Appl. Math. Inf. Sci.9, No. 1, 463-472 (2015) %N =) 463

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090154

On the Stability to a Functional Lienard Type Equation
with Variable Delay by Fixed Points Theory

Cemil TUNC

Department of Mathematics, Faculty of Sciences, Yumiit University , 65080 Van, Turkey

Received: 22 Apr. 2014, Revised: 23 Jul. 2014, AccepteduR2014
Published online: 1 Jan. 2015

Abstract: This paper is devoted to the mathematical analysis of #fgbfla scalaiLiénardtype equation with variable delay. We use
the fixed point technique under an exponentially weightettime prove the stability of the zero solution. By this worke extend
and improve some related results in the literature
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1 Introduction [14, Constantin_15], Chen et al. 16], Cherkas and
Malysheva 7], Czan[18], Gao and Zhao 19|, Graef
5{30]’ Hale [21], Heidel [22], Hou and Wu R3], Huang
and Yu 4], Jin [25], Jitsuro and YusukeZf], Kato [27],
iu and Huang 28], Liu [29], Luk [30], Malyseva B1],
apoles Valés [32], Omari and Zanolin 33], Pi [34],
I5;)ian ([35],[3€]), Sugie and Amano37], Tunc [38,39,40,
41,42,43,44,45,46], Tunc and Tunc 47], Yoshizawa
[48], [?]), Zhang (b0], [51]), Zhou and Jiangg2], Zhou
nd Xiang p3] and the references cited in these sources.
It should be noted that, in mathematices,fixed-point
theorem is a result saying that a functibrwill have at
F?ast one fixed point (a point for which F(x) = x), for

For decades, the Lyapunovs second (or direct) method h
been very effective in establishing stability, instalijlit
boundedness, global existence, etc. results for a wid
variety of ordinary, functional differential and integral
equations. However, there is a large set of problems fo
which it has been ineffective (see, Burtds])[ Probably,
the reason leads this fact is that constructing or definin
suitable Lyapunov functions or functionals that yield
meaningful results for the mentioned qualitative
behaviors of ordinary and functional differential

equations and integral equations remains as an Opewhich for which under some conditions énthat can be

problem in the literature by this time. On the same time, tated in general terms. Results of this kind are amongst

in a series of papers and books, many authors havgj A I ful i th i .
examined particular problems which have offered grea € most generally useiul in m_a ematcs, in many
cientific fields and applications; stability, instability

difficulties for the mentioned topics and have discusse oundedness. . periodicit lobal existence etc. are
the qualitative behaviors of solutions by means of variousf nud mental ¢ r? It 't;‘y’t gn be d X! fibed in t 'ms of
fixed point theorems. Further, while the Lyapunov s direct undamental concepts that can be describe erms o

method usually requires pointwise conditions, fixed pointf'xec.jl.b pomts]; For e_xam]P_Ie,d n tec]??r?mlcs, NSSht
theory needs average conditions. In addition, fixed pointeqUII flum of a game IS a fixéd point of thé games bes
esponse correspondence. However, in physics, more

theory can be applied directly to study an equation wher ©>F' . . ; A
soluti)éns are ber)iFr)lg conside?/ed on ayfiniteqinterval. Forpremsely in the thepry of Phase Transnmns,_lmeanzatlo

comprehensive works done on the qualitative behaviors ofi€ar an “!"Stab'e f|_xed point has led to WI|§OI’]S Nobel
the equations mentioned, the readers can referee to tHy12€-winning work inventing the renormallzatlon group,

books or the papers of A’\hmad Rama and Mohana Ra@nd to the mathematical explanation of the term critical
[1], Antosiewicz P],Becker and Burtond], Burton [4,5, phenomenon. In compilers, fixed point computations are
6,7,8,9,10], Burton and Furumochi11], Burton and used_ for whole program gnaly5|s, which are often
Hering [12], Burton and TownsendLp], Caldeira-Saraiva required to do code optimization, and the concept of fixed
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point can be used to define the convergence of a functionThroughout this paper, we assume that for efach 0,
(see, Becker and Burto3]| Burton [6,7,8,9,10], Burton ~ m(tg) =inf{s—1(s) : s> to} andC(tp) = C([m(to),to0], R)
and Furumochi11], Pi [34], Zhang BQ] and references with the continuous function norf ||, where

cited therein).It should be noted that in 2005, Burt8h [ ||¢|| = sup{|@(s)| : m(tp) <s<tp} It will cause no
considered the scal&fénardtype equation with constant confusion even if we usé|g|| as the supremum on

delay,L(> 0): [M(to),0). It can be seen from Hal@]] that for a given
continuous functionp and a numbelryy, there exists a
X'+ 1t X)X +b(t)g(x(t - L)) = 0. (1) solution of the system (4) on an intervis, T), if the

Burton [8] obtained conditions for each solutiott) to ~ Selution remains bounded, théh = o, Let (x(t),y(t))
satisfy(x(t), X(t)) — (0,0) ast — o by using contraction d€note the solutiotx(t, ¢.yo),y(t, ¢, yo))- _ .
mappings. Definiton.The zero solution of the system (4) is stable if
Later, in 2011, Pi [34] discussed the stability and for €ache > 0 there existsd = d(e,to) > 0 such that
properties of solutions to a scalar functionéénardtype  |# € Cllo).Yo € R.[|@]| + lyo| < o] implies that

tion with variable delav(t ; X(t, @, Yo0)| + [¥(t, ®,Yo)| < € fort > to.
equation with variable delay,t)(> 0) We also suppose throught this paper that 7(t) is

X"+ f(t,x, X)X +b(t)g(x(t — 1(t)) = 0. (2)  strictly increasing antimy_..(t — 7(t)) = . The inverse
) ) ) . o N of t — 7(t) exists, denoted by(t) and 0< b(t) < M,
Pi [34] obtained some interesting sufficient conditions \yhereM is a positive constant.
ensuring that the zero solution of Eq. (2) is stable andj, the next section, we give some sufficient conditions on
asymptotically stable by using fixed point theory under anhe stability of the zero solution of Eq. (3) by the fixed
exponentially weighted metric. On the other hand, to thepoint theory. To achieve our goal, we make use of the
best of our knovy[edge from the Ii;erature, the qualitative contraction mapping principle. Once the correct mapping
behaviors of théiénardtype equations of the form is constructed, then, the analysis in this paper is similar t
/ _ the one of Burton§] and Pi [34]. However, our equation,
X +{f(x) +g(x)x’}x’+h(x) = &) 3) Eqg. (3), is different from those in Burto8][ and Pi 34]
and its modified types have been studied by manyand the literature.
researches since 1945 by now, due to the fact that these
type equations have played very important roles in many
scientific areas such as mechanics, engineering, economi, Main Result
control theory, physics, chemistry, biology, medicine,
atomic energy, information theory, etc. (see, for example Before stating the main result of this paper, we give the

Ahmad and Rama Mohana Rad],[ Antosiewicz p],  expression of the solution of Eq. (3) by the following
Burton ( [4], [5], [10]), Burton and Townsend1p, lemma. . _
Caldeira-Saraival[d], Constantin 15], Chen et al. 6], ~ Lemmal. Let ¢ : [m(to),to] — R be a given continuous

Cherkas and Malyshevd 7], Czan[18], Gao and Zhao function. If (x(t), y(t)) is the solution of the system (4) on
[19], Graef 0], Hale [21], Heidel [22], Hou and Wu  [to,T1) satisfying x(t) = ¢(t), t € [m(to),to], and
[23], Huang and Yu 24], Jin [25], Jitsuro andYusuke Y(to) = X(to), thenx(t) is the solution of the integral
[26], Kato [27], Liu and Huang 28], Liu [29], Luk [30], equation

Malyseva B1], Napoles Val@s[32], Omari and Zanolin 1 B(syds

[33], Pi [34], Qian ( [35], [36]), Sugie andd Amana3[7], X(t) = Y(to)e "o

Tunc ( [39], [46]), Tunc and Tunc47], Yoshizawa ( 8],

[?]), Zhang ( BQ], [51]), Zhou and Jiang42], Zhou and t s

Xiang [53] and the references cited in these works. + [ e kPEBu)du

In this paper, instea of the mentioned last equation, we to

consider the scalar modifiddénard type equation with

variable delayr (t)(> 0) : _ /t e—jgﬁ(s)dsD(u)h(x(u))du
X"+ { f1(t,%,X )X + f2(x) } X + b(t)h(x) fo
+h(t)g(x(t —1(t))) =0, .
wheret € Rt R = [0,00),b: BT — R is a bounded + [ E(t,9)h(x(s))ds
and continuous functiorf; : RT™ xR xR, fr: R — R to
,h:?R”—R,h(0)=0,9: R — NR,9(0)=0,and7: R" —
M+ are all continuous functions - te‘ JiB(9)ds
We can write Eq. (3) in the system form, /to

X =y
y = —fi(t,x y)y* — fa(x)y — b(t)h(x) ST )
~ bt)g(x(t— T(1)). (4) T & RPEIBW) () — g0(u))ldu

uE(u,s)h(x(s))ds] D(u)du

to
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tE(t,s)g(x(s— 1(s)))ds

fo

+

x g(x(s—1(s)))dgD(u)du (5)

Conversely, if the continuous function(t) = (t),
t € [m(to),to] , is the solution of integeral equation (5) on
[to, T2], thenx(t),y(t)) is the solution of the system (4) on
[to, T2)]
Proof. Let

f1 (6 x(1), y(0))y(t) + f2(x(t)) = A(t).

Then, Eq. (3) can be stated in the form of

X =y,
y = —A(t)y—

so that

b(t)h(x) —b(t)g(x(t —1(t)))

Y 4+ A(t)y+b(t)h(x) + b(t)g(x(t— 1(t))) = 0.

A(s)ds

(6)
Multiplying both sides of (6) byelo and then

integrating the obtained estimate framto t, it follows
that

yit) =yito)e” oA e A% ()h(x(u))du
—~ /tt e~ uASdsy () g(x(u — T(u)))du

so that
X (t) = y(t) = X (to)e~ Al
— ﬁo e fu

ds_ [t e JiA©ds(u)h(x(u))du
94D (u)g(x(u— T(u)))du. (7)

If we choosex (to)e~ LA®ds — B(t) them from (7) we

have
t
X(t) =B(t) — fy e Al
t gt
_fttoe JuA(s)d

s)dsh(u)h(x(u))du

*b(u)g(x(u—T1(u)))du. (8)

Let

and -
/ C(U+t—to,t)/du=E(t,s) > 0.
to+t—s

Hence, it follows from Eq8)

X (t) =B(t) — h(x(t) /mc (U+t—to,t)du

+ 5 tOE(t ,9h(x(s))ds

—g(x(t—1(t))

+%/tOtE(t,s)g(x(S— 1(s)))ds

)/ Clu+t—to,t)du
fo

so that

=B(t) —h(x(t))D(t) + 3 E(t s)h(x(s))ds
—D(p(t))g(x(t))

d ft &

at st ))9(x(t))

+ 5 [ EC9a0s- 7(s)ds
Then

X (t)+D(t)x(t) = B(t) —h(x(t))D(t

)
d
+ g [ ECon

+B(00) - a(x)
t ~
g DO

E(t s)9(x(s—1(s)))ds

)ds
]
s))ds

Yail, ©)
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Multiply both sides of (9) byef‘toms)ds and then the supremum metricp(@, @) = || — @||, where
integrate for alt € [to, T1], we have @, € C Next, let ¢ : [m(to),to)] — R be a given
continuous initial function.

Define the seS§c C by

S={@:[M(to),®) = Rl cC,a(t) = Y(t),t € [M(to),t]},
and its subset

X(t) = Wito)e O
+ e i Ds)dsg(y)du

fo

t o
- / e JDEdsp (y)h(x(u))du

t 8 = {:[m(to).) > RIPeC, @(t) = Y(t).t € [Mlto),to]

. o
+ e JiD(s)ds dd E(u,s)h(x( ))ds] du and/g(t)] <Il,t > m(to)},

tot UJto wherey : [m(to),to] — [—I,1] is a given intial functionl, is
+ [ e hPOISH () [x(u) — g(x(u))]du positive constant. Define a mappiRg S — S by

fo

t . r u o
+ [ libeas| 4 / D(u)g(x(s))ds] du
o LduJu- r<>

(Po)(t) = g(t), if t€[mlto),to]
and ift > tg, then

+ ‘e Jibisds [ d E(u s)g(x(s— r(s)))ds] du.

‘A t A
t [dug (Po)() —W(to)e foP%+ [[e DO B(u)au
0
By integrating the fourth, sixth and seventh terms on the t iB(9ds
right hand side of the last estimate, it follows that —/toe u D(u)h(¢(u))du
t
X(t) (I—’(to) ’ D(s +/ e fu dSB( )d + toE(t7S)h((p(S))dS

- / ' 110 DS)dsp (u)h(x(u))du+ / E(t,s)h(x(s))ds
fo

to

_/te—.lﬁﬁ(s)ds[ uE(ms)h(x(s))dS] D(u)du t
to to E(t,5)g(¢(s—1(s)))ds

+ [ OB ) () — g(x(u)Jdu .
p AT
+ [ E(t,s s—1(s)))ds {5 o
o (9)90ds=7(9) e o, [ o, DSal0(s)ds
b ds— e o0 A
T (S)g(x(s))ds—e _/t {/ b(s)g((p(s))ds} e 1D (1) du
to “ to [Ju—T1(u)
S ALCECIEE - [leroe e
-/ t [ I ( )Iﬁ(s)g(x(s))ds} & S99 (1) % g(p(s—1(9))dgB(u)du
to [Ju—T1(u

t u R Hence, forp, ¢ € S, it can be written that
—/equ(s)dS{ E(u,s)g(X(s— r(s)))ds] D(u)du.

© © |(PO)() — (P)(1)] < fite~ OEUD(u)[h(g(u)) — h(g (w))[du
This estimate completes the proof of the first part of .
Lemma 1. _
Conversely, we assume that the existence of a continuous + to E(ts)h(¢(s)) —h(¢(s))|ds
functionx(t) = g(t) fort € [m(tp),to] such that it satisfies ; R "
the integral equation ont € [to,To] Then, it is e—./LED<S>dS[ E(u,5)|h(e(s)) — h(¢(s))|ds| D(u)du
differentiable onto, o] Hence, it is only needed to to to
differentiate the integral equation. When we differemtiat
the above integral equation, we can easily conclude the
dosiredresutt < Y % fie OB (W) [g(u) — g(e(u))] - [#(4) - g((1))]|du

Let (C,||.||) be the Banach space of bounded continuous

functions on [m(tg),) with the supremum norm t
ll@|| = sup{|@(t)| :t € [M(ty), )} for @ € C. Letp denote +/to Et,s)lo(e(s—1(s))) —9(#(s—1(s)))|ds
@© 2015 NSP
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+ [, Dla0s) ~a#(5)ds
+ﬁ§) {fuu—r(u)

e KB

fo
| [ Ewslatets- ) - a(os- 9l
fo

xD(u)du.

Sinceg(x) andh(x) satisfy the Lipschitz condition ldt
denote the common Lipschitz fxx), x — g(x) andh(x)
Then, it follows that

[(P@)(t) — (P9)(1)] </t:e_-’3'5(s)dsf)(u)du

t ~
+ / B(s)ds
t—1(t)

Lo

x & WDEID () duy

t ~ u
+ [ e hibds { E(u,s)ds}
to

fo
x B(u)dux Lo ¢l
Itis also clear that
t N . R
[ e*fJD(S)dSD(u)du: efflﬁD(s)dSHO
0

tA

—1— effu D(S)dS% 17

for larget. But sinceg(x) andh(x) are non-linear, theh

BUIg(@(s) - g(6(9)]ds] e LD u)du

itself.
Proof.(i) We change the supremum norm to an
exponentially weighted norrg),, which is defined oS,
Let X be the space of all continuous functions
@ : [m(tp),») — Rsuch that

|9lu = sup{|e(t)le " : t € [m(to), )} < o,
wherep = KLy (D(s) + D(s))ds k is a positive constat,
k > 8 andL is the common
Lipschitz constant forg(x), x — g(x) and h(x). Then
(X,]-ly) is a Banach space. This fact can be verified by
using Cauchy’s criterion for uniform convergence. Thus
(X,d) is a complete metric spaces with
d(@,¢) = |@— ¢|u, wherep,¢ € X. Under this metric
the spacé& is a closed subset &f Thus the metric space
(S,d) is complete. A
(i) LetP: S — S. Itis clear thaD(t) > 0,D(t) > 0 and
E(t,s) > 0. Forg,¢ € S, then, we get

(PO)O) - (o)D) ) < [ e iPB(w)

x [n(g(w) — h(¢ () |e*Vdu

t
+ [ Et.9h(@(s) ~ h(p(s)le “Vds
+ fie 09 JUE (u9)(g(s)) — h(g (9)Ids| (e du

+ fye OB (u)|[o(u) — g((w)] — [#(u) — g (u))]je Hdu

+ [ E.91(0(9) ~ 9(9 ()l H0ds

0

-

+ - D(s)|g9(¢p(s) —g(¢(s)) |efu(t)ds

+Ji [ BWIg(@(9) — a(9(3) eV dg] e OB (u)du

+ e O [LE(u9lg(e(s— 7(5))) — o(#(s— T(9))) e HVd]

xD(u)du.

Foru <t, sinceD(t) > 0,D(t) > O then

may not be small enough. Henc®, may not be a
contracting mapping. We can solve this problem by
giving an exponentially weight metric. p(u) — _ —kL/
Lemma 2.Suppose that there exists a positive consthnt
such thaig(x) andh(x) satisfy the Lipschitz condition on
[—1,1]. Then there exists a metriton S such that

H(U) — p(t) = —KL /

s)+D(s)] ds< — kL/D

(i) the metric spacéS,d) is complete,

(i) P is a contaction mapping of8,d) if P mapsS into ds< k'—/ D(s

(@© 2015 NSP
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Further fors < t, it follows that

p(s—1(s) —p(t) =
—kL i [D(u) + D(u)]du

t
< —kL/ D(u)du
S

On the other hand, sindg(t,s) > 0, it is clear that
E(t,s) =/ C(u+s—tp,s)du
t—s—tg

C(u+s—tp,s)du=D(s).

to

Then, it can be seen that

|(P@)(t) — (Pe)(t) eV < Llp— 9|,

" /te—.lﬁ'5(S>ds|j(u)eu<U)—u(t>du

to

t
+ [ E(t,9)e"¥Hlds

fo

+/t { uE(u s)eH(9—HU
to to ’

4 [ B ghtu-ul gy

to

ds} e~ PO (y)du

t ~
+ E(t s)eH-Hgsy D(s)et(-Hlds

to t—1(t)

+ t[ /u Iﬁ(s)e“(s*“(‘)ds} e~ iPEISH () du
to [Ju—T(u)

to LJ/to

By an esay calculation, we can obtain

2 3 3

|(P@)(t) — (Pe)(t)je ) < Ry

/te [5DEdsp () duy
xLlg— o],

Thus, we have

(PO)) ~ (PO)VIE Y < [[LIp—blut >to

N t[ UE(U’S)eu(sr(s»u(t))ds} LCLEe

Hence,
d(P9.PY) < (d(9~ §), (k> 8).

ThereforeP is a contraction mapping afg , d).

Theorem. We assume that the following assumptions
hold:

(i) There exists a positive constahsuch thatg and h
satisfy the Lipschitz condition op-1,1] andg andh are
odd and they are strictly increasing p#l, 1], andx — g(x)

are non-decreasing grl,1].

(i) There exists ana € (0,1) and a continuous
functiona(t) : [0,c0) — [0,0) such that

a(t) : [0,00) — [0,0) such that

fa(t,x,y)y+ fa(x) = a(t)
fort >0,xe R yeR, and

{Zsu/ /e av)dvh(s)dwds
t>0
+Zsu// e s avVdvp(s)dwdg
t>0 t—s
+2h(l) sup// av)dvp(s)dwds
t>0 t—s

<ag(l)+(1—a)h(l).

(iii) There exist constardy > 0 andQ > 0 such that for
eacht >0,ifJ > Q, then

t+J
/ a(v)ydv > apJ.
t

Then there exist® € (0,I) such that for each initial
function ¢ : [m(to),to] — R and X(tp) satisfying
IX(to)| + ||@] < &, and there is a unique continuous
function x : [m(tg),0) — R satisfying x(t) = (1),

t € [m(to),to], which is a solution of Eq. (3) offtg, ).
Moreover, the zero solution of Eq. (3) is stable.
Proof.Choosingy : [m(to),to] — R andX (t) such that

(

e %0 X (t o)
- )| (to) |+

to ~

+ 2h(1)+g(d) D(s)ds

< (1-a)g(l)
+ ah(l).

For By noting the assumptiog(0) = O of the theorem, it is
clear thag(l) <I. Sinceg(x) satisfies Lipschitz condition
t € [m(to),to], (P@)(t) = (Pd)(t) = B(t). on [—1,1], andg(x) is continuous function offi-I,l],there
@© 2015 NSP
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t t ta
exists a constand such that < I. h(l) [ E(t,s)ds+ | e JiB(s)ds
Thus, from the expression foPg)(t), it follows that fo to

X [ tuE(u,s)h(I)ds] D(u)du

t t u R
t g u +9(1) | E(t,s)ds+ { D(s)g(l)ds]
(P@)(t)] < 5+ / e 0PN (tg) e fo A9 gy / to /H<u>
0

x &~ hPEIsH () duy

b [iB(8)dsA ' A !
v [[etoepwniaus [‘eonds o[ batast ['[ ["ewsgnad

fo

t i u ~ N
+ [e ko] [*Ewgn()aq Dy s & £5I95B )y

to fo

t B
+ [ e WP W) (1 —g(1))du

fo

t
+ | Et.s)g(l)ds

0 WS

t o {Zsu/ / e AV 9 dwds
+ / B(s)g(l)ds+ B(s)g(3)ds 0

t—1(t) to—1(t) S AW dv

(S A 5 A +25u// e Js b(s)dwd
+ [ / D(u)g(l)ds] PRCRICEE YR 00 Ji-s (s)awds

to [Ju—T(u) A d

t . u R +2h(1) su// e Js )4Vh(s)dwds
+ efﬁD(sﬁ’S[ E(u,s)g(l)ds] D(u)du. t>c'>o t-s ®

© o <ag(l)+(1-a)h(l).

: . _Therefore, we have
Further, subject to the assumptions of the theorem, it

follows that .
0 ~
(PR)®) < 5+9(8) [ Blsyds+(1~g(l)
to—1(to)
/ t d / / ]u+s tOA dvb( )d d + ag( )—|—(1—G)h(|)
s)ds= e uds t A N
to to Jto+t—s 4 h(|)+/ e—./ttoD(S)d5|xf(t0)|e—.ft0A(5)d5du
u+s fo
:// e s AV (s)duds o
ts < 5+g(6)/ B(s)ds+ (I —g(1)) +h(l)
<su / / e KAV (g dud ot
0Jo Jis ° + ag(h) + (1— ah(l)
t u
+ / X (to) e oAy,
fo
Using condition (jii) of the theorem, we get
t t
D(s)ds=/ B(p(s))ds
/t—r(t) t-1(t) /te—jigA(s)dsdu:/t0+Qe—j{gA(s)dsdu
[ Ij(IO(S))d fo to
B (t) 1-1(t) 4 t R CLE
—/ D(s)ds= / / g AW oto+Q t
g/ du-+ e U-lgyu< Q
s)dwds fo to+Q
WS e_aOQ
<su/ / e 12 PAMdv ) dwds s
t>0
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Hence,
|(P@)(t)] < d+9(d)
to—1(to)

+ (I=g())+h() +ag(l)+ (1—a)h(l)

—a0Q
+ Q¥ (t0)| + 5~ X (t)].

to

D(s)

Since

e*aOQ
O

) IX(to)| + &+ 2h(l)

+o®) [* Bigds< (1-ajl)

to—1(to)
+ ah(l),

then it follows that
|(Po)(t)| < (a = 1)g(l) + 1+ (1—a)g(l) + ah(l) — ah(l)
so that

|(Po)(t)| <1

Thus, it is clear that it € [m(to),to], then it can be seen

that (Pg)(t) = (), |[(Pp)(t)] < I, t € [m(ty),o0).
ThereforePg: S — S. SinceP is contraction mapping
has unique fixed point(l) such thatx(t)| <I.

From Eq. (7),

, t .
y(t) = X (to)e foASds / e LAy ()h(x(u))du

to

_ /tte*fflA(S)dSb(u)g(x(u— 7(u)))du,

0

it can be obtained that

, t
YOI <X (t0)| +M [ & AL h(x(w)|du
to
t .
M / e JASs g (x(u— T(u)))|du
fo
t .
<5+M [ e iAS9shx(u))|du

to

t
+ M/ e JASIs| g x(u— T(u)))|du
fo
t |
<5+M / & JASIS) (x(u))[du
to

t
M [ e JiASdsx(y — 7(u))|du
fo

t ;
<1+IM [ e JuAsdsyy
fo

LM [ e fAsesy
fo

We can conclude that

M1+ o) < 2 [1e M@+ T

This completes the proof of the theorem.

3 Conclusion

A functionalLiénardtype equation with variable delay is
considered. The stability of the zero solution of the
equation is discussed. In proving our main result, we use
the fixed points theory by defining an exponentially
weight metric. Our result extends and improves some
recent results in the literature.
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