :F

8π
“ ´

c

8π

ż

M

dV 9F : 9Bx 9F

` c

ż

M

dV
F :Dex ` D:

exF

8π
. (24)
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Next, we apply the fundamental theorem of calculus
from Equation (4) to the geometric derivative term of
Equation (24), using G “ F : to obtain the following
conservation equation:

Bt

ż

M

dV
F :F

8π
“ ´

ż

BM

dSn
cF :nF

8π

` c

ż

M

dV
F :Dex ` D:

exF

8π
. (25)

The left-hand side of Equation (25) is the time derivative
of the total energy and momentum in M . The first integral
on the right gives the loss rate of energy and momentum
through the boundary BM , where, as before, n is the
outward pointing normal at the surface element dS. The
second integral on the right is the production rate of
energy and momentum within the volume.

We may verify our earlier interpretation of the energy
flux density by examining the trivector component of
Equation (25). The volume element dV is a pure trivector,
so the trivector part of the volume integrals is due to the
scalar part of the integrands. Likewise, given that n is
normal to dS, the combination dSn is a pure trivector, so
we need the scalar part of the remaining factors in the
surface integral. Then the trivector component of
Equation (25) is the energy conservation law for the
multivector field:

Bt

ż

M

dV x
F :F

8π
y “ ´

ż

BM

dSnx
cF :nF

8π
y

` c

ż

M

dV
xF :Dex ` D:

exF y

8π
. (26)

To understand the flow of energy, we analyze the integrand
of the surface integral in Equation (26). Apparently, the
vector integrand

sJεpnq “ nx
cF :nF

8π
y (27)

is the flux of energy normal to the surface element dS.
However, the flow direction at the spatial position of dS is
not necessarily normal to dS. To find the direction of flow
of field energy, we need to orient dS at the given spatial
position so that its normal n matches the direction of flow
and therefore maximizes the flow through dS. It is
equivalent to find the unit vector n “ n0 that maximizes
the scalar xF :nF y. Geometric calculus provides a
convenient means for this optimization using the
geometric derivative with respect to an arbitrary vector τ
in the tangent space at the spatial position of dS. We may
express the normal to dS as n “ |τ |´1τ . Then we vary n

by varying τ . First, we write the scalar to be maximized
in terms of τ :

xF :nF y “ |τ |´1xF :τF y “ |τ |´1xτFF :y. (28)

Then we take the geometric derivative of Equation (28)
with respect to τ (see Hestenes and Sobczyk [5]):

Bτ xF :nF y “ pBτ |τ |´1qxτFF :y ` |τ |´1Bτ xτFF :y

“ ´ |τ |´3τxτFF :y ` |τ |´1xFF :y1.

The extremum occurs for τ “ τ0 when this derivative
vanishes, which yields the condition:

|τ0|´3τ0xτ0FF :y “ |τ0|´1xFF :y1.

This condition, given n0 “ |τ0|´1τ0, reduces to

n0xF :n0F y “ xFF :y1.

Using this result in Equation (27) gives the maximum
energy flow

sJεpn0q “ n0x
cF :n0F

8π
y “ cx

FF :

8π
y1

in agreement with the energy flux density in Equation
(22) derived from the continuity equation.

9 Comparing Energy Flux and Momentum
Density of Wave Solutions

Having confirmed the expression for the energy flux given
in Equation (22) through analysis of the conservation
equation in the previous section, we may confidently
compare the energy flux and momentum density given by
Equation (22) for the plane wave solution of Equation
(14). For simplicity, we compare the direction of the
energy flux given by xFF :y1 with the direction of the
momentum density given by ´xF :F y1 for the EM and
non-EM solutions described at the end of Section 6. The
reverse of the plane wave solution of Equation (14) is

F : “ e´IϕF :
0 p1 ` k̂q

from which we obtain:

F :F “ 2F :
0 p1 ` k̂qF0

FF : “ p1 ` k̂qF0F
:
0 p1 ` k̂q.
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Table 1: Non-EM plane waves have retrograde momentum.

Plane
wave

F0

Energy
flux
direction
xFF :y1

Momentum
density
direction
´xF :F y1

EM ϵ̂pK k̂q 2k̂ 2k̂

Non-EM 1 2k̂ ´2k̂

Table 1 compares the directions of the energy flux and the
momentum density given by the vector parts of these
expressions for the EM and non-EM solutions. For both
solutions, the energy flux is in the direction of k̂. This
result matches intuition given that the contribution to the
energy density as seen in Equation (22) is positive for all
four grade components of the field and that the wave
peaks for any solution move in the k̂ direction by virtue of
the phase angle in Equation (14). Furthermore, the
momentum density of the EM wave is also in the k̂
direction, as it must be for consistency with classical
electrodynamics.

However, the direction of the momentum density for
the non-EM wave is distinctly non-intuitive, being directed
oppositely, or retrograde, to the direction of energy flux.

10 Discussion

Expansion and inspection of the terms in Equation (25)
show that they correspond to the usual results of classical
electrodynamics [17] for the flow of energy and
momentum when F is an EM wave having only vector
and bivector components. In particular, the flow of energy
is in the direction k̂ of the wave vector and the vector
momentum density points in the same direction.
However, Equation (25) is valid for any multivector field
F satisfying the wave equations of Equation (13). It is
quite remarkable that non-EM wave solutions consisting
of scalar and (longitudinal) vector components have
energy flow also in the direction of k̂ but that their
momentum density points in the opposite direction. We
say that these waves carry retrograde momentum, i.e.,
momentum directed oppositely to the energy flow. Such
waves would generate negative pressure. In rebounding
from a surface, they would pull rather than push on the
surface. Wave solutions consisting of pseudoscalar and
bivector components have the same property.

It is important to examine further the question of the
coexistence of EM and non-EM solutions of Equations
(10) and (12) and the issue of consistency with
experiment. It can be argued that the first of the equations
in (12), relating the divergence of the electric field to the
electric charge density, has been verified by experiment in

the absence of the time derivative of the scalar field χ
and, therefore, the time derivative of χ cannot exist above
an upper limit set by these experiments.

The counter to this argument involves two points.
First, the equation involving the divergence of the electric
field is part of the larger set of relations of Equation (12).
The other relations in Equation (12) require that any
time-varying scalar field propagates at the speed of light
with an accompanying longitudinal electric field, just as a
time-varying transverse electric field propagates with an
accompanying transverse magnetic field. As an
illustration, consider a linearly polarized plane wave
solution F “ p1 ` k̂qF0 cosϕ analogous to the circularly
polarized wave of Equation (14). With a scalar amplitude
F0, this solution is such a propagating wave (which may
be called a scalarelectric wave). The divergence of its
longitudinal electric field (non-EM) exactly balances the
time derivative of its scalar field, so the first equation of
Equation (12) is satisfied by this wave without the
external charge density term on the right side. On the
other hand, classical EM experiments show that either the
divergence of the electric field arising from an external
charge density or the divergence of the electric field of a
freely propagating EM wave balance the first equation of
(12) without need for the time-varying scalar field.
Because the equation is linear, the solutions for these EM
and non-EM situations may be superimposed without
affecting each other.

The second point is related to the discussion
following Equation (13). Electromagnetic experiments
are performed with electric charge densities and currents
that satisfy the continuity equation and, hence, do not
interact electromagnetically with the scalar field. These
experiments cannot detect either the scalar field or the
longitudinal electric field associated with it. In this way,
the non-EM waves may exist without contradicting
experiment. The initial argument stated above for the
vanishing of the time derivative of χ stems from the
implicit assumption that all components of the electric
field are measurable in classical EM experiments. This
assumption is understandable given the traditional
definition of the electric field in terms of the force on an
electrically charged particle. However, the definition of
the electric field via the five postulates in this paper
admits a more general vector component xF y1 of the
multivector field having a longitudinal, non-EM
component that is not generated or measurable in
classical EM experiments.

It is tempting to dismiss the non-EM, retrograde
solutions described above as non-physical. However, the
currently accepted cosmological theory [19] that the
preponderance of the energy density in the universe is
dark energy with negative pressure brings some interest to
the topic of retrograde momentum. Cosmological theory
frequently makes use of a broad-brush characterization of
a uniform region of matter and energy in terms of the
equation of state p “ we relating pressure p to energy
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Fig. 2: Matter and energy may be characterized by an equation
of state parameter w.

density e via a proportionality constant w known as the
equation of state parameter. Figure 2 illustrates values of
w for various states of matter and energy. Ordinary matter
(dark bar in Figure 2) has values ranging from 0 for cold
matter to +1/3 for highly relativistic particles and
photons. Dark energy has a value of about -1, giving a
negative pressure for a positive energy density. The
non-EM solutions described in this paper, if quantized,
would be analogous to photons but with the opposite sign
for the equation of state parameter, i.e., w “ ´1{3. Such
quantized states with retrograde momentum are indicated
as retrons in Figure 2.

We cannot suggest that the non-EM multivector field
solutions described here are candidates for dark energy
given the apparent difference in values of the equation of
state parameter. However, the fact that the non-EM
solutions propagate at the speed of light, seem not to
interact with ordinary matter, and exhibit retrograde
momentum give them enough similarity to dark energy to
warrant further study of their properties. Transforming the
results of this paper to covariant form in spacetime
algebra will facilitate such study.

11 Conclusion

Geometric algebra and geometric calculus enable for the
first time an efficient formulation of classical
electrodynamics from a set of familiar and physically
meaningful postulates. It is certainly intriguing that the
standard assumptions of classical electrodynamics
represented by the five postulates lead naturally without
further elaboration to a field equation admitting both
standard EM solutions with the usual energy-momentum
relationship and non-EM solutions with retrograde
momentum. A further point of interest is that the non-EM
solutions coexist with the classical EM solutions with no
apparent conflict with experiment. These results are due
to the elegance and power of geometric algebra and
geometric calculus.
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