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Abstract: In this article, we consider the time evolution of the quantum Fisher information in the context of the interaction between
two-level atom and two-modes electromagnetic field. We discuss the correlation between the quantum Fisher information, its flow and
quantum entanglement for the system under consideration. Analytic results under certain parametric conditions are obtained, by means
of which we analyze the influence of different parameters on the von Neumann entropy and quantum Fisher information. We investigate
different forms of the two-mode field states such as uncorrelated two-mode coherent states and two-mode squeezed vacuumstates. We
explore an interesting monotonic relation between the quantum Fisher information and nonlocal correlation behavior of the atom-two
modes field interaction under the estimator parameter and field type effect during the time evolution
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1 Introduction

Entanglement is the main part of quantum information
and computation. In this way entanglement is a property
of correlations between two or more quantum systems
[1]. These correlations defy classical description and
associated with intrinsically quantum phenomena. This
nonlocal nature of entanglement has also been identified
as an essential resource for many novel tasks such as
quantum computation, quantum teleportation [2],
quantum cryptography [3] and more recently, one-way
quantum computation [4] and quantum metrology [5].
These quantum information tasks cannot be carried out by
classical resources and they rely on entangled states. This
recognition led to an intensive search for mathematical
tools that would enable a proper quantification of this
resource [6]. In particular, it is of primary importance to
test whether a given quantum state is separable or
entangled. For this quantification, several entanglement
measures have been proposed such as concurrence [7,8],
entanglement of formation [9,10], negativity [11,12], etc.
1). The current and new applications of the quantum
Fisher information (QFI) in the new and important of

quantum technologies field which is called quantum
metrology. In this regard, quantum metrology is discussed
for entangled coherent states, and gives an improved for
the phase estimation and smallest variance in the phase
parameter in comparison to NOON, BAT and optimal
states. This work has modified to discuss the quantum
metrology resources for two modes entangled
spin-coherent states [13].

Parameter estimation is a significant pillar of different
branches of science and technology, and developed new
techniques in measurement for parameter sensitivity have
often led to scientific breakthroughs and technological
advancement. There is a great deal of work on phase
estimation addressing the practical problems of state
generation, loss, and decoherence [14,15,16,17,18,19].
Fisher information lies at the heart of a parameter
estimation theory that was originally introduced by Fisher
[20]. It provides in particular a bound to distinguish the
members of a family of probability distributions. When
quantum systems are involved, especially for problems in
which the quantity of interest is not directly accessible,
the optimal measurement may be found using tools from
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quantum estimation theory. The quantum version of the
Cramér-Rao inequality has been established and the lower
bound is imposed by QFI [21]. An abstract quantity that
measures the maximum information about a parameterφ
that can be extracted from a given measurement
procedure. Since the mathematical treatment of the lower
bound in physical problems has been clarified [22,23],
the best resource for the phase estimation has been
discussed [24,25]. Quantum communication theory
including quantum estimation and quantum detection may
predict a possibility to beat such a limit [26]. It is shown
that, surprisingly, for states with high temperature, phase
estimation is better for states with only classical
correlations [27,28] than with entangled GHZ diagonal
states [29].

It is well known that, the correlation between quantum
entanglement and Fisher information(FI), as we know
about a certain parameter in a quantum state, has not been
studied widely. However, there are some studies to
quantify the pure state entanglement by using FI. In this
regard, the entanglement evaluation with atomic classical
Fisher information has been investigated [30]. It has been
shown that entanglement of a two-level atom can be
quantified by atomic FI and their marginal distribution.
Furthermore, the correlation between the FI and quantum
entanglement during the time evolution for a trapped ion
in laser field. It is found that FI is an important tool to
study single qubit dynamics as an indicator of
entanglement under certain conditions [31]. Also, the
time evolution of the QFI of a system whose the dynamics
is described by the phase-damped model has studied [32].
It observed that there is an interesting monotonic relation
between the QFI and nonlocal correlation behavior
measured by the negativity depending on choosing the
estimator parameter during the time evolution.

In this present article, our main interest is to
investigate and discuss in detail the time evolution of the
QFI, QFI flow and the entanglement between two-level
atom and the input field initially in correlated and
uncorrelated two-mode states.

The article will be outlined in the following order. The
main concepts of the two-mode coherent states (TMCS)
and two-mode squeezed vacuum states (TMSVS) will be
presented in Sec. II. In section III, we introduce the model
of the interaction between a two-level atom and two-mode
electromagnetic field in the presence of nonlinear terms
such as Kerr like medium and detuning parameter. In Sec.
IV we evaluate and discuss the main results. Finally, we
conclude our work in Sec. VI.

2 Correlated and Uncorrelated two-mode
states

The quantum behavior of a two-level atom interacting
with correlated two modes has been investigated [33].
The importance of correlated states such as two-mode

pair coherent states [34,35,36] or two-mode squeeze
vacuum state [37,38] of light lies in their close
connection to two-photon nonlinear optical processes.
Such correlated states play an important role in quantum
mechanics and quantum information processing. For

example, the dissipation of a two-mode squeezed vacuum
state (TMSVS) in the single-mode amplitude damping
channel has been investigated [39], where it is found that
the outcome state is no more a pure state, but an
entangled mixed state. Also, the quantum dense coding
via a two-mode squeezed-vacuum state is studied [40]. It
is shown that the decoding at a receiver side is performed
by simultaneous measurement of two quadrature
components of the two-mode state. where the information
can be transmitted without error in the strong-squeezing
limit because the two-mode squeezed-vacuum state is
partially entangled.

2.1 Two mode squeezed vacuum states

The two-mode squeezed state is defined as [41]

|Ψ〉sq = D̂(â1,α1)D̂(â2,α2)Ŝ(r,ϕ) |0〉 , (1)

whereD̂(âi,αi) is the common displacement operator

D̂(âi,αi) = exp
(

αiâ
†
i −α∗

i âi

)

, i = 1,2 (2)

andŜ(r,ϕ) is the two-mode squeezing operator

Ŝ(r,ϕ) = exp
[

r(−â1â2e−iϕ + â†
1â†

2eiϕ )
]

. (3)

The expansion of equation (1) into number states is quite
complicated; however, we would like to consider the
simplest form of the two-mode squeezed state [41,42],
namely the two-mode squeezed vacuum i.e., without any
displacement (α1 = α2 = 0):

T MSVS = Ŝ(r,ϕ) |0〉= (coshr)−1∑
n

(

eiϕ tanhr
)n |n,n〉 ,

(4)

Pn1,n2 (0) =

∣

∣eiϕ tanhr
∣

∣

n1+n2

cosh2 r
δn1,n2. (5)

In the case of the two-mode squeezed vacuum, the double
summation becomes overn due to correlation of the two
modes which keeps the equaln numbers in every mode,
then equation (5) is written as

Pn (0) =

∣

∣eiϕ tanhr
∣

∣

2n

cosh2 r
. (6)
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2.2 Two mode coherent states

We use uncorrelated two-mode coherent states (TMCS)
as an example of the uncorrelated field states. The
uncorrelated coherent state is given by

|α1,α2〉=
∞

∑
n1,n2=0

Cn1,n2 |n1,n2〉 , (7)

where the amplitudeCn1,n2(assumed to be real) in equation
(7) can be written as

Cn1,n2 = exp

[

−
(

n̄1+ n̄2

2

)]

√

(n̄1)
n1 (n̄2)

n2

n1!n2!
, (8)

n̄i = |αi|2, i = 1,2.
In the next section, we shall use the TMSVS and

TMCS given by Eqs. (4), (7) as an initial state of the input
field in the interaction with two-level atom.

3 Model and its dynamics

We consider a system of a two-level atom interacting with
two-modes of the electromagnetic field. Let|↑〉 and
|↓〉 denote the excited state and ground state of the atom,
respectively.ωA is the transition frequency between state
|↑〉 and|↓〉, while ω1 andω2 denote the frequencies of the
two electromagnetic modes. The total Hamiltonian for
this system in the rotating wave approximation (RWA)
can be written as

H = ∆Sz +
2

∑
j=1

(

ω jâ
†
j â j + χ jâ

†2
j â2

j

)

+ h̄λ
[

ÂS++ S−Â†] ,

(9)
where we takēh = 1, â†

j and â j are the photon creation

and annihilation operators of thej th mode. λ is the
coupling parameter between the atom and two-mode
field, while ω j( j = 1,2) is the frequency of thej th mode

of the radiation field,Â = â1â2 ⊗ f (â†
1â1, â

†
2â2) [43]. We

denote by χ j ( j = 1,2), the dispersive part of the
third-order nonlinearity of the Kerr-like medium ofj th

mode, and f (â†
1â1, â

†
2â2) represents an arbitrary

intensity-dependent coupling. Also,̂S± and Sz are the
atomic spin operators defined by

Ŝ+ =|↑〉〈↓|, Ŝ− =|↓〉〈↑| and Ŝz =
1
2
(|↑〉〈↑| − |↓〉〈↓|) .

(10)
The above Hamiltonian can be written as

Ĥ = Ĥ0+ Ĥin, (11)

with

Ĥ0 = ω1

(

â†
1â1+ Ŝz

)

+ω2

(

â†
2â2+ Ŝz

)

, (12)

which describes the free Hamiltonian. While the
interaction Hamiltonian part can be written as

Ĥin = ∆ Ŝz +χ1â†2
1 â2

1+χ1â†2
2 â2

2+λ
[

ÂŜ++ Ŝ−Â†] , (13)

where the detuning∆ =ωA−ω1−ω2. For the two bases|↑
,n1,n2〉 and|↓,n1+1,n2+1〉 the interaction Hamiltonian
(13) can be transformed into the following form

Ĥin =









∆
2
+

2
∑
j=1

χ jn j (n j −1) λ f
√

(n1+1)(n2+1)

λ f
√

(n1+1)(n2+1) −∆
2
+

2
∑
j=1

χ jn j (n j +1)









.

(14)
The corresponding eigenvalues of the interaction
Hamiltonian are given by

µ1,2 = λ
{

∆ + χ1n2
1+ χ2n2

2±Ωn1,n2

}

, (15)

where

Ωn1,n2 =
√

δ 2
n1,n2

+ f 2(n1+1)(n2+1), (16)

δn1,n2 = ∆ − χ1n1− χ2n2. (17)

In this case, the time evolution operator can be written as

Û(n1,n2, t)= exp(−Hint)=

[

U11(n1,n2, t) U12(n1,n2, t)
U12(n1,n2, t) U22(n1,n2, t)

]

,

(18)
where

U11(n1,n2, t)=
1

2Ω

{

(Ω + δ/2)e−iµ1t +(Ω − δ/2)e−iµ2t
}

,

(19)

U22(n1,n2, t)=
1

2Ω

{

(Ω −δ/2)e−iµ1t +(Ω +δ/2)e−iµ2t
}

,

(20)

U12(n1,n2, t) =
λ

2Ω
√

(n1+1)(n2+1)
(

e−iµ1t − e−iµ2t) ,

where f = f (n1+1,n2+1), Ω = Ωn1,n2 andδ = δn1,n2.

The initial state is given by |ψ(0)〉
= |ψA(0)〉⊗ |ψTMF (0)〉, where|ψA(0)〉 is the initial state
of the two-level atom and|ψT MF(0)〉 is the initial state of
the input two-mode field which will be TMCS (i.e.
|ψT MF(0)〉 = |α1,α2〉 given by Eq. (7) andTMSVS given
by Eq. (4). The combined atom-field system state att = 0,
can be written as

|ψ(0)〉= 1√
2
(|↑〉+ | ↓〉)⊗|ψTMF(0)〉, (21)
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Once the matrix representation ofÛ(t) is obtained, the
density operator of the system at any timet > 0 as

ρ̂(t) = Û(t)|ψ(0)〉〈ψ(0)|Û†(t). (22)

Furthermore, we introduce the reduced atomic density
operator̂ρA(t) and the reduced field density operatorρ̂F(t)
by taking the trace of̂ρ(t) over the field states and over the
atomic states, respectively,

ρ̂A(t) = TrF [ρ̂(t)] , (23)

Then the matrix elements of the reduced atomic density
operator are given by

ρA
kl(t) = ∑

n1,n2=0

〈k,n1,n2|ρ̂(t)|l,n1,n2〉, (24)

It is well known that the entanglement of the
atom-field state can be measured in terms of the von
Neumann entropy [44,45,46], which is generally defined
for the reduced atomic density matrixρ̂A(t) as

SV =−Tr
(

ρ̂A ln ρ̂A)=−µ1 ln µ1− µ2 ln µ2, (25)

whereµ1 andµ2 are the eigenvalues of the atomic density
matrixρA.

Now, we turn the attention to the QFI which plays an
essential role in quantum information processing and
quantum metrology, where the highest precision of
estimating an unknown parameter we may achieve is
related to inverse of the QFI and is defined as

IQF = Tr
[

ρ(φ)L2] , (26)

whereρ(φ) is the density matrix of the system,φ is the
parameter to be measured, andL is the quantum score
(symmetric logarithmic derivative) which is defined by

∂ρ(φ)
∂φ

=
1
2
[Lρ(φ)+ρ(φ)L] . (27)

The Fisher information is related to the uncertainty of the
measurement via the Gramer-Rao bound,∆φ ≥ 1/

√

FQ.
Here, the QFI-based parameter is assumed to be induced
by a single-atom phase gate
U(φ) :=|↓〉〈↓| +exp(iφ) |↑〉〈↑|, acting on the two-level
atom. To estimate the unknown parameterφ as precisely
as possible, the optimal input state may be chosen as
|ψ(0)〉, which maximizes the QFI of the output state
U(φ)|ψ(0)〉. After the phase gate operation and before
the measurement performed, the qubit is coupled to a
environment consisting of phase noise laser described by
the master equation given above.

4 Numerical results and discussions

In this section, we present the link between the direction
of each QFI, quantum entanglement and the sign of the
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Fig. 1: The time evolution of the: (a) von Neumann entropySv
(for φ = π

/

2), (b) the QFIIQF (solid line) and (c) the QFI flow
IWF for single qubit interacting with field initially in TMCS for
n̄1 = n̄2 = 10, ∆
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dependent functionf (n1,n2) = 1.
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Fig. 2: The same as Fig.1 and the intensity dependent function

f (n1,n2) = 1
/

√

(n1+1)(n2+1) .

QFI flow for a single qubit. By using the QFI, we
investigate the problem of the parameter estimation in a
two-level system interacting with the two-mod field
initially in the TMCS and TMSVS. Furthermore, we
introduce the QFI flow to characterize the progression of
the quantum entanglement. The QFI flow, which is
defined as the change rate,IWF := ∂ IQF

/

∂ t , of the QFI.
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Fig. 3: The time evolution of the: (a) von Neumann entropySv
(”dashed line” forφ = π

/

2 , ”dashed-dotted line” forφ = π
/

4),
(b) the QFI IQF and (c) the QFI flowIW F for single qubit
interacting with two-field initially in TMVS for ¯n = sinh2 r = 10,
∆
/

λ = χ1
/

λ = χ2
/

λ = 0 and the intensity dependent function
f (n1,n2) = 1.

We point out the this quantity is feasible for improving
and understanding the different branches of quantum
metrology [13].

In Fig.1, the quantum entanglement measured by the
von Neumann entropySv, QFI and QFI flow are plotted as
a function of the scaled time (one unit of time is given by
the inverse of the coupling constantλ ). The input field is
initially in TMCS and the effect of the detuning parameter
and Kerr like medium is ignored. Moreover, the effect of
the intensity dependent function is neglected (i.e.f (n1 +
1,n2+1) = 1). It is observed that the maximum value of

the QFI is decrease as the scaled time goes on. There a
monotonic correlation between the behavior ofSv and QFI
during the time evolution. In the other hand, the QFI flow
exhibits an adverse behavior withSv and QFI.

Now, we would like to consider the effect of the
intensity dependent functionf (n1 + 1,n2 + 1) on the
dynamical behavior of the quantitiesSv, IQF and IWF . In
this case the intensity dependent function
f (n1 + 1,n2 + 1) have taken to be1

/√

(n1+1)(n2+1)
and the other parameters are the same as in Fig.1. It is
interesting to see thatSv andIQF have an inverse behavior
and they satisfy the equationSV + IQF = 1. As seen from
Fig. 1 (a) the system returns back to the separable state
(i.e. Sv = 0), and the QFI takes it maximum value (

IQF = 1) at the periodic timeλ t = mπ (m = 0,1,2, .....).
Instantaneously, the QFI flow drops to minimum value
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Fig. 4: The time evolution of the: (a) von Neumann entropy
Sv (dashed line), the QFIIQF (solid line) and (c) the QFI flow
IWF for single qubit interacting with two-field initially in TMVS
for n̄ = sinh2 r = 10, ∆

/

λ = 10, χ1
/

λ = χ2
/

λ = 0 and the
intensity dependent functionf (n1,n2) = 1. Figs (b,d) are the
same as Figs. (a,c) but for∆

/

λ = 0, χ1
/

λ = χ2
/

λ = 0.1.

and there is a monotonic correlation between the quantum
entanglement and the sign of QFI flow at the half of the

periodic timeλ t =

(

m+
1
2

)

π . Interestingly, we see that

the decreasing of quantum entanglement corresponding
the positive QFI flow and the negative QFI flow
corresponding the growth of the quantum entanglement.
From the above discussion the QFI flow can be used an
indicator of the quantum entanglement between two-level
atom and two-mode coherent state field.

Now, we are in a position to discuss an important and
practical situation of the interaction between the two-level
atom and two-mode field. In this considered case, we
assume that the input field initially in the TMSVS which
have different tasks and applications in quantum
information processing. As observed from Fig. 3(a) the
von Neumann entropySv is affected by the changing of
the phase shiftφ from π /2 to π /4 where the amplitude of
Sv is decreased. This is the main advantage of the QFI and
its flow where they do not affected by any change of the
estimator phase shift parameterφ . The system does not
reach to the separable state during the time evolution.
Also, there is a monotonic correlation between the
dynamical behavior of QFI,Sv and the sign of the sign
QFI flow.

Finally, figure 4 presents the effect of the detuning
parameter and Kerr medium on the QFI,Sv and QFI flow.
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It can be seen that the QFI andSv has an monotonic
behavior. Interestingly, during the time evolution. The
high amount of the quantum entanglement between the
two-mode field and two-level atom can be achived by the
effect of the effect detuning parameter (see Fig 4(a)).
Moreover the Kerr medium leads to maximize theSv and
minimize the QFI after initial time. On the other hand the
sign of the QFI flow is negative according to the sudden
increasing ofSv and sudden drop for QFI within certain
small interval of the time and then it goes to zero value
(see Fig 4(d)).

5 Conclusion

In summary, in the point of view the quantum Fisher
information, we have investigated in detail the problem of
parameter estimation of a two-level atom interacting with
input two-mode field. The model was considered when
the two-level atom is initially in the optimal state while
the field is initially in two-mode coherent states and
squeezed vacuum states. By numerical calculation, we
considered the maximal QFI by choosing the optimal
input state. We have shown that the QFI flow is useful to
characterize the progression of quantum entanglement
and dynamics of atom-field correlations under different
cases of the intensity dependent function. The
relationship between QFI, QFI flow and nonlocal
correlation was demonstrated. Our results show that the
interaction between the two-level atom and with
two-mode field under the effect of the intensity dependent
function, detuning parameter and Kerr like medium
provides much substantial structure than the absence of
the deuning parameter, Kerr like medium and intensity
dependent function. In this way, it is found that, the
variation of the atom-field entanglement and quantum
Fisher is determined by the sign of the quantum Fisher
flow during the time evolution. Also, we have found that
the deuning parameter and Kerr like medium create a
high amount of the atom-field entanglement and
minimizing the QFI. More and deep future investigation
is planned regarding the effect decoherence of the
dynamics of the nonlocal correlation, QFI and QFI flow
considering the cavity damping.
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