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1 Introduction

Let A be the class of functionsf analytic in the open unit
disc E = {z : |z| < 1} and are normalized with the
conditions f (0) = 0, f ′(0) = 1. Also let S,S∗ (γ),C(γ)
denote the subclasses ofA consisting of functions that
are, respectively univalent, starlike of orderγ and convex
of orderγ, 0≤ γ < 1, in E.

Let f and g be analytic inE, then f is said to be
subordinate tog, written asf ≺ g and f (z) ≺ g(z),z∈ E,
if there exists a Schwarz functionw analytic in E with
w(0) = 0 and|w(z)|< 1 for z∈ E such that

f (z) = g(w(z)).

If g is univalent in E, then f ≺ g if and only if
f (0) = g(0) and f (E)⊂ g(E), see [24, p36].

For f (z) = z+
∞
∑

n=2
anzn, g(z) = z+

∞
∑

n=2
bnzn, the

convolution (Hadamard product) off andg is defined by

( f ∗g)(z) = z+
∞

∑
n=2

anbnzn = (g∗ f )(z),z∈ E.

Let h be analytic, convex and univalent inE with h(0) = 1,
ℜh(z)> 0. We denote the class of all analytic functionsp
with p(0) = 1 asP(h) if p ≺ h in E. Let, for f ,φ ∈ A,
( f ∗φ)(z) 6= 0 and letf (z)∗φ(z) = f1(z). Also we define

F(z) = (1−λ ) f1(z)+λz f′1(z);0≤ λ ≤ 1. (1)

We now define the following.

Definition 1. Let f,φ ∈A and let F be defined by (1). Then
f ∈ S∗(h,φ ,λ ) if and only if

zF′(z)
F(z)

≺ h(z),

where h is analytic, convex and univalent in E with
h(0) = 1.

In this case, we sayF ∈ S∗(h).

The corresponding classC(h,φ ,λ ) is defined as
follows.

Let f ∈ A. Then

f ∈C(h,φ ,λ ) if and only if z f′ ∈ S∗(h,φ ,λ ).

In other words,

f ∈C(h,φ ,λ ) if and only if
(zF′(z))′

F ′(z)
≺ h(z),z∈ E.

Definition 2. Let f,φ ∈A and let F be defined by (1). Then
f ∈ K(h,φ ,λ ) if there exists g∈ S∗(h,φ ,λ ) with

G= (1−λ )(g∗φ)+λ (g∗φ)′

such thatzF′(z)
G(z) ≺ h(z),z∈ E, whereλ ∈ [0,1) and h is

analytic and convex univalent in E, h(0) = 1.
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Definition 3. Let f,φ ∈ A ( f ∗ g)(z) 6= 0 and let h be
analytic and convex univalent in E with h(0) = 1. Then
f ∈ R(h,φ ,λ ), for λ ≥ 0, if and only if

( f ∗g)′+λz( f ∗φ)′′ ≺ h,z∈ E.

The corresponding classT(h,φ ,λ ) can be defined as
follows. Let f ∈ A. Then f ∈ T(h,φ ,λ ) if and only if
z f′ ∈ R(h,φ ,λ ).

Let Sσ be the class of prestarlike functions of order
σ ≤ 1. We recall thatf ∈Sσ wheneverf ∈Aand f satisfies

ℜ
{

f (z)∗ z
(1− z)2−2σ

}
> σ , i f σ < 1,

while

ℜ
f (z)
z

>
1
2
, if σ = 1.

For special cases, we have:

(i). S0 =C

(ii). S1
2
= S(1

2), the class of starlike functions of order
1
2.

(iii). S1 = CoC, whereCoC is the closed convex hull of
C.

A prestarlike function of orderσ is univalent whenever
σ ≤ 1

2; otherwise it might even be not locally univalent.
For this and more detail, we refer to [25].

2 Preliminaries

Lemma 1([25]). For σ ≤ 1, let f ∈ Sσ , g be starlike of
orderσ , H be analytic in E. Then

f ∗gH
f ∗g

(E)⊂Co(H(E)).

Also, forσ < 1,

Sσ ∗K(σ)⊂ K(σ),

where K(σ) is the class of close-to-convex functions of
orderσ .

Lemma 2([12]). Let h be analytic, univalent, convex in E
with h(0) = 1 andℜ[βh(z)+ δ ]> 0, β ,δ ∈ C,z∈ E. If p
is analytic in E with p(0) = h(0), then

{
p(z)+

zp′(z)
β p(z)+ δ

}
≺ h(z),

implies
p(z)≺ q(z)≺ h(z),

where q(z) is the best dominant and is given as

q(z) =

[{( 1∫

0

exp

tz∫

t

h(u)−1
u

du
)

dt
}−1

− δ
β

]
.

Lemma 3([4]). Let β ,γ be complex numbers. Let h(z) be
convex univalent in E with h(0) = 1, and
ℜ[βh(z) + γ] > 0, z ∈ E and q ∈ A with
q(z)≺ h(z),z∈ E.

If p is analytic in E with p(0) = 1, ℜp(z)> 0, then

p(z)+
zp′(z)

βq(z)+ γ
≺ h(z),

implies p(z)≺ h(z) in E.

Lemma 4. Let p(z) and q(z) be analytic in E,
p(0) = q(0) = 1 and ℜq(z) > 1

2 for |z| < ρ(0 < ρ ≤ 1).
Then the image of Eρ = {z : |z| < ρ} under p∗ q is a
subset of the closed convex hull of p(E).

The above Lemma is a simple consequence of a result due
to Nehari and Netanyahu [13]. Also see [7,25].

Lemma 5. Let g(z) be analytic in E and h(z) be analytic
and convex univalent in E with h(0) = g(0). If

{
g(z)+

1
δ

zg′(z)
}
≺ h(z), (ℜ(δ )≥ 0,δ 6= 0), (2)

then

g(z)≺ h̃(z) = δz−δ
z∫

0

tδ−1h(t)dt ≺ h(z),

andh̃(z) is the best dominant of (2).

3 Main Results

Theorem 1.C(h,φ ,λ )⊂ S∗(h,φ ,λ ).

Proof.Let f ∈C(h,φ ,λ ). Set

zF′(z)
F(z)

= p(z), (3)

whereF is defined by (1), andp(z) is analytic inE with
p(0) = 1.
With simple computation, we get from from (3)

p(z)+
zp′(z)
p(z)

=
(zF′(z))′

F ′(z)
≺ h(z),

and using Lemma 2, it follows that

p(z)≺ h(z),z∈ E.

This implies thatf ∈ S∗(h,φ ,λ ) in E. ⊓⊔
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Theorem 2. The class S∗(h,φ ,λ ) is invariant under
convex convolution.

This result also holds for the classes

C(h,φ ,λ ),K(h,φ ,λ ),R(h,φ ,λ ) andT(h,φ ,λ ).

Proof. Let ψ ∈ C and f ∈ S∗(h,φ ,λ ). We want to show
that(ψ ∗ f ) ∈ S∗(h,φ ,λ ). Consider

z[(1−λ ){φ ∗ (ψ ∗ f )}′+λ{z(φ ∗ (ψ ∗ f ))′}′]
z[(1−λ ){φ ∗ (ψ ∗ f )}+λz{(φ ∗ (ψ ∗ f ))}′]

=
ψ ∗ [{(1−λ )z(φ ∗ f )′}+λ{z(z(φ ∗ f )′)}′]

ψ ∗ {(1−λ )(φ ∗ f )+λz(φ ∗ f )′} .

For ψ ∈C, [(1−λ )(φ ∗ f )+λz(φ ∗ f )′] = F ∈ S∗(h) and
S∗(h)⊂ S∗, p= zF′

F ≺ h, we have

z[(1−λ ){φ ∗ (ψ ∗ f )}′+λ{z(φ ∗ (ψ ∗ f ))′}′]
(1−λ ){φ ∗ (ψ ∗ f )}+λz{(φ ∗ (ψ ∗ f ))}′

=
ψ ∗ p{(1−λ )(φ ∗ f )+λz(φ ∗ f )′}
ψ ∗ {(1−λ )(φ ∗ f )+λz(φ ∗ f )′} . (4)

We now apply Lemma 1 withσ = 0 to (4) and have

(ψ ∗ f ) ∈ S∗(h,φ ,λ ) in E.

⊓⊔
The proof of this result for other classes follows on
similar lines.

As an application of Theorem 2, we have the
following.

Remark 1. Since the classesS∗(h,φ ,λ ), K(h,φ ,λ ),
T(h,φ ,λ ) andR(h,φ ,λ ) are preserved under convolution
with convex functions, it follows that these classes are
invariant under the following integral operators.

f1(z) =
z∫

0

f (t)
t dt = [log(1− z)]∗ f (z) = (ψ1∗ f )(z).

f2(z) =
2
z

z∫

0

f (t)dt

= [
−2
z
{z+ log(1− z)}]∗ f (z) = (ψ2 ∗ f )(z).

f3(z) =
b1+1

zb1

z∫

0

tb1−1 f (t)dt, ℜb1 >−1

= (
∞

∑
n=1

b1+1
b1+n

zn) f (z) = (ψ3 ∗ f )(z).

It can easily be verified thatψ1,ψ2 ∈C and we refer to [26,
27] for ψ3 to be convex. We apply Theorem 2 to obtain the
required result.

Theorem 3.For λ ≥ 0, S∗(h,φ ,λ )⊂ S∗(h,φ ,0)

Proof.The case, whenλ = 0, is trivial, so we suppose
λ > 0. Let f ∈ S∗(h,φ ,λ ) and let f1 = f ∗φ . Define

F(z) = (1−λ ) f1(z)+λz f′1(z).

Then F ∈ S∗(h), that is, zF′(z)
F(z) ≺ h(z) in E. We want to

show that
z f′1(z)
f1(z)

≺ h(z) in E.

Let
z f′1(z)
f1(z)

= p(z).

Thenp(z) is analytic inE with p(0) = 1.
Now

zF′(z)
F(z)

=
z f′1(z)+ z2 f ′′1 (z)

(1−λ ) f1(z)+λz f′1(z)

=
z f′1(z)+λz(z f′1(z))

′−λz f′1(z)
(1−λ ) f1(z)+λz f′1(z)

=
(1−λ ) z f′1(z)

f1(z)
+λz

(z f′1(z))
′

f1(z)

(1−λ )+λ z f′1(z)
f1(z)

=
(1−λ )p(z)+λ (p2(z)+ zp′(z))

(1−λ )+λ p(z)

=
[
p(z)+

zp′(z)

p(z)+ ( 1
λ −1)

]
≺ h(z),z∈ E.

We now use Lemma 2 to havep(z)≺ h(z) in E. ⊓⊔
Theorem 4.For λ ≥ 0,K(h,φ ,λ )⊂ K(h,φ ,0).

Proof.The caseλ = 0 is trivial. We assumeλ > 0. Let

F(z) = (1−λ )( f ∗φ)+λz( f ∗φ)′
G(z) = (1−λ )(g∗φ)+λz(g∗φ)′

}
. (5)

Let f ∈ K(h,φ ,λ ). Then there existsg∈ S∗(h,φ ,λ ) such
that

zF′(z)
G(z)

≺ h(z), z∈ E,

whereF andG are defined by (5). Set

z( f ∗φ)′(z)
( f ∗φ)(z)

= p(z). (6)

We note thatp is analytic inE with p(0) = 1.

Then, from (6) and withz(g∗φ)′
(g∗φ) = p0 ≺ h, we have, after

some simple computation,

zF′(z)
G(z)

= p(z)+
λzp′(z)

(1−λ )+λ p0(z)
≺ h(z) in E.

Using Lemma 3, we obtain the required result, that is,

z( f (z)∗φ(z))′

( f (z)∗φ(z))
= p(z)≺ h(z), z∈ E.

�
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Theorem 5. R(h,φ ,λ )⊂ T(h,φ ,λ ).

Proof.Let f ∈ R(h,φ ,λ ) and let

{
(1−λ )

( f (z)∗φ(z))
z

+λ ( f (z)∗φ(z))′
}
= p(z).

Then

( f (z)∗φ(z))′+λ ( f (z)∗φ(z))′′ = p(z)+ zp′(z).

Since f ∈ R(h,φ ,λ ), we havep+ zp′ ≺ h and, applying
Lemma 3, it follows thatp≺ h in E. This proves that

f ∈ T(h,φ ,λ ),

and the inclusion relation is established.⊓⊔

Theorem 6.The class R(h,φ ,λ ) is a convex set.

Proof.Let f1, f2 ∈ R(h,φ ,λ ) and let

F1 = (1−λ )( f1∗φ)′+λ (z( f1 ∗φ)′)′,

F2 = (1−λ )( f2∗φ)′+λ (z( f2 ∗φ)′)′.

Let

F(z) = αF1(z)+ (1−α)F2(z), 0≤ α ≤ 1.

Then

F ′(z)+λF ′′(z) = α[F1(z)+ (1−α)F2]
′

+λz[αF ′′
1 (z)+ (1−α)F ′′

2 ]

= α p1(z)+ (1−α)p2(z)

= p(z),

wherepi(z) = F ′
i (z)+λzF′′

i (z), i = 1,2, pi ≺ h.
SinceP(h) is a convex set,p≺ h and henceF ∈ R(h,φ ,λ )
in E. ⊓⊔

Remark 2. Functions inR(h,φ ,λ ) can be obtained by
taking convolution (Hadamard product) of the function

k(z) =
1
λ

z1− 1
λ

z∫

0

t
1
λ −1

1− t
dt,λ > 0, (7)

with the function

J(z) =

z∫

0

p(t)dt, p≺ h. (8)

The following facts about the classesR(h,φ ,λ ) and
T(h,φ ,λ ) can easily be established.
(i). R(h, z

1−z,0) and T(h, z
1−z,1) consist entirely of

univalent functions.

(ii). T(h,φ ,λ ) is a convex set.

(iii). T(h,φ ,λ1)⊂ T(h,φ ,λ2), 0≤ λ2 < λ1.

(iv). T(h,φ ,λ )⊂ T(h,φ ,1), λ ≥ 1.

(v). R(h,φ ,λ1)⊂ R(h,φ ,λ2), 0≤ λ2 < λ1.

We prove the result (v) as follows.
For λ2 = 0, we need the Lemma given below.

Lemma 6. Let λ ≥ 0 and D(z) ∈ S∗(h). Let N(z) be
analytic in E and N(0) = D(0) = 0, N′(0) = D′(0) = 1.
Let, for z∈ E, h convex univalent,ℜh(z)> 0,

{(1−λ )
N(z)
D(z)

+λ
N′(z)
D′(z)

} ≺ h(z).

Then
N(z)
D(z)

≺ h(z) for z∈ E.

Proof. The proof of this Lemma is quite straightforward
when we putN(z)

D(z) = p(z), and obtain

(1−λ )
N(z)
D(z)

+λ
N′(z)
D′(z)

= {p(z)+ p0(z)(zp′(z))} ≺ h(z),

whereℜp0(z) = ℜ D(z)
zD′(z) > 0 in E. Now using Lemma 3

we have the required result thatN(z)
D(z) ≺ h(z) in E. ⊓⊔

We now proceed to prove the inclusion result (v). We
assumeλ2 > 0 and f ∈ R(h,φ ,λ1). Then

(1−λ2)( f ∗φ)′+λ2(z( f ∗φ)′)′

=
λ2

λ1

{
(1−λ1)( f ∗φ)′+λ1(z( f ∗φ)′)′

}
+
(
1− λ2

λ1

)
( f ∗φ)′

=
λ2

λ1
p1(z)+ (1− λ2

λ1
)p2(z).

Since f ∈ R(h,φ ,λ1), p1 ≺ h and, from Lemma 6,p2 ≺ h.
Now λ2

λ1
< 1 andh(E) is convex, it follows that

{(1−λ2)( f ∗φ)′+λ (z( f ∗φ)′)′} ≺ h.

Thus f ∈ R(h,φ ,λ2). ⊓⊔

Theorem 7. Let f ∈ T(h,φ ,λ ),0 < λ < 1. Then
f ∈ T(h,φ ,1) and hence univalent for|z| < r0, where r0
is the radius of the largest disc centered at the origin for
whichℜk′(z) > 1

2,k(z) is defined by (7) and r0 is given by
the smallest positive root of the equation.

2
λ −1− r

1+ r
− 2

λ
( 1

λ
−1

) 1∫

0

ξ
1
λ −1

1+ ξ r
dξ = 0. (9)

This result is sharp.
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Proof. Since f ∈ T(h,φ ,λ ), we may write, by using
Remark 2,

f (z) = zF′(z), F ∈ R(h,φ ,λ )
= z(k(z)∗ J(z))′

= zp(z)∗ k(z),

wherep≺ h andk(z) is given by (7).
Hence

f ′(z) =
zp(z)∗ zk′(z)

z

=
zp(z)∗ zk′(z)

z∗ zk′(z)
. (10)

Let
zk′(z) = H(z).

Then
H ′(z) = k′(z)+ zk′′(z).

It is easy to see thatk′(0) = 1. Therefore, forℜk′(z) > 1
2

for |z|< r0, we have

ℜ
H(z)

zH′(0)
>

1
2
,

in |z|< r0.

HenceH is a prestarlike function of orderσ = 1.
Also, sinceg(z) = z∈ S1, we can apply Lemma 1 and it
follows f ∈ T(h,φ ,1) for |z|< r0.

The functionf0 ∈ T(h,φ ,λ ), defined as

f0(z) = zh(z)∗ k(z),

shows that the above radius given by (9) is sharp.
To find the radiusr0, we proceed as follows.
From (7), we have

k′(z) =
1

λ (1− z)
− 1

λ
(

1
λ
−1)z−

1
λ

z∫

0

t
1
λ −1

1− t
dt. (11)

Powers in (11) are meant as principal values. The function
k′(z) is analytic inE, k′(0) = 1 and

2k′(z)−1=
2−λ +λz
λ (1− z)

− 2
λ
(

1
λ
−1)z−

1
λ

z∫

0

t
1
λ −1

1− t
dt.

So

2ℜk′(z)−1≥
2
λ −1− r

1+ r
− 2

λ
(

1
λ
−1)

1∫

0

ξ
1
λ −1

1+ ξ r
dξ .

Thereforeℜk′(z)> 1
2 for |z|< r0, wherer0 is the smallest

positive root of (9).

For the functionf0(z) = h(z)∗ k(z), f ′(r0) = 0.

This shows that the above result is sharp and the proof
is complete. ⊓⊔

Theorem 8. Let f ∈ R(h,φ ,0). Then f∈ R(h,φ ,λ ) for
|z|< rλ , where

rλ = (1+λ 2)
1
2 −λ .

Proof.Let F1(z) = ( f ∗φ)(z). ThenF1 ≺ h. Now

F ′
1(z)+λzF′′

1 (z) = ψλ (z)∗F ′
1(z), (12)

where

ψλ (z) =
z(1− (1−λ )z)

(1− z)2

= z+
∞

∑
n=2

(1+(n−1)λ )zn
.

It is known [11] that ℜ ψλ (z)
z >

1
2 in |z|< rλ . This implies

that ψλ (z)
z ≺ h1(z) whereℜh1(z) > 1

2 in |z| < rλ . Now,
from (12) and Lemma 4, it follows that

(F ′
1+λzF′′

1 )≺ (h1∗h)≺ h in |z|< rλ .

This gives usF1 ∈ R(h,φ ,λ ) in |z| < rλ , and the proof is
complete. ⊓⊔.

Using Lemma 6, the following result can be easily proved.

Theorem 9.Let

F = (1−λ )( f ∗φ)+λz( f ∗φ)′, f ,φ ∈ A,λ ≥ 0,

and

G= (1−λ )(g∗φ)+λz(g∗φ)′,g∈ S∗(h,φ ,λ ).

Then

(zF′(z))′

G′(z)
≺ h(z) implies

zF′(z)
G(z)

≺ h(z) in E.

We prove the following

Theorem 10.Let f ∈ R(h,φ ,λ ), ℜh> 0. Then

( f ∗φ) ∈C(h) for |z|< (
√

2−1).

This result is sharp.

Proof.Since f ∈ R(h,φ ,λ ), h∈ P, we have

( f ∗φ)′(z) = k(z)∗
z∫

0
h(t)dt, h(z)≺ 1+z

1−z

andk(z), given by (7), is a convex function inE.
If we show that

J(z) =

z∫

0

h(t)dt

is convex for|z| < (
√

2− 1), then( f ∗ φ) = k∗ J is also
convex for(

√
2−1) due to a well known result, see [27].

Now J′(z) = h(z), and

1+
zJ′′(z)
J′(z)

= 1+
zh′(z)
h(z)

, h≺ 1+ z
1− z

.
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Then

ℜ
[
1+

zJ′′(z)
J′(z)

]
≥ 1− 2r

1− r2

=
1−2r − r2

1− r2 ,

since
∣∣ zh′(z)

h(z)

∣∣ ≤ 2r
1−r2 , see [6]. Thus J ∈ C for

|z| < (
√

2 − 1) and consequently f ∈ C(φ) in
|z| < (

√
2− 1). The sharpness follows from the function

f1 ∈ R(h,φ ,λ ) given as

( f1 ∗φ)(z) = k(z)∗
z∫

0

1+ t
1− t

dt.

�

4 Applications

We shall have different choices of analytic functionsφ
andh to illustrate the applications of the main results.

I. Choices for h(z)

Let

h(z) =
1+Az
1+Bz

, A∈ C and B∈ [−1,0], A 6= B.

For−1≤ B< A≤ 1, these functions are called Janowski
functions [6]. By takingA= 1−2α, B=−1, 0≤ α < 1,
we have

h(z) = hα(z) =
1+(1−2α)z

1− z
.

This gives usℜhα(z)> α, and withα = 0, we have

h0(z) =
1+ z
1− z

, ℜh(z)> 0, see [6]. (13)

II. Fork≥ 0, leth(z) = pk(z), where

pk(z) =





1+z
1−z , (k= 0),

1+ 2
π2

(
log 1+

√
z

1−√
z

)2
, (k= 1),

1+ 2
1−k2 sinh2

[(
2
π arccosk

)
arctan

√
(z)

]
, (0< k< 1),

1+ 1
k2−1

sin


 π

2R(t)

u(z)√
t∫

0

1√
1−x2

√
(1−tx)2

dx


+ 1

k2−1
, (k> 1)

. (14)

Here u(z) = z−
√

t
1−√

tz
, t ∈ (0,1), z ∈ E and z is chosen

such that k = cosh
(πR′(t)

4R(t)

)
, R(t) is the Legender’s

complete elliptic integral of the first kind andR′(t) is the
complementary integral ofR(t).

The functionspk(z) play the role of extremal functions
mappingE onto the conic domainΩk given below

Ωk = {u+ iv : u> k
√
(u−1)2+ v2, k≥ 0}. (15)

For fixed k,Ωk represents the conic region bounded,
successively, by the imaginary axis(k = 0), the right
branch of hyperbola(0 < k < 1), a parabola(k = 1) and
(K > 1). It is noted that the functionspk(z) are univalent
in E and belong to the classP of Caratheodry functions of
positive real part. For details, we refer to [9,10,15,17,18,
19,20,21].

Now, by choosingh(z) = pk(z) in Theorem 3, we can
easily prove the following.

Corollary 1. S∗(pk,φ ,λ ) ⊂ S∗(qk,φ ,0), where

qk(z) =
[ 1∫

0

exp

tz∫

t

pk(u)−1
u

du
]−1

. (16)

Some of the special cases are given below.

(i). Let k = 0. Then f ∈ S∗
(

1+z
1−z,φ ,λ

)
implies that

f ∈ S∗
( 1

1−z,φ ,0
)
. That isℜ

[ z( f∗φ)′
f∗φ

]
>

1
2, for z∈ E.

(ii). For k > 1 and f ∈ S∗(pk,φ ,λ ), we obtain from
Theorem 3 and (18) thatf ∈ S∗

(
z

(z−k) log(1− z
k )
,φ ,0

)
. That

is

[z( f (z)∗φ(z))′

f (z)∗φ(z)
]
≺ z

(z− k) log(1− z
k)
, z∈ E.

Since, in this caseqk(−1) = 1
(k+1) log(1+ 1

k )
, we have

ℜ
[z( f (z)∗φ(z))′

f (z)∗φ(z)
]
>

1

(k+1) log(1+ 1
k)
.

(iii). For the casek= 2, we note that

S∗(p2,φ ,λ )⊂ S∗(q2,φ ,0).

This gives us

ℜ
{z( f (z)∗φ(z))′

f (z)∗φ(z)

}
> q2(−1) =

1

3log3
2

≈ 0.813.

(iv). Let k= 1. Then

S∗
([

1+
2

π2

(
log

1+
√

z
1−√

z

)2]
,φ ,λ

)
⊂ S∗(q1,φ ,0),

and

ℜ
z( f (z)∗φ(z))′

f (z)∗φ(z)
> q2(−1) =

1
2
.
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Corollary 2. Let

h(z) = hα(z) =
1− (1−2α)z

1− z
.

Then, from Theorem 1 and a result given in [12,p 115], it
follows that

C(hα ,φ ,λ )⊂ S∗(qα ,φ ,λ ),

where

qα (z) =

{
(1−2α)z

(1−z)[1−(1−z)]1−2α , i f α 6= 1
2 ,

z
(z−1) log(1−z) , i f α = 1

2 .
.

Corollary 3. Let f ∈ S∗(hα ,φ ,λ ) and

f2(z) =
2
z

z∫

0

f (t)dt.

Then it follows from Remark 2 and a result in [12, p116]
that f2 ∈ S∗(Hα ,φ ,λ ), where

Hα (z) =





2α(2α−1)z2

(1−z)[(1−z)1−2α+(2α−1)z−1] −1, α 6= 1
2 ,α 6= 0,

z2

(z−1)[log(1−z)+z] −1, α = 1
2 ,

z2

(1−z)[(1−z) log(1−z)+z] −1, α = 0.

.

(2) Choices forφ(z)

[2(a)] Consider the operatorDn(n ∈ N0 = {0,1,2, . . .})
which is called the Salagcan derivative operator defined
as:

Dn f (z) = D(Dn−1 f (z)) = z[Dn−1 f (z)],

with D0 f (z) = f (z), see [28].

Also one-parameter Jung-Kim-Srivastava integral
operator [8,29] is defined as:

Iσ f (z) =
2σ

zΓ (σ)

z∫

0

(
log

z
t

)σ−1
f (t), (σ real)

= z+
∞

∑
m=2

( z
m+1

)σ
amzm

. (17)

The operatorIσ is closely related to the multiplier
transformation studied by Flett [5].

We can expressDn f (z) as

Dn f (z) = z+
∞

∑
m=2

mnamzm
, (18)

where

f (z) = z+
∞

∑
m=2

mnamzm
.

From (17), the following identity can easily be deduced.

z[Iσ+1 f (z)]′ = 2Iσ f (z)− Iσ+1 f (z). (19)

Combining the operatorsDn andIσ , the operator

Iσ
n : A→ A

is defined by taking

Fn,σ (z) = z+
∞

∑
m=2

mn( 2
m+1

)σ
zm
.

as follows

Iσ
n f (z) = Dn(Iσ f (z)) = Iσ (Dn f (z))

= Fn,σ (z)∗ f (z)

= z+
∞

∑
m=2

mn( 2
m+1

)σ
zm
. (20)

We note that
I0
n f (z) = Dn f (z),

and
Iσ
0 f (z) = Iσ f (z).

From (20), we can easily derive

Iσ+1
n+1 f (z) = 2Iσ

n f (z)− Iσ+1
n f (z). (21)

Now, takingφ(z) = Fn,σ (z), we have:

Theorem 11.

S∗(h,Fσ
n+1,λ )⊂ S∗(h,Fσ

n ,λ )⊂ S∗(h,Fσ+1
n ,λ ).

[2(b)]. φ(z) = fa,b(z).
In [3], the operatorJa,b is defined asJa,b : A→ A by

Ja,b f (z) = fa,b(z)∗ f (z), (a> 0,b> 0),

where

z
(1− z)a ∗ fa,b(z) =

z
(1− z)b , see also [14].

We note that, by takinga = n+ 1, n ∈ N andb = 2, we
obtain the operator considered by Noor [16,19]. Also
Ja,b = L(b,a), whereL(b,a) is Carlson-Shaffer operator
introduced in [2] as follows.

L(b,a) f (z) = ψ(b,a,z)∗ f (z),

where

ψ(b,a,z) =
∞

∑
m=0

(b)m

(a)m
zm+1

, a 6= 0,−1, . . . ,

is an incomplete beta function related to the Gauss
hypergeometric function byψ(b,a;z) = z2F1(1,b;a;z)
and(b)m = b(b+1) . . .(b+m−1), (b)0 = 1.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


498 K. I. Noor et. al. : Inclusion Properties with Applications for Certain Subclasses...

We note that, by takinga= n+1,n∈N andb= 2, we
obtain the operator considered in [15,16], and

J1,n+1 f (z) = L(n+1,1) f (z)

= Dn f (z)

=
z(zn−1 f (z))(n)

n!
,

the Rusheweyh derivative of ordern.

The following identities hold fora> 0,b> 0

z(Ja,b f )′ = aJa,b f − (a−1)Ja+1,b f ,

z(Ja,b f )′ = bJa,b+1− (b−1)Ja,b.

Using (22) and some computations, we have:

Corollary 4. (i). For b≥ 1,

S∗(h, fa,b+1,λ )⊂ S∗(h, fa,b,λ ), z∈ E.

(ii). For 0≤ δ < 1,b≥ 1,

S∗
(1+(1−2δ )z

1− z
, fa,b+1,λ

)
⊂ S∗

(1− (1−2β )z
1− z

, fa,b,λ
)
,

where

β =
1
4
{−(2b−2δ −1)

+
√
(2b−2δ −1)2+8(2δb−2δ +1)}.

The result (ii) has been established in [15].

As a special case of Corollary 4, we deduce that, for

λ = 0,a= b= 1,

S∗
(1+(1−2δ )z

1− z
, f1,2,0

)
⊂ S∗

(1− (1−2β1)z
1− z

, f1,1,0
)
,

whereβ1 is given by (22) withb= 1. That is

C(δ ) ⊂ S∗(β1),

β1 =
1
4
{(2δ −1)+

√
4δ 2−4δ +9}. (22)

For δ = 0, we obtain a well known result that every
convex function is starlike of order12. For more results
related to Corollary 4, we refer to [14].

[2(c)] φ(z) = f s
γ,µ(z), f (z) = z+

∞
∑

m=2
amzm.

Define f s
γ,µ(z) as

f s
γ (z)∗ f s

γ,µ(z) =
z

(1− z)µ ,(µ > 0,z∈ E), (23)

where

f s
γ (z) = z+

∞

∑
m=2

(m+ γ
1+ γ

)s
zm
, (γ >−1).

Then, using (24), the operatorLs
γ,µ : A → A is introduced

as

Ls
γ,µ f (z)= f s

γ,µ (z)∗ f (z),( f ∈A;s∈R;λ >−1,µ > 0).(24)

We note that

L0
0,z f (z) = z f′(z), L1

0,2 f (z) = f (z),

L−1
1,1 f (z) = z+

∞

∑
m=2

1
m

amzm =

z∫

0

f (t)
t

dt,

and obtain the following relation

z(Ls
γ,µ f (z))′ = µLs

γ,µ+1 f (z)− (µ −1)Ls
γ,µ f (z), (25)

z(Ls+1
γ,µ f (z))′ = (γ +1)Ls

γ,µ f (z)− (γ)Ls+1
γ,µ f (z). (26)

We can now derive the following results easily

Corollary 5. S∗(pk, f s
γ,µ ,λ )⊂ S∗

(1−(1−2ρ)z
1−z , f s+1

γ,µ ,λ
)
,

where

ρ =
2(1+2ρ0γ)

[1−2(γ −ρ0)]+
√
[1+2(γ −ρ0)]2+8(1+2ρ0γ)

,

andρ0 =
k

k+1.

For this result we refer to [17,18].

Corollary 6. Let f3(z) be defined as in Remark 1, with f∈
R(pk, f s

γ,mu,λ ). Then f3 ∈ R(q̃k, f s
γ,µ ,λ ) in E.

Proof. The operator defined byf3 is known as Bernardi
integral operator forb1 = 1,2,3, . . . , see [1]. We have

f3(z)=
b1+1

zb1

z∫

0

tb1−1 f (t)dt, b1>−1, f ∈R(pk, f s
γ,µ ,λ ).

Then

(b1+1) f (z) = z f′3(z)+b1 f3(z). (27)

Now, writing

h(z) = (1−λ )(Ls
γ,µ f3(z))

′+λ [z(Ls
γ,µ f3(z))

′]′,

we obtain from (27).

(1−λ )(Ls
γ,µ f (z))′+λ (z(Ls

γ,µ f (z))′)′ = h(z)+
1

b1+1
zh′(z).

Since f ∈ R(pk, f s
γ,µ f (z),λ ), it follows that

(
h+

1
b1+1

zh′
)
≺ pk, z∈ E.

Applying Lemma 5, we have, forz∈ E

h(z)≺ q̃k(z) ≺ pk(z),

where

q̃k(z) =
b1+1

zb1

z∫

0

tb1 pk(t)dt.

Thereh≺ q̃k and consequentlyf3 ∈ R(q̃k, f s
γ,µ ,λ ). ⊓⊔
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