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1 Introduction We now define the following.

Let A be the class of functionk analytic in the open unit
disc E = {z: |z < 1} and are normalized with the
conditions f(0) = 0, f’(0) = 1. Also let S;Sx (y),C(y)
denote the subclasses Afconsisting of functions that
are, respectively univalent, starlike of ordeand convex
of ordery, 0<y<1,inE.

Let f and g be analytic inE, then f is said to be
subordinate t@, written asf < gandf(z) < g(z),z€ E,
if there exists a Schwarz function analytic in E with
w(0) = 0 and|w(z)| < 1 for z € E such that

f(2) = g(w(2)).

If g is univalent in E, then f < g if and only if
f(0) =g(0) andf(E) C g(E), see [24, p36].

For f(z) = z+ ganz”, 9z = z+ gbnz“, the
=2 =2
convolution (Hadam?:lrd product) éfandg ig defined by

(fx9)(2) = z+ izanbnz” =(gx*f)(2),z€ E.

Leth be analytic, convex and univalentiiwith h(0) = 1,
Oh(z) > 0. We denote the class of all analytic functigns
with p(0) =1 asP(h) if p<hin E. Let, for f,p € A,
(fx@)(z) #0 and letf (2) « p(z) = f1(2). Also we define

F(20=(1-A)fi(20+Azf(2;0<A <L Q)

Definition 1. Let f, ¢ € Aand let F be defined by (1). Then
f € S*(h,@,A) if and only if

zF (2
F(2

where h is analytic, convex and univalent in E with
h(0) = 1.

In this case, we saly € S"(h).

< h(2),

The corresponding clas€(h,¢,A) is defined as
follows.

Let f € A. Then
f eC(h,@,A) ifand onlyif zf' € S'(h,@,A).
In other words,

(zF' (@)’
F'(2)

f € C(h,@,A) if and only if <h(z),ze E.

Definition 2. Let f, ¢ € A and let F be defined by (1). Then
f € K(h,@,A) if there exists gt S*(h, @,A) with
G=(1-2)(g*p)+A(gx@)

such thatzg;(z? < h(z),z€ E, whereA € [0,1) and h is

analytic and convex univalentin E(®) = 1.
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Definition 3. Let f,p € A (f +xg)(z) # 0 and let h be  where dz) is the best dominant and is given as
analytic and convex univalent in E with® = 1. Then .
f € R(h,@,A), for A > 0, if and only if Thiu) — 1 1
, , q(z) = {(/exp/ G du)dt} ——=1.
(fxg)+Az(f+@)” <hzecE. u B

0 t

The corresponding clas$ (h,@,A) can .be defined.as Lemma 3([4]). Letp,ybe complex numbers. Letd) be
fol/lows. Let f € A Thenf € T(h,g,A) if and only if  convex wunivalent in E with ® = 1, and
zf eR(h,@,A). OBhz +y] >0, z€ E and g€ A with

. . g(z) < h(z),z€ E.
Let Sy be the class of prestarlike functions of order

o <1.We recallthaf € S; wheneveif ¢ Aandf satisfies If pis analytic in E with 0) = 1, Op(z) > 0, then
z :
0 f(2)« ——5—=¢ >0, if o<1, Zp(z
{fe =) p(2)+ —Bq(‘gi _<hia),
while f(zg 1. implies gz) < h(z) in E.
O— >, ifo=1
z 2 Lemmad4. Let p(z) and ¢z be analytic in E,

p(0) = q(0) = 1 and0q(z) > 3 for |7 < p(0< p < 1).
Then the image of £= {z:|z] < p} under pxq is a

For special cases, we have:
P subset of the closed convex hull ¢Ep.

(). S=C The above Lemma is a simple consequence of a result due
to Nehari and Netanyahd §]. Also see ,25].

(i). S: = S(3), the class of starlike functions of order o _
1 2 Lemma 5. Let g(z) be analytic in E and () be analytic

2 and convex univalent in E with(@) = g(0). If
gi.i). S; = CoC, whereCoCis the closed convex hull of (9@ + %zg(z)} Zh(2), (0(3)>0,5£0), @)
then

A prestarlike function of ordew is univalent whenever

o< %; otherwise it might even be not locally univalent. _ 5 z 5
For this and more detail, we refer 9. 9(2) <h(z) = oz /t “*h(t)dt < h(2),
0
2 Preliminaries andh(z) is the best dominant of (2).
Lemma 1([25]). For 0 <1, let f € S5, g be starlike of
order o, H be analytic in E. Then 3 Main Results
T (E) C CoHE)) Theorem 1.0(h, 9, 1) € S'(h,@,A).

Proof.Let f € C(h,@,A). Set
zF(2)

S+ K(0) CcK(0), F) p(2), ®)

Also, foro < 1,

where Ko) is the class of close-to-convex functions of whereF is defined by (1), angb(2) is analytic inE with

ordero. p(0) = 1.
With simple computation, we get from from (3)
Lemma 2([12]). Let h be analytic, univalent, convex in E
zp(2) _ (ZF' (2)

with h(0) =1 andO[Bh(z)+ 0] >0, 3,0 € C,ze E.Ifp

is analytic in E with §0) = h(0), then PR+ = g <@

zp(2) and using Lemma 2, it follows that

JL N S h ’
{P@+ 50 5) <@
p(z) < h(z),z€ E.
implies o .
p(2) < q(2) < h(2), This implies thatf € S"(h,@,A) InE. O
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Theorem 2. The class Sh,@,A) is invariant under
convex convolution.

This result also holds for the classes
C(h,@,A),K(h,@,A),R(h,p,A) andT (h,p,A).

Proof. Let ¢y € C and f € S*(h,,A). We want to show
that(@ = f) € S*(h,,A). Consider

A=A+ ()} + A {Z@x (@ 1))'}]
1 =A){@x (P 1)} +AZ{ (@ (P+ 1)) }']
_ ANz £)'} + A {Z2Zx £))}]

P{(1=A)(@x ) +AZ(px F)'}
Forg eC, [(1-A)(pxf)+Az(pxf)]=F € S*(h) and
S"(h)cs*,p:zfp < h, we have

(1A ){@x (=)} + A {z(@x (Y ))'}]
(L=2A){@x (W= )} +AZ{ (@ (Y= )}/
_ Wxp{(A-A) (= f) +AZ(@x )}
W {(1=A)(@x ) +AZ(@x F)}
We now apply Lemma 1 witls = 0 to (4) and have

(Y«f)eS'(h,gA)inE.

(4)

O

The proof of this result for other classes follows on

similar lines.

Theorem 3.ForA >0, S*(h,9,A) C S*(h,9,0)

Proof. The case, wheA =0, is trivial, so we suppose
A >0.Letf € S(h,,A) and letf; = f % @. Define

F(2) = (1-A)fa(2) +A2E(2).

ThenF € S'(h), that is, F<(>) =< h(z) in E. We want to

zf1 z

show that+l~ < h(z) in E.
Let .
ﬁ§§=m4
Thenp(z) is analytic inE with p(0) = 1.
Now
ZF (20 zf(29+ 2 (2
F(2  (1-X)fi(2)+Azf(2)
_ zf (9 + A2z (2) - Azfi(2)
(1= M)f(2+Azfl(2)
(1 )\)zfl +Az zfl( )))

zf{(2)
(1-2)+A%L5

_ (1-2)p@) +A(P*(2) +2P(2)
(1-A)+Ap(2)

zp(2) }
P+ (3-1)

=p(2+ <h(z),z€E.

As an application of Theorem 2, we have the Wenow uselemma 2 tohaygz) <h(z)inE. O

following.

Remark 1. Since the classes'(h,¢,A), K(h,@,A),

T(h,¢,A) andR(h,@,A) are preserved under convolution
with convex functions, it follows that these classes are G(z) =

invariant under the following integral operators.

mazf@mzmmrﬂwwazwﬂﬂ®.
2 VA
- EO/f(t)olt
= [Pz tlog1-2)}]+1(2) = (424 1)(2).

z
fa(2) = bthl/tbl—lf(t)dt, Oby > —1

bl—l—l
Z b1+n

= (Ys=1)(2).

It can easily be verified thap;, >, € C and we refer to26,

27] for s to be convex. We apply Theorem 2 to obtain the

required result.

Theorem 4.For A > 0,K(h,9,A) C K(h, ¢,0).
Proof.The casel =0 s trivial. We assuma > 0. Let
F(z) = (1—)\)(f*(p)+/\z(f*qo)/’ . (5)
(1-2A)(gx @) +Az(g* @)
Let f € K(h,¢,A). Then there existg € S*(h,¢,A) such
that
zF' (2)
G(2)
whereF andG are defined by (5). Set
2f9)(2)
—— " =p(2). 6
(fro@ P ©
We note thap is analytic inE with p(0) = 1.
Then, from (6) and withzégj:—zgl = po < h, we have, after
some simple computation,
zF' (2) Azp(2)
c PP TN @
Using Lemma 3, we obtain the required result, that is,
2(f(2) = 9(2))’
(f(2)+0(2))

< h(z), ze E,

<h(z) inE.

=p(z) <h(z), zeE.
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Theorem 5. R(h,@,A) C T(h,@,A).
Proof.Let f € R(h,¢,A) and let

(1) * 9(2)
{a-n)=22

Then

(12)+9@) +A (@) + 9(2)" =

Sincef € R(h,¢,A), we havep+zg < h and, applying
Lemma 3, it follows thap < hin E. This proves that

+A(f(2)+9(2)'} = p(2).

p(2) +2zp(2)

feT(h o),
and the inclusion relation is establishedl
Theorem 6.The class kh, ¢, A) is a convex set.

Proof.Let f1, f € R(h,,A) and let

Fi=(1-2)(fix @) +A(z(f1x@)'),

Fo=(1-A)(fax@) +A(z(f2x@)).
Let
F(2)=aF(2)+(1-a)F(2), 0<a<Ll.
Then
F'(20+AF"(2) =a[Fi(2)+ (1—a)R)
+AZlaF(2) + (1—a)F)]
=api(2)+ (1-a)pA2)
= p(2),

wherep;(z) = F/(2) +AzF"(2),i = 1,2, pi < h.
SinceP(h) is a convex setp < hand hencé& € R(h, ¢,A)
inE. O

Remark 2. Functions inR(h,,A) can be obtained by
taking convolution (Hadamard product) of the function

14,1
k(z) = le 1_ 7)
with the function
z
~ [ pydt, p<h. ®)
0

The following facts about the classd’(h,p,A) and
T(h,,A) can easily be established.

(). R(h,1%5,0) and T(h,:%4,1) consist entirely of
univalent functions.

(i). T(h,@,A)is aconvex set.

(”I) T(ha (pa)\l) C T(ha (pa)\Z)a 0< )\2 < )\l-
(iv). T(h,@,A)CT(h,e1),A>1.
(V). R, @, A1) C R0, @,A2), 0< Ap < A,

We prove the result (v) as follows.
For A, = 0, we need the Lemma given below.

Lemma6. Let A > 0 and D(z) € S*(h). Let N( )

analytic in E and NO) = D(0) =0, N'( ) ( 0)
Let, for ze E, h convex univalentlh(z) >

{(1_A)@+/\N/(Z)}

b(2) D'(2) =< h(2).
Then
% < h(z) forzeE.

Proof. The proof of this Lemma is quite straightforward
when we pu% = p(2), and obtain

12 — (D) + po(@) (2P (2)} < h(2)

whereOpg(z) = O ZDDE(Z;) > 0 in E. Now using Lemma 3
we have the required result th%% <h(zinE. O

We now proceed to prove the inclusion result (v). We
assumel, > 0 andf € R(h,@,A1). Then

(L= (fx @) + Aoz f x )"
= %{(1—A1)(f @) + A1 (z(Fx@)) } + (1—)\—)(1‘ * Q)

- Zr@+1-2me)

Sincef € R(h, @, A1), p1 < hand, from Lemma 6p, < h.
Now % < 1andh(E) is convey, it follows that

{1 2)(f+@) +A(2(f+@))} <h.
Thusf € R(h,@,A2). O

Theorem7. Let f € T(h,g,A),0 < A < 1. Then

f € T(h,¢,1) and hence univalent fog| < ro, where p

is the radius of the largest disc centered at the origin for
whichOK (z) > %,k(z) is defined by (7) andyris given by
the smallest positive root of the equation.

9)

This result is sharp.
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Proof. Since f € T(h,9,A), we may write, by using
Remark 2,

f(z) = zF (2), F € R(h,,A)

= z(k(2)*J(2))’
= zp(z) xk(2),
wherep < h andk(z) is given by (7).
Hence
(g = 21D
~ zp(2) xZK(2)
- zxzK(2) (10)
Let
zZK(2) =H(2)
Then
H'(z2) =K (2)+zK'(2).

Itis easy to see thal(0) = 1. Therefore, foflk (z) > 3
for |z| < ro, we have

in |z <ro.

HenceH is a prestarlike function of ordeo = 1.
Also, sinceg(z) = z€ S, we can apply Lemma 1 and it
follows f € T(h,@,1) for |z < ro.

The functionfg € T(h, @, A), defined as
fo(z) = zh(z) x k(2),

shows that the above radius given by (9) is sharp.
To find the radiusg, we proceed as follows.
From (7), we have

1 1.1

K@ =312 "2

dt. (11)

=

—t

Powers in (11) are meant as principal values. The function

K (2) is analytic inE, K'(0) = 1 and

zZ 1
2-A+Az 2.1 IR P
HO= 50 G a
So
2_1-r 21 R
1>A - Z(Z_
20K(@) 1> === 303 1)O/1+ErdE

Thereforelk (z) >
positive root of (9).

% for |zl < rg, whererg is the smallest

Theorem 8. Let f € R(h,9,0). Then fe R(h,¢,A) for
|7l <ry, where

ry=(1+A%)2—A.

Proof.Let Fi(z) = (f * ¢)(2). ThenF; < h. Now

Fi(2) +AzF(2) = » (2) * FL(2), (12)
where
1-(1-A
LIJ)\ (Z) = Z( (1(_ 2)2 )Z)

=7+ 2(14— (n—1)A)Z"

It is known [11] thatD“’AT(Z> > % in |z| <ry. This implies

that Y22 ~ hy(z) whereOhy(z) > 1 in |2 < r,. Now,
from (12) and Lemma 4, it follows that

(F{+AzF') < (hyxh)<h in |z <T,.

This gives us; € R(h,@,A) in |z] < r,, and the proof is
complete. 0.

Using Lemma 6, the following result can be easily proved.

Theorem 9.Let

F=1-A)(fx@)+Az(fx9) . f.9c AL >0,

and

G=(1-2A)(g*@)+Az(gx9),geS'(h,@A).
Then

(z(l;’((:;)’ <h(z) implies ZGF/((Z? <h(z) in E

We prove the following

Theorem 10.Let f € R(h,@,A), Oh> 0. Then
(f =) e C(h)for |z < (V2—1).
This result is sharp.

Proof.Sincef € R(h,¢,A), h € P, we have
(fx)(2) = k(z)*fh(t)dt h(z) < 32

andk(z), given by (7), is a convex function .
If we show that ,

/ h(t

0

);

is convex for|z < (v/2—1), then(f x @) = k= J is also
convex for(v/2 — 1) due to a well known result, se@7].

For the functionfy(z) = h(z) xk(z), f'(rg) = 0. Now J'(z) = h(z), and
This shows that the above result is sharp and the proof 1 2Y'(2) 1 zH(2) h 1+z
is complete. O YT T T "1tz
(@© 2015 NSP
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Then
2r
112
1—2r—r2
T 12

_2r_

< %2, see [6]. ThusJ € C for

lZ < (V2 — 1) and consequentlyf € C(g) in
|zl < (v/2—1). The sharpness follows from the function
f1 € R(h,@,A) given as
z
/ I+t
1-
0

(fix@)(z

4 Applications

We shall have different choices of analytic functiops
andh to illustrate the applications of the main results.

I. Choices forh(z)
Let
1+Az
h(z) = 1787 ,AcC andBe[-1,0|, A#B.

For—1 < B < A< 1, these functions are called Janowski

functions p]. By takingA=1—-2a,B=-1,0<a < 1,

we have
(@) = ha(g) = =22

This gives uslhq(z) > a, and witha = 0, we have

1
ho(2) = 7>, 0h(2) >0, see ] (13)
Il. Fork>0,leth(z) = pk(z), where
£, (k=0),
1+fz(|og§jg)z, (k=1),
() = 1+ﬁzsinhz[(%arccosk)arctan\/(z)}, (0<k<1), (19
u(2)
1+ A sin| 2 f*dx + (k>1)
L I ey rei R
Here u(z) = Z‘\‘é, (O 1), z€ E andz is chosen

such thatk = cosh( R0 ) R(t) is the Legender's

complete elliptic integral of the first kind arR(t) is the
complementary integral dR(t).

The functiong(z) play the role of extremal functions
mappingE onto the conic domai®y given below
Qe={u+iviu>ky/(u—1)2+v2, k>0}. (15)
For fixed k,Qy represents the conic region bounded,
successively, by the imaginary axi& = 0), the right
branch of hyperbolg0 < k < 1), a parabolgk = 1) and
(K >1). Itis noted that the functionpy(z) are univalent
in E and belong to the clagsof Caratheodry functions of
positive real part. For details, we refer ©10,15,17,18,
19,20,21].

Now, by choosind\(z) = p«(z) in Theorem 3, we can
easily prove the following.

Corollary 1. S*(px, ¢,A) C S (g, ¢,0), where

1 tz 1
- [/exp/%du (16)
0 t
Some of the special cases are given below.
(). Let k=0. Then f € S'(3Z,p,A) implies that

f€S'(4 9.0). ThatisO [222"] > 4 forzeE.

(ii).

Fork > 1 and f € S*(px, 9,A), we obtain from

Theorem 3 and (18) thdt ¢ Sk((z—k) Iozg(lW),qo, 0). That
is
2(f(2) x 9(2))’ z
oo | Rbga-g *<F
Since, in this casge(—1) = Wg(lﬁ%)' we have
2(f(2) = 9(2)) 1
ool )~ ki Dogir
(iii). Forthe cas& = 2, we note that
S'(p2.9,A) C S'(a2,9,0).
This gives us
2(f(2) x 9(2))
o 2+ 0(2) }> - 3log? ~ o
(iv). Letk=1.Then
g([ — (log +\\/@) ], 90,/\) C S'(a1,9,0),
e (12) 9(2)
2) % @(z B
H f(2) x o(z > G(-1) = 2

(@© 2015 NSP
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Corollary 2. Let From (17), the following identity can easily be deduced.
1- (1-2a)z 4191 (@) =2%1(2) ~ 1972 (2), (19)
h(2) = ha(2) = —5——=. - " andi©
1-z2 Combining the operatoi@" andl ?, the operator
Then, from Theorem 1 and a result given in [12,p 115], it 19 A—s A
follows that n-:
is defined by takin
Cha,@.A) C S'(da @.1), y g
= 2
where Fro(2) =z+ ) m(—=—)°2"
&, m+1
T, T at)
da(2) = { (-2 -a-2) f e as follows
Z Dlogl g’ '' =72
Inf(z) =D(17f(2)) =1°(D"(2))
Corollary 3. Let f € S*(hg,,A) and _ ana( 2+ (2
z
2 =z+§m —)“2“. (20)
=° / f(t n; (1
0 We note that
Then it follows from Remark 2 and a result in [12, p116] Inf(2) =D"f(2),
that f, € S"(Hg, ®,A), where and
2a(2a-1)7 I§f(z2) =191(2).
<17z)[(172)37(2]%()2(171)}1] -1 a#3a#0, 0 ( ) . @
From (20), we can easily derive
_ 2 _ _1
Ha(2) =9 GoRgro2 L =2 : 1915 (2) = 219 (2) — 1921 (2). (21)
2 .
TZi9bgiz+g ~ L o=0 Now, takingg(z) = Fn ¢ (2), we have:
Theorem 11.

(2) Choices forg(z)
Sk(h Fn+17 ) C S*(haFnUv)‘) C S*(haFnG-i_la)\)'
[2(a)] Consider the operat®"(n € Ng = {0,1,2,...})
which is called the Salagcan derivative operator defined2(b)]. ¢(z) = fap(2).
as: In [3], the operatod,, is defined ad,y, : A — Aby
D"f(z) = D(D"1f(2)) = D" 1f(2)],

with DOF (2) = f (2), see P8, Japf(2) = fap(2)* f(2), (a>0,b>0),

where
Also one-parameter Jung-Kim-Srivastava integral . .
operator 8,29 is defined as: % fap =, see also14].
Z (e el
o 2¢ Z,g-1 .
19f(2) = 7 (0) /(Iogf) f(t), (o real) We note that, by taking=n+1,ne N andb = 2, we
0 obtain the operator considered by Nod6[19]. Also
o0 7 Jap = L(b,a), whereL(b,a) is Carlson-Shaffer operator
=z+y (=) amz". (17)  introduced in 2] as follows.
L, m+1
The operatorl? is closely related to the multiplier L(b,a)f(2) = ¢(b,a,2) « f(2),
transformation studied by Flet].
where
We can expresB"f(z) as  (b)m
) Lp(baaaz): Z Ezm-'_lv a#oa_lv---a
Df(z) =2+  mlanz™, (18) =0
m=2 is an incomplete beta function related to the Gauss
where . hypergeometric function byy(b,a;z) = zFi(1,b;a;2)
f(2) =2+ z manz™. and(b)m=b(b+1)...(b+m-1), (b)p= 1.
(@© 2015 NSP
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We note that, by taking=n+1,ne N andb =2, we
obtain the operator considered 5[16], and
Inaf(@ =L+ LDf(2)
=D"f(2)
_ A2 (2)"
N n!
the Rusheweyh derivative of order

3

The following identities hold foa > 0,b > 0
Z(Ja,bf)/ = a\]a,bf —(a— 1)Ja+l,bfa
Z(Japf) =bipi1— (b—1)Jap.
Using (22) and some computations, we have:

Corollary 4. (i). Forb>1,

S'(h, fapt1,A) € S'(h, fap,A), Z€E.

(i). Foro<d<1,b>1,

1+ (1-290)z 1-(1-2B)z
Sk(?7 fa7b+17)\) C S*(?a fa,ba)\)a
where

1
{—(2b-25-1)

+/(2b— 25— 1)24-8(25b— 25+ 1)}.
The result (ii) has been established it5].

As a special case of Corollary 4, we deduce that, for

Then, using (24), the operatbﬁ‘,“ :A— Als introduced
as

L f@=1,2f(2),(f cAsecR;A > —~1,u>0).(24)

We note that
L3.f(2) =2f(2), Lg,f(2) = f(2),

[ 1)

21
7)=z+ —amzm:/ dt

and obtain the following relation

2Ly, f@) =pLy i f@ — (-5, 1), (25

2Ly @) = (v+ 1L, f @ - (L t@.  (26)
We can now derive the following results easily
Corollary 5. S*(px, f;,A) C S’*(@, fsitA),
where '
p— 2(1+ 2poy)

[1—2(y—po)] + v/[L+2(y— po)]2 +8(1+2p0y)

andpo = 5.

For this result we refer talf7,19].

Corollary 6. Let f3(z) be defined as in Remark 1, withef
R(px, f;mu,/\). Then § € R(qk, f;u,/\) inE.

Proof. The operator defined bys is known as Bernardi
integral operator fob; =1,2,3,..., see [l]. We have

z
f5(2) = bthl/tbl—lf(t)dt, by>—1,f €R(P, 5, 7).

A=0a=b=1, Then
(b1 +1)f(2) = zf(2) + by f3(2). (27)
1+(1-29)z 1-(1-2B1)z

s (1_ ) f12,0) C Sk(i(l_zﬁl) ,f1.1,0), Now, writing
wherep; is given by (22) withb = 1. That is h(z) = (1-A)(L},,f3(2) + A [z}, f3(2)],

C(6) c S'(B), we obtain from (27).
b= 7{(25-1)+ /452 4519} (22) (LA 1@ +A @, (@)Y =h@ + 5= 2H(2)
For 4 = 0, we obtain a well known result that every Sincef € R(py, fy,f(2),A), it follows that
convex function is starlike of orde%. For more results 1
related to Corollary 4, we refer ta.{.

' (h+bl+1zH)<pk, ze E.

[2(0)] (2 =1y,(2), f(2 =2+ Wézamzm- Applying Lemma 5, we have, farc E
Define f;u(z) as h(z) < G(2) < p(2),

z
fy(2+ fyu(2) = A _gu(H>02€E), (23)  where b

G +
where «(2) 1 /tbl
7) =z+ Z m+y (y>-1). Thereh < gk and consequentlfs € R(Gk, f5,,A). O
1+V ’ Ok q Ok, Vol .
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