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Abstract: Lie group classification is performed on the generalized Korteweg-de Vries-Burgers equationut +δuxxx +g(u)ux −νuxx +
γu= f (x), which occurs in many applications of physical phenomena. We show that the equation admits a four-dimensional equivalence
Lie algebra. It is also shown that the principal Lie algebra consists of a single translation symmetry. Several possibleextensions of the
principal Lie algebra are computed and their associated symmetry reductions and exact solutions are obtained. Also, one-dimensional
optimal system of subalgebras is obtained for the case when the principal Lie algebra is extended by two symmetries.
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1 Introduction

Many differential equations of physical interest involve
parameters, arbitrary elements or functions, which need
to be determined. Usually, these arbitrary parameters are
determined experimently. However, the Lie symmetry
approach through the method of group classification has
proven to be a versatile tool in specifying the forms of
these parameters systematically [1,2,3,4,6,5].

The first group classification problem was
investigated by Sophus Lie [7] in 1881 for linear
second-order partial differential equations (PDEs) with
two independent variables. The main idea of group
classification of a differential equation involving an
arbitrary element(s), say, for example,g(u) and f (x),
consists of finding the Lie point symmetries of the
differential equation with arbitrary functionsg(u) and
f (x), and then computing systematically all possible
forms of g(u) and f (x) for which the principal Lie
algebra can be extended.

In this paper we study one such differential equation,
namely, the generalized Korteweg-de Vries-Burgers
equation [8]

ut + δuxxx + g(u)ux−νuxx + γu = f (x), (1)

which contains two arbitrary functionsg(u) and f (x). We
perform Lie group classification of (1) and then find
symmetry reductions and exact solutions. This equation
arises from many physical scenarios such as the
propagation of undular bores in shallow water, the flow of
liquids containing gas bubbles, weakly nonlinear plasma
waves with certain dissipative effect, theory of ferro
electricity, nonlinear circuit, and the propagation of waves
in an elastic tube filled with a viscous fluid [9].

2 Equivalence transformations

An equivalence transformation (see for example [1]) of (1)
is an invertible transformation involving the variablest, x
andu that map (1) into itself. The operator

Y = τ(t,x,u)∂t + ξ (t,x,u)∂x +η(t,x,u)∂u

+µ1(t,x,u, f ,g)∂ f + µ2(t,x,u, f ,g)∂g, (2)

is the generator of the equivalence group for (1) provided
it is admitted by the extended system

ut + δuxxx + g(u)ux−νuxx + γu = f (x), (3a)

ft = 0, fu = 0, gt = 0, gx = 0. (3b)
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The prolonged operator for the extended system (3) has the
form

Ỹ = Y [3]+ω1
1∂ ft +ω1

2∂ fx +ω1
3∂ fu +ω2

1∂gt +ω2
2∂gx

+ω2
3∂gu , (4)

whereY [3] is the third-prolongation of (2) given by

Y [3] = τ∂t + ξ ∂x +η∂u + µ1∂ f + µ2∂g + ζ1∂ut + ζ2∂ux

+ζ22∂uxx + ζ222∂uxxx .

The variablesζ ’s andω ’s are defined by the prolongation
formulae

ζ1 = Dt(η)− uxDt(τ)− utDt(ξ ),
ζ2 = Dx(η)− uxDx(τ)− utDx(ξ ),

ζ22 = Dx(ζ2)− uxxDx(τ)− uxtDx(ξ ),
ζ222 = Dx(ζ22)− uxxxDx(τ)− uxxtDx(ξ )

and

ω1
1 = D̃t(µ1)− ftD̃t(τ)− fxD̃t(ξ )− fuD̃t(η),

ω1
2 = D̃x(µ1)− ftD̃x(τ)− fxD̃x(ξ )− fuD̃x(η),

ω1
3 = D̃u(µ1)− ftD̃u(τ)− fxD̃u(ξ )− fuD̃u(η),

ω2
1 = D̃t(µ2)− gtD̃t(τ)− gxD̃t(ξ )− guD̃t(η),

ω2
2 = D̃x(µ2)− gtD̃x(τ)− gxD̃x(ξ )− guD̃x(η),

ω2
3 = D̃u(µ2)− gtD̃u(τ)− gxD̃u(ξ )− guD̃u(η),

respectively, where
[Dt = ∂t + ut∂u + · · · , Dx = ∂x + ux∂u + · · ·] are the total
derivative operators and

D̃x = ∂x + fx∂ f + gx∂g + · · · ,

D̃t = ∂t + ft∂ f + gt∂g + · · · ,

D̃u = ∂u + fu∂ f + gu∂g + · · ·

are the total derivative operators for the extended system.
The application of the prolongation (4) and the invariance
conditions of system (3) leads to following equivalent
generators

Y1 =
∂
∂ t

,

Y2 =
∂
∂x

,

Y3 =
∂

∂u
+ γ

∂
∂ f

,

Y4 = u
∂
∂u

+ f
∂

∂ f
.

Thus the four-parameter equivalence group is given by

Y1 : t̄ = a1+ t, x̄ = x, ū = u, f̄ = f , ḡ = g,

Y2 : t̄ = t, x̄ = a2+ x, ū = u, f̄ = f , ḡ = g,

Y3 : t̄ = t, x̄ = x, ū = a3+ u, f̄ = γa3+ f , ḡ = g,

Y4 : t̄ = t, x̄ = x, ū = ea4u, f̄ = ea4 f , ḡ = g

and their composition gives

t̄ = a1+ t,

x̄ = a2+ x,

ū = (a3+ u)ea4,

f̄ = (γa3+ f )ea4,

ḡ = g.

3 Principal Lie algebra

The symmetry group of equation (1) will be generated by
the vector field of the form

Γ = τ(t,x,u)
∂
∂ t

+ ξ (t,x,u)
∂
∂u

+η(t,x,u)
∂
∂u

. (5)

Applying the third prolongation ofΓ to (1) yields the
following overdetermined system of linear PDEs:

τu = 0,τx = 0,ξu = 0,ηuu = 0,

2νξx −ντt +3δηxu −3δξx,x = 0,3ξx − τt = 0,

ηgu − ξt − gξx + gτt −2νηxu +νξxx +3δηxxu − δξxxx = 0,

γη − ξ fx +ηt + f ηu − uγηu + gηx − f τt + uγτt −νηxx

+δηxxx = 0. (6)

Solving the above system for arbitraryf and g we find
that the principal Lie algebra consists of one translation
symmetry, namely

Γ1 =
∂
∂ t

.

4 Lie group classification

Solving the system (6), we obtain the following classifying
relations:

2gat

3
−

2atν2

9δ
+
(

B+ u
(

k+
xνat

9δ

))
gu − qt −

1
3

xatt = 0,

+uγat − f at + f
(

k+
xνat

9δ

)
− uγ

(
k+

xνat

9δ

)

+γ
(

B+ u
(

k+
xνat

9δ

))
+Bt + g

(uνat

9δ
+Bx

)

−
(

q+
xat

3

)
fx + u

(
kt +

xνatt

9δ

)
−νBxx + δBxxx = 0.

Using the equivalence transformations obtained in
Section 2, these classifying relations lead to the following
four cases for the functionsg and f and for each case we
also provide the associated extended symmetries.
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Case (A): f (x) arbitrary,g(u) = g0, where f0,g0 are
nonzero constants.

Γ2 = 9δ t
∂
∂ t

− (9δγtu+ g0νtu−νux)
∂

∂u

−
(
2ν2t −6δg0t −3δx

) ∂
∂x

,

Γ3 = u
∂
∂u

,

Γ4 =
∂
∂x

,

Γ5 = F (t,x)
∂

∂u
,

whereF(t,x) is any solution of

9δ (6δg0t −2ν2t +3δx) f ′(x)+9δ (9γt+νg0t −νx

+9δ ) f (x)C2−9C4δ f ′(x)+9C3δ f (x)−9νδFxx

+9δ 2Fxxx +9g0δFx +9γδF +9δFt = 0.

Case (B): f (x) = f0, g(u) = g0 − g1 lnu, where
f0,g0,g1 are nonzero constants.

Γ2 =
∂
∂x

.

Case (C): f (x) = f0, g(u) = u2+ ḡ0u+ ḡ1, where ¯g0 6=
0 is an arbitrary constant.

Γ2 =
∂
∂x

.

Case (D): f (x) = f0 + f1x, g(u) = g0 + g̃1u, where
f0, f1,g0, g̃1 are nonzero constants.

Γ2 = e(−1/2)tR1R1
∂

∂u
−2g̃1e(−1/2)tR1

∂
∂x

,

Γ3 = e(−1/2)tR2R2
∂

∂u
−2g̃1e(−1/2)tR2

∂
∂x

,

where

R1 = γ −
√

4 f1g̃1+ γ2 6= 0, R2 = γ +
√

4 f1g̃1+ γ2 6= 0

are arbitrary constants.

5 Symmetry reductions and exact solutions

In order to obtain symmetry reductions and exact
solutions, one has to solve the associated Lagrange
equations

dt
τ(t,x,u,)

=
dx

ξ (t,x,u)
=

du
η(t,x,u)

.

For symmetry reductions purposes we consider only those
cases in which the equation (1) is nonlinear.

5.1 Case (B).

The linear combination ofΓ1+ cΓ2 gives rise to the group-
invariant solution

u = F(z) (7)

wherec is a non-zero constant,z = x− ct is an invariant
of the symmetryΓ1+ cΓ2 andF(z) satisfies the third-order
nonlinear ODE

δ F ′′′ (z)−ν F ′′ (z)− cF ′ (z)+ g0F ′ (z)− g1F ′ (z) ln(F (z))

+γ F (z)− f0 = 0.

5.2 Case (C).

The symmetryΓ1 + cΓ2 gives rise to the group-invariant
solution

u = F(z) (8)

where z = x− ct is an invariant ofΓ1 + cΓ2 and F(z)
satisfies

δF
′′′
(z)−νF ′′(z)− cF ′(z)+

(
g0F(z)+F(z)2+ g1

)
F ′(z)

+γF(z)− f0 = 0.

5.3 Case (D).One-dimensional optimal system
of subalgebras

In this case we have three symmetries for the
corresponding equation (1) and so we first obtain the
optimal system of one-dimensional subalgebras and then
present the optimal system of group-invariant solutions.
We use the method given in [10]. The adjoint
transformations are given by

Ad(exp(εΓi))Γj = Γj − ε[Γi,Γj]+
1
2

ε2[Γi, [Γi,Γj]]−·· · ,

where[Γi,Γj] denotes the commutator ofΓi andΓj defined
as

[Γi,Γj] = ΓiΓj −ΓjΓi.

In Table 1 and Table 2, we give, respectively, the
commutator table of the Lie point symmetries of the
system (1) and the adjoint representations of the
symmetry group of (1). These tables are then used to
construct the optimal system of one-dimensional
subalgebras for system (1).

Table 1.Commutator table of the Lie algebra of system (1)

Γ1 Γ2 Γ3

Γ1 0 − 1
2R1Γ2 − 1

2R2Γ3

Γ2
1
2R1Γ2 0 0

Γ3
1
2R2Γ3 0 0

Table 2.Adjoint table of the Lie algebra of system (1)

Ad Γ1 Γ2 Γ3

Γ1 Γ1 e(1/2)R1εΓ2 e(1/2)R2εΓ3

Γ2 Γ1−
1
2R1εΓ2 Γ2 Γ3

Γ3 Γ1−
1
2R2εΓ3 Γ3 Γ3
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Thus, from Tables 1 and 2 one can obtain an optimal
system of one-dimensional subalgebras given by
{Γ1,Γ3+Γ2,Γ3−Γ2,Γ3}.

5.3.1 Symmetry reductions and exact solutions based on
the one-dimensional optimal system of subalgebras

Here we use the optimal system of one-dimensional
subalgebras calculated above to obtain symmetry
reductions that transform (1) into ordinary differential
equations (ODEs). We then look for exact solutions of the
ODEs.

Case (D.1)The symmetryΓ1 gives rise to the group-
invariant solution

u = F(z) (9)

wherez = x is an invariant of the symmetryΓ1 andF(z)
satisfies the ODE

δ F ′′′(z)+g0F ′(z)+ g̃1F ′(z)F(z)−ν F ′′(z)+ γ F(z)− f1 z− f0 = 0.

Case (D.2) The symmetry Γ3 + Γ2 gives us the
group-invariant solution

u(t,x) =
1

2g̃1(e(−1/2)tP1 + e(1/2)tP1)

{
2F(z)g̃1e(−1/2)tP1

+2F(z)g̃1e(1/2)tP1 − e(−1/2)tP1P1x− e(−1/2)tP1γx

+P1e(1/2)tP1x− e(1/2)tP1γx

}
, (10)

whereP1 =
√

4f1 g̃1+ γ2 is a non-zero arbitrary constant,
z = t is an invariant ofΓ3 + Γ2 and the functionF(z)
satisfies the ODE

−F(z)e−(1/2)zP1P1 g̃1+ γ F(z)e−(1/2)zP1g̃1

+F(z)P1 e(1/2)zP1g̃1+ γ F(z)e(1/2)zP1g̃1

+2(F ′(z))e−(1/2)zP1g̃1− g0e−(1/2)zP1P1

−g0e−(1/2)zP1γ −2e−(1/2)zP1 f0 g̃1

+2(F ′(z))e(1/2)zP1g̃1+ g0P1e(1/2)zP1 − g0e(1/2)zP1γ
−2e(1/2)zP1 f0 g̃1 = 0

whose solution is

F(z) =

{
[
(−P1g0+2 f0g̃1+ γg0)e(1/2)(γ−P1)z

g̃1(γ +P1)

+
(P1g0+2 f0g̃1+ γg0)e(1/2)(γ−3P1)z

g̃1(γ −P1)
]ezP1

+C1

}
e−(1/2)z(γ+P1)(e−zP1 +1)−1,

where P1 6= ±γ and C1 is an arbitrary constant.
Consequently the required group invariant solution is
completed by (10).

Case (D.3)The symmetryΓ3 − Γ2 gives rise to the
group-invariant solution of the form

u(t,x) =
1

2g1(e−(1/2) tP1 − e(1/2) tP1)

{
2F(z)g1 e−(1/2) tP1

−2F(z)g1 e(1/2) tP1 − e−(1/2) tP1P1x− e−(1/2) tP1γ x

−P1e(1/2) tP1x+ e(1/2) tP1γ x

}
, (11)

wherez = t is an invariant ofΓ3−Γ2 and the functionF(z)
satisfies

−F(z)e−(1/2)zP1P1g1+ γF(z)e−(1/2)zP1g1

−F(z)P1e(1/2)zP1g1− γF(z)e(1/2)zP1g1

+2(F ′(z))e−(1/2)zP1g1− g0e−(1/2)zP1P1

−g0e−(1/2)zP1γ −2e−(1/2)zP1 f0g1

−2(F ′(z))e(1/2)zP1g1− g0P1e(1/2)zP1

+g0e(1/2)zP1γ +2e(1/2)zP1 f0g1 = 0

whose solution is

F(z) =

{
[
(g0P1+2 f0 g̃1+ γ g0)e(1/2)(γ−3P1)z

g̃1(γ −P1)

−
(−g0P1+2 f0 g̃1+ γ g0)e(1/2)(γ−P1)z

g̃1 (γ +P1)
]ezP1

+B1

}
e−(1/2)z(γ+P1)(e− zP1 −1)−1

where P1 6= ±γ and B1 is an arbitrary constant.
Consequently the group-invariant solution is completed
by (11).

Case (D.4)The symmetryΓ3 gives the group-invariant
solution

u(t,x) =
2F (z) g̃1−P1x− xγ

2g̃1
(12)

wherez = t is an invariant ofΓ3 and the functionF(z)
satisfies

F (z)γ g̃1−F (z)P1 g̃1+2
(
F ′ (z)

)
g̃1−g0 P1−g0 γ −2 f0 g̃1 = 0

whose solution is given by

F (z) = e−(1/2) (γ−P1)zC1+
g0 P1+2 f0 g̃1+ g0γ

g̃1 (γ −P1)

and consequently the group-invariant solution is
completed by (12).

6 Conclusion

Lie group classification was performed on a generalized
Korteweg-de Vries-Burgers equation (1). The functional
forms of (1) of the type linear, quadratic, exponential and
logarithmic were obtained. The Lie algebra obtained was
of dimension two, three and infinite. For the case when
the principal Lie algebra was extended by two
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symmetries, one-dimensional optimal system of
subalgebras was obtained and the corresponding
group-invariant solutions were derived. The functional
forms obtained in this paper, can be chosen to suit
physical phenomena modelled by the resulting equations.
The symmetry reductions and exact solutions found in
this work can be used to model practical problems of
physical interest and also serve as benchmarks against
numerical integrators.
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