

Sohag Journal of Mathematics An International Journal

P-Separation Axioms in Ideal Bitopological Ordered Spaces I

A. Kandil¹, O. Tantawy², S. A. El-Sheikh³ and M. Hosny^{3,*}

¹ Department of Mathematics, Faculty of Science, Helwan University, Egypt

² Department of Mathematics, Faculty of Science, Zagazig University, Cairo, Egypt

³ Department of Mathematics, Faculty of Education, Ain Shams University, 11757 beside Tabary school, Roxy, Cairo, Egypt.

Received: 7 Jun. 2014, Revised: 21 Sep. 2014, Accepted: 23 Sep. 2014 Published online: 1 Jan. 2015

Abstract: The aim of this paper is to use the concept of ideal \mathscr{I} to study ideal bitopological ordered spaces $(X, \tau_1, \tau_2, R, \mathscr{I})$. Clearly, if $\mathscr{I} = \{\phi\}$, then every ideal bitopological ordered spaces are bitopological ordered spaces. In addition, if $\mathscr{I} = \{\phi\}$ and *R* is the equality relation " Δ ", then every ideal bitopological ordered spaces are bitopological spaces. Therefore, these spaces are generalization of the bitopological ordered spaces and bitopological spaces. In this and a subsequent paper, we use the notion of \mathscr{I} -increasing (decreasing) sets which based on the ideal \mathscr{I} , to introduce separation axioms in ideal bitopological ordered spaces. Whereas this paper is devoted to the axioms $\mathscr{I}PT_i$, (i = 0, 1, 2) in part II the axioms $\mathscr{I}PT_i$, (i = 3, 4, 5) and $\mathscr{I}PR_j$ -ordered spaces, j = 0, 1, 2, 3, 4 are introduced and studied. Some important results related these separations have obtained and the relationship between these axioms and the previous one has been given.

Keywords: Bitopological ordered spaces, separation axioms, ideals. *Mathematics Subject Classification (2010):* 54F05, 54E55, 54D10.

1 Introduction

Topological spaces have been generalized by many ways. A topological ordered space (X, τ, R) is a set X endowed with both a topology τ and a partially order relation R on X. The study of order relations in topological spaces was initiated by Nachbin [10] in 1965.

In 1963 Kelly [7] was introduced a bitopological space (X, τ_1, τ_2) as a richer structure than topological space. In 1971 Singal and Singal [12] were studied the bitopological ordered space (X, τ_1, τ_2, R) which is a generalization of the study of general topological space, bitopological space and topological ordered space. Every bitopological ordered space (X, τ_1, τ_2, R) can be regarded as a bitopological space (X, τ_1, τ_2) if R is the equality relation " Δ " and every bitopological space (X, τ_1, τ_2) if $\tau_1 = \tau_2 = \tau$. Also, every bitopological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space $(X, \tau_$

The object of the present paper is to use the ideal properties to study ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{I})$ which is a generalization of the study of bitopological ordered spaces (X, τ_1, τ_2, R) and bitopological space (X, τ_1, τ_2) . Every ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathscr{I})$ can be regarded as a bitopological ordered space (X, τ_1, τ_2, R) if $\mathscr{I} = \{\phi\}$ and can be regarded as bitopological space (X, τ_1, τ_2) if $\mathscr{I} = \{\phi\}, R$ is the equality relation " Δ ". Separation axioms \mathscr{IPT}_{i} , i = 0, 1, 2 are studied on the space $(X, \tau_1, \tau_2, R, \mathscr{I})$ which based on the notion of I-increasing (decreasing) sets [2]. In addition, the relationship between these axioms and the axioms in [6, 12] have been obtained. Moreover, we show that the properties of being $\mathscr{I}PT_i$ -ordered spaces, i = 0, 1, 2 are preserved under a bijective, P-open and order (reverse) embedding mappings (see Theorems 3.2, 3.6). Furthermore, it is proved that the property of being $\mathscr{I}PT_i$ -ordered spaces, i = 0, 1, 2 is hereditary property (see Theorems 3.4, 3.7).

^{*} Corresponding author e-mail: moona_hosny@yahoo.com

2 Preliminaries

In this section, we collect the relevant definitions and results from bitopological ordered spaces, lower separation axioms and mappings.

Definition 2.1.[10] Let (X, R) be a poset. A set $A \subseteq X$ is said to be

- 1.Increasing if for every $a \in A$ and $x \in X$ such that aRx, then $x \in A$.
- 2.Decreasing if for every $a \in A$ and $x \in X$ such that xRa, then $x \in A$.

Definition 2.2. A mapping $f : (X, R) \to (Y, R^*)$ is called

1.Increasing (decreasing) if $\forall x_1, x_2 \in X$ such that $x_1Rx_2 \Rightarrow f(x_1)R^*f(x_2)(f(x_2)R^*f(x_1))$ [10]. 2.Order embedding if $\forall x_1, x_2 \in X, x_1Rx_2 \Leftrightarrow f(x_1)R^*f(x_2)$ [13]. 3.Order reverse embedding if $\forall x_1, x_2 \in X, x_1Rx_2 \Leftrightarrow f(x_2)R^*f(x_1)$ [1].

Definition 2.3. [4] Let *X* be a non-empty set. A class τ of subsets of *X* is called a topology on *X* iff τ satisfies the following axioms.

 $1.X, \phi \in \tau.$

2. An arbitrary union of the members of τ is in τ .

3. The intersection of any two sets in τ is in τ .

The members of τ are then called τ -open sets, or simply open sets. The pair (X, τ) is called a topological space. A subset *A* of a topological space (X, τ) is called a closed set if its complement *A'* is an open set.

Definition 2.4.[7] A bitopological space (bts, for short) is a triple (X, τ_1, τ_2) , where τ_1 and τ_2 are arbitrary topologies for a set *X*.

Definition 2.5.[8, 11] A function $f : (X_1, \tau_1, \tau_2) \rightarrow$

 (X_2, η_1, η_2) is called

- 1.p.continuous (respectively p.open, p.closed) if $f: (X_1, \tau_i) \rightarrow (X_2, \eta_i), i = 1, 2$ are continuous (respectively open, closed).
- 2.p.homeomorphism if $f: (X_1, \tau_i) \to (X_2, \eta_i), i = 1, 2$ are homeomorphism.

Definition 2.6.[12] A bitopological ordered space (bto-space, for short) has the form (X, τ_1, τ_2, R) , where (X, R) is a poset and (X, τ_1, τ_2) is a bts.

Definition 2.7.[12]A bto-space (X, τ_1, τ_2, R) is said to be

- 1.Lower pairwise $T_1(LPT_1, \text{ for short})$ -ordered space if for every $a, b \in X$ such that $a\overline{R}b$, there exists an increasing τ_i -nbd U of a such that $b \notin U, i = 1$ or 2.
- 2.Upper pairwise $T_1(UPT_1, \text{ for short})$ -ordered space if for every $a, b \in X$ such that $a\overline{R}b$, there exists a decreasing τ_i -nbd *V* of *b* such that $a \notin V, i = 1$ or 2.

Definition 2.8.[12] A bto-space (X, τ_1, τ_2, R) is said to be *PT*₀-ordered space if it is *LPT*₁ or *UPT*₁ ordered space. **Definition 2.9.**[12] A bto-space (X, τ_1, τ_2, R) is said to be

pairwise $T_1(PT_1, \text{ for short})$, if it is LPT_1 and UPT_1 -ordered space.

Definition 2.10.[12] A bto-space (X, τ_1, τ_2, R) is said to be pairwise $T_2(PT_2, \text{ for short})$, if for every $a, b \in X$ such that $a\overline{R}b$, there exist an increasing τ_i -nbd U of a and a decreasing τ_j -nbd V of b such that $U \cap V = \phi$.

Definition 2.11.[5] A non-empty collection \mathscr{I} of subsets of a set X is called an ideal on X, if it satisfies the following conditions

 $\begin{aligned} 1.A \in \mathscr{I} \ \text{and} \ B \in \mathscr{I} \Rightarrow A \cup B \in \mathscr{I}. \\ 2.A \in \mathscr{I} \ \text{and} \ B \subseteq A \Rightarrow B \in \mathscr{I}. \end{aligned}$

Definition 2.12.[2] Let (X, R) be a poset and $\mathscr{I} \subseteq P(X)$ be an ideal on *X*. Then, a set $A \subseteq X$ is called:

- 1. \mathscr{I} -increasing set iff $aR \cap A' \in \mathscr{I} \ \forall a \in A$, where $aR = \{b : (a,b) \in R\}$.
- 2. \mathscr{I} -decreasing set iff $Ra \cap A' \in \mathscr{I} \ \forall a \in A$, where $Ra = \{b : (b,a) \in R\}$.

Theorem 2.1.[2] Let $f : (X, R, \mathscr{I}) \to (Y, R^*, f(\mathscr{I}))$ be a bijective function and order embedding. Then for every \mathscr{I} -increasing (decreasing) subset A of X, f(A) is $f(\mathscr{I})$ -increasing (decreasing) subset of Y.

Corollary 2.1.[2] Let $f : (X, R, \mathscr{I}) \to (Y, R^*, f(\mathscr{I}))$ be a bijective function and order embedding. If $B \subseteq Y$ is $f(\mathscr{I})$ -increasing (decreasing), then $f^{-1}(B)$ is \mathscr{I} -increasing (decreasing) subset of X.

Theorem 2.2.[2] Let $f : (X, R, \mathscr{I}) \to (Y, R^*, f(\mathscr{I}))$ be a bijective function and reverse embedding. Then for every \mathscr{I} -increasing (decreasing) subset A of X, f(A) is $f(\mathscr{I})$ -decreasing (increasing) subset of Y.

Corollary 2.2.[2] Let $f : (X, R, \mathscr{I}) \to (Y, R^*, f(\mathscr{I}))$ be a bijective function and order reverse embedding. If $B \subseteq Y$ is $f(\mathscr{I})$ -increasing (decreasing), then $f^{-1}(B)$ is \mathscr{I} -decreasing (increasing) subset of X.

3 *IP*-Separation axioms

The aim of this section is to introduce new separation axioms $\mathscr{P}T_i$ -ordered spaces, i = 0, 1, 2 on the space $(X, \tau_1, \tau_2, R, \mathscr{I})$ which based on the notion of \mathscr{I} -increasing (decreasing) sets [2]. In addition, the relationship between these axioms and the axioms in [12] are obtained. Moreover, it is proved that the property of being $\mathscr{I}PT_i$ -ordered spaces, i = 0, 1, 2 is invariant under a bijective, *P*-open and order embedding mapping (order reverse embedding mapping). Furthermore, it is proved that the property of being $\mathscr{I}PT_i$ -ordered spaces, i = 0, 1, 2is hereditary property.

Definition 3.1. A space $(X, \tau_1, \tau_2, R, \mathscr{I})$ is called an ideal bitopological ordered space if (X, τ_1, τ_2, R) is a bitopological ordered space and $\mathscr{I} \subseteq P(X)$ is an ideal on *X*.

Remark 3.1. Every ideal bitopological ordered space

 $(X, \tau_1, \tau_2, R, \mathscr{I})$ can be regarded as a bitopological ordered space (X, τ_1, τ_2, R) if $\mathscr{I} = \{\phi\}$ and can be regarded as bitopological space (X, τ_1, τ_2) if $\mathscr{I} = \{\phi\}, R$ is the equality relation " Δ ".

Definition 3.2. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathscr{I})$ is said to be

- 1. I lower $PT_1(\mathscr{I}LPT_1, \text{ for short})$ -ordered space if for every $a, b \in X$ such that $a\overline{R}b$, there exists an \mathscr{I} -increasing τ_i -open set U such that $a \in U$ and $b \notin U, i = 1 \text{ or } 2$.
- 2. \mathscr{I} upper $PT_1(\mathscr{I}UPT_1, \text{ for short})$ -ordered space if for every $a, b \in X$ such that $a\overline{R}b$, there exists an \mathscr{I} -decreasing τ_i -open set V such that $b \in V$ and $a \notin V, i = 1 \text{ or } 2$.

Definition 3.3. $(X, \tau_1, \tau_2, R, \mathscr{I})$ is said to be $\mathscr{I}PT_0$ -ordered space if it is $\mathscr{I}LPT_1$ or $\mathscr{I}UPT_1$ ordered space.

Example 3.1. Let $X = \{1, 2, 3, 4\}, R = \Delta \cup \{(1, 4), (1, 3), (2, 3), (4, 3)\}, \mathscr{I} = \{\phi, \{1\}, \{3\}, \{1, 3\}\}, \tau_1 = \{X, \phi, \{1\}, \{1, 2\}, \{1, 4\}, \{1, 2, 4\}\}, \tau_2 = \{X, \phi, \{2, 3\}, \{1, 2, 3\}, \{2, 3, 4\}\}.$ Then, $(X, \tau_1, \tau_2, R, \mathscr{I})$ is $\mathscr{I}UPT_0$ -ordered space and consequently it is $\mathscr{I}PT_0$ -ordered space.

Example 3.2. In Example 3, let $\mathscr{I} = \{\phi, \{3\}, \{4\}, \{2, 4\}\}$

 $\{3,4\}$, $\tau_1 = \{X, \phi, \{3\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\}, \tau_2 = \{X, \phi, \{3,4\}, \{1,3,4\}, \{2,3,4\}\}$. Then, $(X, \tau_1, \tau_2, R, \mathscr{I})$ is $\mathscr{I}LPT_0$ -ordered space and consequently it is $\mathscr{I}PT_0$ -ordered space.

The following proposition gives the relationship between Definition 3.3 and Definition 2.8 [12].

Proposition 3.1. Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ be an ideal bitopological ordered space. Then,

 PT_0 -ordered spaces $\Rightarrow \mathscr{I}PT_0$ -ordered spaces.

Proof. The proof follows directly from the definitions of PT_0 -ordered spaces and $\mathscr{I}PT_0$ -ordered spaces.

Example 3.1 shows that $(X, \tau_1, \tau_2, R, \mathscr{I})$ is \mathscr{IPT}_0 -ordered space, but not PT_0 -ordered space since, it is not UT_1 -ordered space and not LT_1 -ordered space (as, $1\overline{R}2$, all decreasing τ_i -open sets which contain 2 also containing 1. Also, $3\overline{R}2$, all increasing τ_i -open sets which contain 3 also containing 2).

Definition 3.4. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathscr{I})$ is said to be $\mathscr{I}PT_1$ -ordered space iff it is $\mathscr{I}LPT_1$ and $\mathscr{I}UPT_1$ ordered space. **Example 3.3.** Let $\tau_1 = \{X, \phi, \{3\}, \{2,3\}, \{3,4\}, \{2,3\}, \{2,3\}, \{3,4\}, \{2,3\}, \{3,4\},$

 $\{1\}, \tau_2 = \{X, \phi, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 4\}, \{1, 4\}, \{1, 2, 3\}, \{1, 4\}, \{1$

 $\{1,2,4\},\{1,3,4\}\}$ in Example 3.1. Then, $(X,\tau_1,\tau_2,R,\mathscr{I})$ is $\mathscr{I}PT_1$ -ordered space.

The following theorem studies the relationship between the current Definitions 3.3, 3.4 and the previous Definition 2.9.

Theorem 3.1. Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ be an ideal bitopological ordered space. Then,

 PT_1 -ordered spaces $\Rightarrow \mathscr{I}PT_1$ -ordered spaces $\Rightarrow \mathscr{I}PT_0$ -ordered space.

Proof. The proof follows directly from the definitions of PT_1 -ordered spaces, $\mathscr{I}PT_0$ -ordered space and $\mathscr{I}PT_1$ -ordered spaces.

Example 3.3 shows that $(X, \tau_1, \tau_2, R, \mathscr{I})$ is \mathscr{IPT}_1 -ordered space, but not PT_1 -ordered space, since it is not UT_1 -ordered space (as $1\overline{R}2$ and all decreasing τ_i -open sets which contain 2 also containing 1).

Example 3.1 (Example 3.2) shows that $(X, \tau_1, \tau_2, R, \mathscr{I})$ is $\mathscr{I}PT_0$ -ordered space, but not $\mathscr{I}PT_1$ -ordered space.

The following theorem shows that the property of being \mathscr{IPT}_i -ordered space, i = 0, 1 is preserved by a bijective, *P*-open and order (reverse) embedding mapping. **Theorem 3.2.** If $(X, \tau_1, \tau_2, R, \mathscr{I})$ is \mathscr{IPT}_i -ordered space, $f : (X, \tau_1, \tau_2, R, \mathscr{I}) \to (Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ is a bijective, *P*-open and order embedding mapping (order reverse embedding mapping). Then, $(Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ is $f(\mathscr{I})PT_i$ -ordered space, i = 0, 1. **Proof.**

We prove the theorem in case i = 0, order embedding mapping and the other case is similar. Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ and $(Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ be two ideal bitopological ordered spaces such that $(X, \tau_1, \tau_2, R, \mathscr{I})$ is a $\mathscr{I}PT_0$ -ordered space and $f: (X, \tau_1, \tau_2, R, \mathscr{I}) \to$ $(Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ be a bijective, *P*-open and order embedding mapping. Let $y_1, y_2 \in Y$ such that $y_1 \overline{R^*} y_2$. Then, there exist $x_1, x_2 \in X$ such that $f(x_1) = y_1, f(x_2) = y_2$ and $x_1 \overline{R} x_2$. As $(X, \tau_1, \tau_2, R, \mathscr{I})$ is a $\mathscr{I}PT_0$ -ordered space, then there exists an \mathscr{I} -increasing τ_i -open set O_{x_1} such that $x_2 \notin O_{x_1}$ or an \mathscr{I} -decreasing

 τ_i -open set O_{x_1} such that $x_1 \notin O_{x_2}$. Since f is P-open and by Theorem 2.1, $f(O_{x_1})$ is $f(\mathscr{I})$ -increasing η_i -open set contains $y_1, y_2 \notin f(O_{x_1})$ or $f(O_{x_2})$ is $f(\mathscr{I})$ -decreasing η_i -open set contains $y_2, y_1 \notin f(O_{x_2})$. Hence, $(Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ is a $f(\mathscr{I})PT_0$ -ordered space.

Let $Y \subseteq X$ and R be a relation on X. Then, $R_Y := R \cap (Y \times Y)$ is a relation on Y and is called the relation induced by R on Y. If a relation has any properties of reflexivity, transitivity, symmetry and anti-symmetry, then the properties are inherited by induced relations [9].

If (X, τ, \mathscr{I}) is an ideal topological space and A is a subset of X, then $(A, \tau_A, \mathscr{I}_A)$, where τ_A is the relative

topology on A and $\mathscr{I}_A = \{A \cap J : J \in \mathscr{I}\}$, is an ideal topological subspace [3].

Theorem 3.3. Let (X, R, \mathscr{I}) be an ideal ordered space. If $A \subseteq X, (A, R_A, \mathscr{I}_A)$ is an ideal ordered subspace of (X, R, \mathscr{I}) and *B* is an \mathscr{I} -increasing (decreasing) set, then $B \cap A$ is an \mathscr{I}_A -increasing (decreasing) set.

Proof.

The proof for both parts are similar. So, we only present the proof for the part not in the parentheses. We want to prove $B \cap A$ is an \mathscr{I}_A -increasing set (i.e if the complement of $B \cap A$ with respect to A is $A \setminus (B \cap A)$, then $xR_A \cap [A \setminus (B \cap A)] \in \mathscr{I}_A \ \forall x \in B \cap A$). So,

$$xR_A \cap [A \setminus (B \cap A)] = xR_A \cap [(X \setminus B) \cap A]$$
$$= (xR \cap A) \cap [B' \cap A]$$
$$= xR \cap B' \cap A.$$

Since *B* is an \mathscr{I} -increasing set, so $xR \cap B' \in \mathscr{I} \ \forall x \in B$. Consequently $xR \cap B' \cap A \in \mathscr{I}_A \ \forall x \in B \cap A$, which follows that $B \cap A$ is an \mathscr{I}_A -increasing set.

The following theorem shows that the property of being \mathscr{IPT}_i ,-ordered space , i = 0, 1 is a hereditary property. **Theorem 3.4.** Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ be \mathscr{IPT}_i -ordered space. Then every subspace of \mathscr{IPT}_i -ordered space is also $\mathscr{I}_A PT_i$ -ordered space, (i = 0, 1).

Proof.

We give a proof in case (i = 0 and the case i = 1 is similar). Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ be \mathscr{IPT}_0 -ordered space, $(A, \tau_{1A}, \tau_{2A}, R_A, \mathscr{I}_A)$ be any subspace of $(X, \tau_1, \tau_2, R, \mathscr{I})$ and $a, b \in A$ such that $a\overline{R_A}b$, it follows that $a\overline{R}b$. Since $(X, \tau_1, \tau_2, R, \mathscr{I})$ is \mathscr{IPT}_0 -ordered, then there exists an \mathscr{I} -increasing τ_i -open set U such that $a \in U$ and $b \notin U$ or there exists an \mathscr{I} -decreasing τ_i -open set V such that $b \in V$ and $a \notin V, i = 1$ or 2. By Theorem 3.3 there exists $(\mathscr{I}_A$ -increasing τ_{iA} -open set G such that $a \in G = A \cap U$ and $b \notin G = A \cap U$) or there exists $(\mathscr{I}_A$ -decreasing τ_{iA} -open set H such that $b \in H = A \cap V$ and $a \notin H = A \cap V$). Hence, $(A, \tau_{1A}, \tau_{2A}, R_A, \mathscr{I}_A)$ is $\mathscr{I}_A P T_0$ -ordered.

Definition 3.5. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathscr{I})$ is said to be $\mathscr{I}PT_2$ -ordered space iff for all $a, b \in X$ such that $a\overline{R}b$, there exists an \mathscr{I} -increasing τ_i -open set O_a and an \mathscr{I} -decreasing τ_j -open set O_b such that $O_a \cap O_b \in \mathscr{I}$.

Example 3.4. In Example 3.1 take $\mathscr{I} = \{\phi, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,4\}\} (\mathscr{I} = P(X)), \tau_1 = \{X, \phi, \{3\}, \{4\}, \{2,4\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}\}, \tau_2 = \{X, \phi, \{1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}\}.$ It is clear that $(X, \tau_1, \tau_2, R, \mathscr{I})$ is $\mathscr{I}PT_2$ -ordered space.

The following theorem studies the relationship between Definitions 3.4, 3.5 and Definition 2.10 [12].

Theorem 3.5. Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ be an ideal bitopological ordered space. Then,

 PT_2 -ordered spaces $\Rightarrow \mathscr{I}PT_2$ -ordered spaces $\Rightarrow \mathscr{I}PT_1$ -ordered space.

Proof. The proof follows directly from the definitions of PT_2 -ordered spaces, $\mathscr{I}PT_1$ -ordered space and $\mathscr{I}PT_2$ -ordered spaces.

Example 3.4 shows that $(X, \tau_1, \tau_2, R, \mathscr{I})$ is \mathscr{IPT}_2 -ordered space, but not PT_2 -ordered space as, $1\overline{R}2$, and all increasing τ_2 -open sets which contain 1 are the sets $X, \{1,3,4\}$, intersect the only decreasing τ_1 -open set X which contains 2.

Example 3.3 shows that $(X, \tau_1, \tau_2, R, \mathscr{I})$ is \mathscr{IPT}_1 -ordered space, but not \mathscr{IPT}_2 -ordered space as, $1\overline{R}2$ and all \mathscr{I} -increasing τ_2 -open sets which contains 1 and not contain 2 are the sets $\{1,4\}, \{1,3,4\}$ and all \mathscr{I} -decreasing τ_1 -open set which contains 2 are the sets $X, \{2,3,4\}$, while $\{1,4\} \cap \{2,3,4\} = \{4\} \notin \mathscr{I}, \{1,3,4\} \cap \{2,3,4\} = \{3,4\} \notin \mathscr{I}, \{1,4\} \cap X = \{1,4\} \notin \mathscr{I}, \{1,3,4\} \cap X = \{1,3,4\} \notin \mathscr{I}.$

On account of Proposition 3.1, Theorems 3.1, 3.5 and [6,12], we have the following corollary. **Corollary 3.1.** For an ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathscr{I})$, we have the following implications:

$$\begin{aligned} \mathscr{I}PT_2 - ordered \ space \Rightarrow \mathscr{I}PT_1 - ordered \ space \Rightarrow \mathscr{I}PT_0 - ordered \ space \\ & \uparrow & \uparrow & \uparrow \\ PT_2 - ordered \ space \Rightarrow PT_1 - ordered \ space \Rightarrow PT_0 - ordered \ space \\ & \downarrow & \downarrow & \downarrow \\ P^*T_2 - ordered \ space \Rightarrow P^*T_1 - ordered \ space \Rightarrow P^*T_0 - ordered \ space \\ & \downarrow & \downarrow & \downarrow \\ \end{aligned}$$

The following theorem shows that the property of being \mathscr{IPT}_2 -ordered space is preserved by a bijective, *P*-open and order (reverse) embedding mapping.

Theorem 3.6. If $(X, \tau_1, \tau_2, R, \mathscr{I})$ is a \mathscr{IPT}_2 -ordered space, $f : (X, \tau_1, \tau_2, R, \mathscr{I}) \to (Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ is a bijective, *P*-open and order (reverse) embedding mapping. Then, $(Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ is $f(\mathscr{I})PT_2$ -ordered space.

Proof. We give a proof in the case of order embedding mapping and the case of order reverse embedding mapping is similar.

Let $y_1, y_2 \in Y$ be such that $y_1 \overline{R^*} y_2$. Then, there exist $x_1, x_2 \in X, f(x_1) = y_1, f(x_2) = y_2$ and $x_1 \overline{R} x_2$. As $(X, \tau_1, \tau_2, R, \mathscr{I})$ is a \mathscr{IPT}_2 -ordered space, then there exist an \mathscr{I} -increasing τ_i -open set U contains x_1 and an \mathscr{I} -decreasing τ_j -open set V contains x_2 such that $U \cap V \in \mathscr{I}$. Since f is P-open and by Theorem 2.1, f(U) is $f(\mathscr{I})$ -increasing η_i -open set contains $y_1 = f(x_1)$ and f(V) is $f(\mathscr{I})$ -decreasing η_j -open set contains $y_2 = f(x_2)$ such that $f(U) \cap f(V) = f(U \cap V) \in f(\mathscr{I})$. Hence, $(Y, \eta_1, \eta_2, R^*, f(\mathscr{I}))$ is $f(\mathscr{I})PT_2$ -ordered space.

The following theorem shows that the property of being \mathscr{IPT}_2 -ordered space is a hereditary property.

Theorem 3.7. Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ be $\mathscr{I}PT_2$ -ordered space. Then, every subspace of $\mathscr{I}PT_2$ -ordered space is also \mathscr{I}_APT_2 -ordered space.

Proof.

Let $(X, \tau_1, \tau_2, R, \mathscr{I})$ be a \mathscr{IPT}_2 -ordered space, $(A, \tau_{1A}, \tau_{2A}, R_A, \mathscr{I}_A)$ be any subspace of $(X, \tau_1, \tau_2, R, \mathscr{I})$ and $a, b \in A$ such that $a\overline{R_A}b$. Since $(X, \tau_1, \tau_2, R, \mathscr{I})$ is \mathscr{IPT}_2 -ordered, then there exists an \mathscr{I} -increasing τ_i -open set O_a and an \mathscr{I} -decreasing τ_j -open set O_b such that $O_a \cap O_b \in \mathscr{I}$. By Theorem 3.3 there exists an \mathscr{I}_A -increasing τ_{iA} -open set G such that $a \in G = A \cap O_a$ and an \mathscr{I}_A -decreasing τ_{jA} -open set H such that $b \in H = A \cap O_b, G \cap H = A \cap (O_a \cap O_b) \in \mathscr{I}_A$. Hence, $(A, \tau_{1A}, \tau_{2A}, R_A, \mathscr{I}_A)$ is $\mathscr{I}_A PT_2$ -ordered.

4 Conclusion

In this paper, we use the notion of \mathscr{I} -increasing (dec) sets [2], which based on the notion of ideal \mathscr{I} , to generate new separation axioms $\mathscr{IP}\tau_i, i = 0, 1, 2$ on ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathscr{I})$. These types of separation axioms are a generalization of the previous one [6,12]. Some properties of these separation have been obtained. In the future, we study the separation axioms $\mathscr{IP}\tau_i, i = 3, 4, 5$ and $\mathscr{IP}R_j$ -ordered spaces, j = 0, 1, 2, 3, 4.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

- M. A. Abo Elhamayel Abo Elwafa, On bitopological Ordered Spaces, Master Thesis, Mansoura University, Faculty of Science, Mansoura, Egypt 2009.
- [2] S. A. El-Sheikh and M. Hosny, *I*-increasing (decreasing) sets and *IP**-separation axioms in bitopological ordered spaces, Pensee Journal 76 (3) 2014 429–443.
- [3] E. Ekici, T. Noiri, connectedness in ideal topological spaces, Novi Sad J. Math. 38(2) 2008 65–70.
- [4] R. Engelking, General Topology, Warszwawa 1977.
- [5] D. Jankovic, T.R. Hamlet, New topologies from old via ideals, The American Mathematical Monthly 97 1990 295–310.
- [6] A. Kandil, O. Tantawy, S. A. El-Sheikh and M. Hosny, New approach to bitopological ordered spaces, Jökull Journal 63 (6) 2013 10–25.
- [7] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 1963 71–89.

- [8] D. N. Misra and K. K. Dube, Pairwise R₀-space, Ann. Soc. Sci. Bruxelles 87 1976 3–15.
- [9] G. M. Murdeshwar, General Topology, New Age International (P) Ltd., Publishers 1990.
- [10] L. Nachbin, Topology and order, Van NostrandMathematical studies, Princeton, New Jersey 1965.
- [11] M.K. Singal and A.R. Singal, Some more separation axioms in bitopological spaces. Ann. Soc. Sci. Bruelles 84 1970 207–230.
- [12] M. K. Singal and A.R. Singal, Bitopological ordered spaces, Math. student XXXIX 1971 440–447.
- [13] X. Q. Xu and Y. M. Liu, Regular relations and strictly completly regular ordered spaces, Topology and its applications 135 2004 1–12.