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Abstract: Structural pattern analysis is of fundamental importance as it provides a novel perspective on illustration of the relationship
between structure and function, as well as to understand thedynamics, of social networks. So far, scientists have uncovered a multitude
of structural patterns ubiquitously existing in social networks in different levels, they may be microscopic, mesoscopic or macroscopic.
Our work mainly characterizes the mesoscopic-level structural patterns on social networks from the node-similarity viewpoint and
reviews some latest representative methods, focusing on the improved methods of community measure and community structure
detection, role discovery methods, as well as the structural group discovery approaches used to reveal hidden but unambiguous
structures. Finally, we also outline some important open problems, which may be valuable for related research domains.
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1 Introduction

A network is, in its simplest form, a collection of nodes
joined together in pairs by edges, and social networks [1,
2], in which the nodes are people or group and the edges
represent any of a variety of different types of social
interaction including friendship, collaboration, business
relationships or others. Examples include the network of
scientific collaboration (Figure1(a)), network of Enron
communication (Figure1(b)), Co-authorship network
(Figure1(c)) and Facebook friend network (Figure1(d))
[3].

In the past decade there has been a surge of interest in
both empirical studies of networks and development of
mathematical and computational tools for extracting
insight from network data. However, a difficult problem
when studying networks is that of global values of
statistical measures can be misleading, and cannot clearly
unveil insights into their functional organization [4], and
there is no standard network visualization and
quantitative description method show clear large-scale
network. In order to synthesize realistic social networks,
we usually start with the studies of the structural patterns.
So far, scientists have uncovered a multitude of structural
patterns ubiquitously existing in social networks [9]. They

may be microscopic, such as motifs [5]; mesoscopic, such
as communities [6]; or macroscopic, such as small worlds
[7] and scale-fee phenomena [8]. See Figure2(a), one can
observe structural patterns in different levels, and
hierarchy describes how the various structural patterns are
combined. In the spite of the great efforts of pattern
analysis having been made, we will focus our discussion
in this paper on mesoscopic level. Because based on
Mesoscopic-level structural patterns, such as community,
role and structural group, one can make a step towards the
uncovering of the modular structure of social networks
and unveil insights into their functional organization,
which would greatly benefit both theoretical studies and
practical applications. For example, in a metabolic
network, the network of chemical reactions within a
cell?a community might correspond to a circuit or
pathway that carries out a certain function, such as
synthesizing or regulating a vital chemical product [10],
and mesoscopic-level structural patterns can also be use
to compress a huge network, resulting in a smaller
network. In other words, problem solving is accomplished
at group level, instead of node level. In the same spirit, a
huge network can be visualized at different resolutions,
offering an intuitive solution for network analysis and
navigation [11]. However, to the best of our knowledge,
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Fig. 1: (a)Map of scientific collaboration(b) Enron communicationgraph (c) Co-authorship network-LRI Lab (d) Facebook friend
wheel
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Fig. 2: Schematic illustrations of the scales of organization of social networks. (a)Observing structural patterns in different levels,
hierarchy describes how the various structural patterns are joined into the entire network.(b) characterize mesoscopic-level structural
pattern in the from a node similarity viewpoint

there have been no studies in the literature that explicitly
and adequately characterize mesoscopic-level structural
patterns, thus, this article aims to characterize such
structures in a simple way and review the studies of
mesoscopic-level structural pattern (For the sake of
presentation, without loss of rigor, we will use the term
structure to denote mesoscopic-level structural pattern in
the rest of this paper).

This article is organized as follows. In the next
section, we will characterize structure from a
node-similarity viewpoint and mainly introduce three
kinds of structure: community, role and structural group.
In Section 3, we will review the community discovery
from two aspects: the measure for community and
structure of community, emphasizing on the optimization
method and hierarchical clustering, due to they are widely
used for discovering simultaneously both the hierarchical
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Table 1: The definitions of community, social role and structural group
Structure Node-similarity Definition
Community nodes densely-connect Community, is a densely connected subset of nodes that is only

sparsely linked to the remaining network. [6]
Social role nodes with similar

behavior
Social role, groups nodes of similar structural behavior (or
function) [1]. In social network analysis position refers to
a collection of individuals who are similarly embedded in
networks of relation. While role refers to the patterns of
relations which obtain between actors or between positions. In
this paper we cannot distinguish two conceptions, and both of
them are called as social role in the rest paper.

Structural group nodes sharing common
properties

Structural groups, defined as subsets of nodes sharing common
structural properties that set them apart from other nodes in the
network. [14]

        

(a)                                  (b)                               (c) 

Fig. 3: Comparison of community discovery, role discovery and structural group discovery(a)The 2 communities that GN algorithm [6]
finds on the karate network.(b)The 4 roles discovered by optimization method based on regular equivalence (by UCINET tool): “bridge”
nodes(as red), “periphery” nodes(as blue). (c) The 3 structural groups discovered by visual analytics method using theselection of 28
node properties [14]

and overlapping community structures. In Section 4, we
introduce the social role discovery from perspectives of
sociology and data mining. The structural group
discovery methods are presented in Section 5, including
the maximum likelihood methods and visual analytics
methods. Finally, we outline some future challenges of
structure discovery.

2 Mesoscopic-level structural patterns

The structure detection problem is challenging that a
precise definition of what a “structure” really is does not
exist at the current stage. However, it is widely agreed
that structure groups nodes have similar property,
function or behavior, such as community, social role and
structural group. Based on this, we characterize structures
by using a node-similarity viewpoint, seeking to identify
and classify the structure and gasp its topological
properties. There are three major types of structures:
community, social role, and structural group
(Figure 2(b)), which by far the most studied and best
known structures in the literature, and they definitions as
table1.

More specifically, from the perspective of
density-based similarity measure, it is obvious that two
nodes are considered similarity if they are
well-connected, such as they share many of the same
network neighbors. Therefore, the community structure
can be defined as a densely connected subset of nodes
that is only sparsely linked to the remaining network [6].

There are, however, many cases in which nodes
occupy similar structural position in networks without
having well-connected, for instance, two store clerks in
different towns occupy similar social positions by virtue
of their numerous professional interactions with
customers, although it is quite likely that they have none
of those customers in common and they are not
well-connected. In this case, nodes are referred as similar
if they have similar behavior or their pattern of
relationships is equivalent, and we call this structure type
as social role.

Additionally, node similarity can be defined by using
the essential attributes of nodes: two nodes are considered
to be similarity if they have many common features, not
only restricting to structural attributes, but also including
quantifiable properties, such as age, income and level of
education. Therefore, the structure is called structural
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Fig. 4: the process of structure discovery
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Fig. 5: Diagram showing the focus of this paper using four dimensions

group which can be defined as subsets of nodes sharing
common properties that set them apart from other nodes
in the network [14].

Furthermore, we want to emphasize that community
is fundamentally different from (and complementary to)
the social role: the former groups nodes are
well-connected to each other, but the latter groups nodes
have similar behavior [12]. Figure3 depicts the difference
between role discovery and community discovery for the
karate network. The GN algorithm [6] discovers 2
communities (Figure3(a)) vs. the 4 roles (Figure3(b))
that the optimization method finds [13]. And structural
group discovery tend to reveal a hidden but unambiguous
structures beyond communities and social roles. For
example, in Figure 3(c), the 3 structural groups
discovered by visual analytics method [14] using the
selection of 28 node properties. Group 1(blue) is
characterized by low degree, clustering coefficient of one,
and being connected to high-degree nodes with high
betweenness and subgraph centrality. Group 2(red) forms
the core of the network and includes all the high-degree,
high-centrality nodes [14]. In fact, structural group
includes but not limited to community and role, because
the densely-connected and behavior may be regarded as a

kind of node property. Within the wide range of possible
structures expressible though different properties, the
structural group discovery method can help discover a
specific structure of interest and interpret it using a
ranking of the node properties.

Based on community, social role and structural group,
various structure discovery methods have been proposed.
Generally, what methods are used to discovery structures
relies on both what type of network one wish to answer
and what practical application one confronted with, and
various practical application give challenges to the
existing methods, meanwhile, these challenges facilitate
the method improvement and technical innovation.
Figure 4 presents the process of structure discovery.
Obviously, one discovers structures in social network
should start with four aspects: type of networks, practical
application, methods and challenges, as Figure5. We aim
to give detailed discussion on the methods as follow (as
red directions in Figure5). Figure6 presents a synoptic
picture of the works that will be reviewed, organized
according to the community, role and structural group
discovered by each method and the solution technique.
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3 Community discovery

Community detection has become one of the most
important topics in social network analysis. A huge
variety of different methods of community detection have
been designed by a truly interdisciplinary community of
scholars, including physicists, computer scientists,
mathematicians and social scientists (for earlier reviews
see Refs. [15,16]). Generally speaking, a “good”
community is taken to refer to a subset of nodes that are
(1) well connected among themselves, and (2) well
separated from the rest of the graph. Hence, algorithms
for network clustering are often based on a subjective
quality measure that can be applied on a potential cluster,
meanwhile, communities are usually overlapping and
hierarchical [17,18,19], and recently many researchers
started to focus on the problem of identifying such
realistic structures. Therefore, in general, algorithms for
network clustering differ in (1) how the quality of the
proposed clusters is measured, and (2) what kind of
technique is used to obtain this desire quality, especially
finding hierarchical and overlapping community. Moving
from considerations about the meaning and structure of
the community, we mainly review some latest
representative researches from the aspects of measure for
community and structure of community.

3.1 Measure of community

There is no consensus criterion for measuring the
community structure, which is a main drawback in many
algorithms. To tackle this difficulty, most methods are
based on modularity function. Which is introduced by

Newman et al [20]. The modularity functionQ which
measures the quality of a given partition of a network,

Q=
1

2m∑
i j

(

Ai j −
kik j

2m

)

δ (Ci ,Cj) (1)

whereki is the degree of nodei andm is the total number
of edges in the network.Ai j is an element of the
adjacency matrix,δ (Ci ,Cj) is the Kronecker delta
symbol, andCi is the label of the community to which
nodei is assigned, andδ (Ci ,Cj) = 1 if Ci =Cj otherwise
0. Then one maximizesQ over possible divisions of the
network into communities, the maximum being taken as
the best estimate of the true communities in the network.
That is to say, high values of modularity indicate stronger
community structure, corresponding to more dense
connections within communities. And the modularity
function is extended to weight networks [21] and directed
networks [22,23] for detecting community structure.
Modularity is by far the most used and best known quality
function for the measure.

However, the modularity maximization suffers from a
resolution limit [24,25]: small communities may be
undetectable in the presence of larger ones even if they
are very dense. S. Fortunato et al. recently claimed that
modularity optimization may fail to identify network in
which the number of communities is larger than about√

L, whereL is the number of edges in entire network
[24], moreover, the theoretical analysis and the
experimental tests in several network examples indicated
that the limitation depends on the degree of
interconnectedness of small communities and the
difference between the sizes of small communities and
large communities, while independent of the size of the
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Fig. 7: The measure of community and the main method for overlappingand hierarchical communities discovery

whole network [26]. To solve the resolution problem,
various methods have been proposed. These methods can
be roughly classified into two categories in terms of their
ideas:

The first kind of methods modifies the modularity
function through tunable parameters [27]. In particular, a
type of multi-resolution methods in community detection
was introduced, which can adjust the resolution of
modularity by modifying the modularity function with
tunable resolution parameters, for example, Reichardt and
Bornholdt (RB) [28] discussed a modified version of the
modularity function which introduces a parameter to tune
the contribution of the null model in the modularity;
Arenas, Fernandez and Gomez (AFG) [29] also proposed
a multi-resolution method by providing each node with a
self-loop of the same magnituder, which is equivalent to
modifying the modularity function by the parameterr,
and Andrea Bettinelli et al. extended modularity to
parametric modularity by using a single parameter that
balances the fraction of within community edges and the
expected fraction of edges according to the configuration
model [27], and so on. These multi-resolution methods
indeed can help us find the communities of networks at
different scales. To some extent, by varying their
parameters to adjust the resolution of the modularity, but
before being applied to the real problem of community
detection, the methods based on modularity optimization
all should have been thoroughly understood to ensure that
the substructures found in networks are reasonable [30].

The second kind of methods aims to solve the
resolution problem by introducing new quality function
[31,32]. For example, the network community coefficient
C is defined as the average community coefficient over all
nodes in the network. While it depends on the correctness
of partitioning methods. Only when the community

structure is correctly divided can optimizing the value of
C correctly identify the optimal number of communities
[33]. Rodrigo Aldecoa et al introduced a new global
measure, called Surprise(S), which has an excellent
behavior in all networks tested [34,35,36], Surprise
measures the probability of finding a particular number of
intracommunity links in a given partition of a network,
assuming that those links appeared randomly, and so on.
Ideally, we would like a more reliable method to solve
resolution problem.

3.2 Structure of community

Communities may be in complicated shapes. Palla et al.
[17,18,19] revealed that complex network models exhibit
an overlapping community structure, and Ravasz et al.
[37] proved the existence of the hierarchical organization
of modularity in metabolic networks. These overlapping
and hierarchical communities are more realistic than
average ones. Now, only a few efficient algorithms can
uncover such realistic structure [38]. We focus on the
well-known technique: optimization methods and
hierarchical clustering, which based on the measure of
community, corresponding to communities are
characterized by groups of densely connected nodes, such
as Figure7.

(1) Optimization methods, are those that view the
community-detection problem as an optimization task.
The basic idea is to define a quality function that is high
for “good” divisions of a network and low for “bad” ones,
and then to search through possible divisions for the one
with the highest score. Most classic methods treat
modularity function as the quality function, then, the
community detection is switch to modularity

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 317-335 (2015) /www.naturalspublishing.com/Journals.asp 323

Object unit

{

Similarity measure

Cutting

 

Fig. 8: The process of hierarchical clustering for community detection

maximization. Although finding the optimalQ value is an
NP-hard problem, there are currently several methods
able to find fairly good approximations of the modularity
maximum in a reasonable time, such as greedy techniques
[39,40], simulated annealing [41], external optimization
[42], and genetic algorithms [43]. We are able to combine
node overlap with hierarchical structure in a united
framework and have converted the task of finding
overlapping and hierarchical communities into a
optimization problem, using the quality (objective)
function that reflecting the community structure of
overlapping or(and) hierarchy. Some previous researchers
proposed many efficient methods for extending the
modularity function or improving the optimization
strategy to meet the requirement for discovering
hierarchical and overlapping of community [44,45,46].
Moreover, one could choose a different expression for the
quality functions, another criterion to define the most
meaningful cover, or a different optimization procedure of
the quality functions for a single cluster from different
perspectives. For example, A.Lancihinetti et al. [47,48]
think a community is subgraph identified by the
maximization of a property or fitness of its nodes, the
method based on the local optimization of a fitness
function was presented to find both overlapping
communities and the hierarchical structure. In addition,
they also presented OSLOM(Order Statistics Local
Optimization Method) [50] explores the clusters in
networks accounting for overlapping communities and
hierarchies, based on the local optimization of a fitness
function expressing the statistical significance of clusters
with respect to random fluctuations, which is estimated
with tools of Extreme and Order Statistics. And Bo Yang
et al explores the nature of community structure for a
probabilistic perspective and introduces a novel
community detection algorithm named as
PMC(probabilistically mining communities), to meet a
good trade-off between effectiveness and efficiency. In

PMC, community detection is modeled as a constrained
quadratic optimization problem that can be efficiently
solved by a random walk based heuristic [49], etc.

Unfortunately, these methods employ single
optimization criteria, which may not be adequate to
represent the structures in social networks. Many
researchers [51,52,53] suggest community detection
process as a multi-objective optimization problem (MOP)
for investigating the community structures in social
networks. That is, the community detection corresponds
to discovering community structures that are optimal on
multiple objective functions, instead of one
single-objective function in the single-objective
community detection, such as multi-objective community
detection algorithm (MOCD) [53], MOGA-Net [54] and
EFA(enhanced firefly algorithm) [52]. The experimental
results on synthetic and real world complex networks
suggest that the methods based multi-objective
optimization can discover more the accurate and
comprehensive community structure compared to those
well-established community detection algorithms, as well
as provides useful paradigm for discovering overlapping
or(and) hierarchical community structures robustly.

However, most of optimization method can effectively
achieve overlapping community detection, to some extent
the hierarchical community is relatively weak.

(2) Hierarchical clustering. An early, and still widely
used, method for detecting communities in social
networks is hierarchical clustering [55,56]. Strategies for
hierarchical clustering generally fall into two types:
agglomerative and divisive. Considering divisive
hierarchical clustering was rarely applied in community
detection and hard to detection overlapping community,
we focus on agglomerative hierarchical clustering (we
will use the hierarchical clustering to denote
agglomerative hierarchical clustering in the rest of this
paper). Hierarchical clustering is in fact not a single
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Fig. 9: the sketch map of role discovery from perspectives of sociology, data mining and computer science

technique but an entire family of techniques, with a single
central principle:

The object units are taken as the initial communities if
we calculate the similarity between each pair of
communities(generally, node is often regarded as the
object [39,40,46,53,57] due to it is the basic elements of
the network, while the maximal cliques [58], links [59]
and hyper-edge [60] also regard as the object in some
researches.); then select the pair of communities with the
maximum similarity, incorporate them into a new one and
calculate the similarity between the new community and
other communities. This process is repeated until all
nodes belong in a single cluster, the order in which nodes
clustered together is then stored in a hierarchical tree of
object unit known as a dendrogram, such as Figure8.
Finally, choosing the cut through the dendrogram that
corresponds most closely to the known division of the
communities, as indicated by the dotted line in the
Figure8.

Simply, the hierarchical clustering has two stages. In
the first stage, a dendrogram is generated. In the second
stage, we choose an appropriate cut which breaks the
dendrogram into communities. Here, the key problems
are how to define similarity between objects, and where to
cut the dendrogram.

There are various ways to define a similarity between
two objects, the node-dependent similarity and
path-dependent similarity are by far the most used and
best known in community detection. The node-dependent
similarity index is common neighbors where the
similarity of two objects is directly given by the number
of common neighbors, such as Jaccard Index and Cosine
Index [59,60], and the path-dependent similarity index
assume that two objects are similar if they are connected
by many paths, such as GENs(Generalized Erdos
Numbers) based similarity [57] and shortest path based
similarity [61]. In addition, there are many other ways to
define a similarity between two objects we can refer to
[62]. But no matter how to define similarity, it is
dependent on nodes densely connected.

To find meaningful communities rather than just the
hierarchical organization pattern of communities, it is

crucial to know where to partition the dendrogram. In
fact, that is to say, using a quality measure that helps us
evaluate the goodness of communities generated by
cutting the dendrogram at a particular threshold. What
quality measure we could adopt relies on the special
application we confronted with. The modified modularity
has been widely used for this purpose, and can apply to
overlapping communities [58]. And one could choose a
different criterion to define quality measure, such as
partition density, that measures the quality of a link
partition [59].

Hierarchical clustering is a method that used widely
to find overlapping or(and) hierarchical community, and it
is straightforward to understand and to implement. But it
has a tendency to group together those nodes with the
strongest connections but leave out those with weaker
connections, so that the divisions it generates may not be
clean divisions into groups, but rather consist of a few
dense cores surrounded by a periphery of unattached
nodes [16].

We remark that the quality function in optimization
method and the quality measure in hierarchical clustering
are problems of measures of community, corresponding
to communities are characterized by groups of densely
connected nodes. Both optimization method and
hierarchical clustering are techniques to obtain this desire
quality, as shown in Figure7. Thus, combining
optimization method with hierarchical clustering in a
united framework may provide useful hints for
discovering hierarchical and overlapping of community.

4 Social role discovery

Social role discovery was first introduced in sociology,
and recent studies have found not only do roles appear in
social networks, but also in other types of networks,
including food webs, world trade networks, and even
software systems. A key question in studying the roles in
a network is how to define role similarity. In terms of
different definitions of role similarity, we review some
latest representative researches about role discovery from
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perspectives of sociology and data mining [63], as
Figure9.

4.1 Sociology viewpoint

In sociology, role analysts seek to define categories and
variables in terms of similarities of the patterns of
relations among actors (nodes), rather than attributes of
actors. That is, the definition of a category, or a “social
role” or “social position” depends upon its relationship to
another category [66]. In an intuitive way, we would say
social roles are occupied by nodes who are “equivalence”
one for another, with respect to their pattern of
relationships with other nodes (relational ties). This
“equivalence” can be classified into two categories:
deterministic equivalences and probabilistic equivalences
[63], such as Figure 10 where the deterministic

Equivalence

Probabilistic 

equivalence

Deterministic 

equivalence

Structural 

equivalence

Automorphic 

equivalence

Regular 

equivalence

Stochastic 

equivalence
 

Fig. 10: The various categories of equivalence

equivalences fall into one of three categories: structural
equivalence [67], automorphic equivalence [68] and
regular equivalence [69].

Generally speaking, two nodes are said to be exactly
structural equivalence if they have the same relationships
to all other nodes, in Figure11 there are seven structural
equivalence classes:{1}, {2}, {3}, {4}, {5,6}, {7},
{8,9}. Because exact structural equivalence is likely to be
rare, we often are interested in examining the degree of
structural equivalence, rather than the simple presence or
absence of exact equivalence. Any measure of structural
equivalence quantifies the extent to which pairs of actors
meet the definition of structural equivalence. Euclidean
distance and correlation are the most commonly used
measures (Euclidean distance in STRUCTURE [70], and
correlation in CONCOR [71], and both are widely
available in network analysis computer programs as well
as in standard statistical analysis packages). Besides, the
researcher could consider alternative similarity measures,
such as dichotomous relation and an ordered scale.

The idea of automorphic equivalence is that sets of
nodes can be equivalent by being embedded in local
structures that have the same patterns of ties¿‘parallel”
structures. In Figure 11, there are actually five
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Fig. 11: Wasserman-Faust network to illustrate equivalence
classes [1]. There are seven structural equivalence classes:{1},
{2}, {3}, {4}, {5,6}, {7}, {8,9}, five automorphic equivalence
classes:{1}, {2,4}, {3}, {5,6,8,9}, {7}, and three regular
equivalence classes:{1}, {2,3,4}, {5,6,7,8,9}.

automorphic equivalence classes:{1}, {2,4}, {3},
{5,6,8,9}, {7}. Simply, these classes are groupings
who’s members would remain at the same distance from
all other nodes if they were swapped, and, members of
other classes were also swapped [66]. Compare with
structural equivalence, automorphic equivalence is a bit
more relaxed.

Two nodes are said to be regularly equivalent if they
have the same profile of ties with members of other sets
of actors that are also regularly equivalent. More
generally, if nodei and j are regularly equivalent, and
nodei has a tie to/from some node,k, then nodej must
have the same kind of tie to/from some node,l , and actor
k and l must be regularly equivalent. In Figure11 there
are three regular equivalence classes:{1}, {2,3,4},
{5,6,7,8,9}. One of the earliest and most widely used
measures of regular equivalence is embodied in the
algorithm REGE proposed by White and Reitz [72]. More
recently, authors have focused on methods for assigning
actors to subsets such that the partition of actors is
optimal in the sense that nodes in the same subset are
nearly regularly equivalent [73,74].

p(u,b)

p(a,v)p(a,u)

a

p(v,b)

u v

b

p(a,u)=p(a,v)

p(u,b)=p(v,b)

 

Fig. 12: A example network to illustrate stochastic equivalence
[63], nodeu and nodev are stochastically equivalent.
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a. Sociomatrix b. Graph

c. Permuted and partitioned sociomatrix d. Image matrix

role1{6,8,3}

role3{1,4,9}

role2{2,5,7}

e. Reduced graph

!

!

!

Fig. 13: [77] Example simplifying a network using blockmodel

Stochastic equivalence is similar to structural
equivalence but probabilistic. Formally, two nodes are
stochastically equivalent if they are “exchangeable” w.r.t
a probability distribution, such as Figure12.

By using “equivalence” as the measure of similarity
among nodes, the social role discovery in sociology aims
to group nodes with equivalence relation into a class,
called a role. Blockmodels were widely used model for
the discovery and analysis of social roles [1,75,76]. For
instance, CONCOR is a kind of blockmodel based on the
structural equivalence. The process of creating a
blockmodel contains following steps:

1.Identify which type of equivalence is applied to
measure the similarity among nodes, for example,
structural equivalence, regular equivalence, etc.

2.According to the equivalence, partition nodes in the
network into discrete subgroups positions, i.e. permute
and partition sociomatrix, as Figure13(c).

3.For each pair of positions, presence or absence of
relational ties, create the image matrix, as
Figure13(d).

4.Finally, create the reduced graph according to image
matrix that is social role, as Figure13(e).

Blockmodel was proposed to discover social role as
well as relationship among the roles. Since then there
have been many articles describing blockmodels from a
methodological standpoint, comparing blockmodels with
alternative data analytic methods, discussing alternative
methods for constructing blockmodels, and proposing
some generalized blockmodels. Specially, recently several
authors have generalized blockmodels by describing
stochastic blockmodels [78,79,80,81], there have also
been many applications of blockmodels and generalized
blockmodels to social role discovery, you can find more
details in [1].

4.2 Data mining viewpoint

From data mining viewpoint, role similarity is based on
the following principles:“two nodes are similar if they
link to similar nodes”, based on it, the nodes can be
partitioned into classes using a ranking of the node
similarity, the widely used methods as LHN(was
proposed by Leicht, Holme and Newman) [82], SimRank
[83], RoleSim [88] and simulation relation [64,65] etc.

The fundamental principle behind LHN similarity is
that i is similar to j if i’s neithbor is similar to j, as
Figure14:

i

j

v

 

Fig. 14: A node j is similar to nodei (dashed line) if I has a
network neighborv (solid line)that is itself similar toj [82]

Thus, the LHN similarity can written as

Si j = φ ∑
v

AivSv j +ψδi j (2)

whereSi j is similarity of nodei to node j, which consist
of two components: The direct similarity of nodei to
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node j, denoted byδi j , and the indirect similarity based
on the local path between two nodes, denoted by∑

v
AivSv j,

and φ , ψ are free parameters whose values control the
balance between the two components of the similarity. It
is obvious that LHN similarity is a kind of recursive
structural similarity, and its precise mainly depends on the
choice of parameters. The generalization of LHN and the
method of parameter tuning can be found in [82].

SimRank [83] was used to match text across
documents. Recently, several researchers have tried to
apply it to role modeling [84]. The SimRank similarity
between nodes a and b is the average similarity between
a’s neithbors andb’s neithbors:

s(a,b) =
C

|I(a)||I(b)|
|I(a)|
∑
i=1

|I(b)|
∑
j=1

s(Ii(a), I j(b)) (3)

whereC is a constant between 0 and 1.I(a) is the set of
in-neighbors ofa. Mathematically, for any two different
nodes u and v, SimRank computes their similarity
recursively according to the average similarity of all the
neighbor pairs. A fixed-point algorithm was presented for
computing SimRank scores, as well as methods to reduce
its time and space requirements. Inspired from SimRank,
the number of variants of simrank soared [84,85,86,87],
such as SimRank++ and P-SimRank.

SimRank has a problem when there is an odd distance
between two nodes. Nodesu and v are automorphically
equivalent, but because there are no nodes that are an
equal distance from bothu andv, s(u,v) = 0. And other
variants of SimRank also do not meet the automorphic
equivalence property [88]. According to this problem, the
first real-valued similarity measure RoleSim, confirming
automorphic equivalence, was proposed in [88]. Given
two nodesu and v, whereN(u) and N(v) denote their
respective neighborhoods andNu and Nv denote their
respective degrees. The RoleSim measure realizes the
recursive node structural similarity principle “two nodes
are similar if they relate to similar objects” as follows

RoleSim(u,v) = (1−β ) max
M(u,v)

∑
x,y∈M(u,v)

RoleSim(x,y)

Nu+Nv−|M(u,v)| +β

(4)
Where x ∈ N(u), y ∈ N(v), M(u,v) = {x ∈ N(u),y ∈
N(v),and no other(x′,y′) ∈ M(u,v),s.t.,x = x′ or y = y′},
the parameterβ is a decay factor, 0< β < 1.

RoleSim values can be computed iteratively and are
guaranteed to converge, just as in SimRank. But unlike
SimRank, which considers the average similarity among
all possible pairings of neighbors, RoleSim counts only
those pairs in the matching of the two neighbor sets which
maximizes the targeted similarity function. The
experiments in [88] shown that the iterative RoleSim
computation generates a real-valued, admissible role
similarity measure.

The simulation relation [89] creates a partial order on
the set of nodes in a network and we can use this order to
identify nodes that have characteristic properties. And the
simulation relation can also be used to compute
simulation equivalence. We use simulation equivalence to
create equivalence classes that form roles in the social
network.

Definition 1Simulation preorder [64,65], The relation�
is a preorder if it is reflexive and transitive. And u� v
denotes node u simulate v if the fact that:

1.u and v have the same label.
2.For each a∈ Σ and (v,v′) ∈ Ea, there is an edge
(u,u′) ∈ Ea such that u′ � v′.
whereΣ is set of labels of nodes and edges, and if
network G has edge labels inΣ , the E is aΣ -indexed
family Ea of sets of edges, such that Ea ⊆ V ×V, for
each a∈ Σ . According to the definition of simulation
preorder, for each u,v ∈ V, u and v is simulation
equivalent if u� v and v� u.

Therefore, we tentatively term the equivalence classes
determined by simulation equivalence social roles [89]. In
addition, in computer science, the regular equivalence is
often referred to as the bisimulation, which is widely used
in automata and modal logic [90]. After the simulation
relation was applied in social role analysis, many authors
tried to generalize and revise simulation relation to
effectively and efficiently identify social roles or groups,
such as strong simulation [91] and bounded simulation
[92].

According to discussed above, we conclude that these
methods from data mining viewpoint are all based on
recursive structural similarity measure and comply with
the “equivalence” requirement, the LHN and simulation
relationship confirm regular equivalence, the Simrank
confirms structural equivalence and the RoleSim confirms
automorphic equivalence. Moreover, these methods use
optimization algorithms for computing the maximal
similarity scores on the network to obtain the social role
that is available in heterogeneous and is still computable
in polynomial time. This means that these methods can be
computed in reasonable time for very large networks.

However these methods fail to achieve automatically
extracting roles. Recently, Keith Henderson et al. [12]
proposed a new method RolX(Role eXtraction), a
scalable, unsupervised learning approach for
automatically extracting structural roles from general
network data, and demonstrated the effectiveness of RolX
on several network mining tasks. More precisely, RolX
consists of three components: feature extraction, feature
grouping, and model selection, and achieves the following
two objectives. First, with no prior knowledge of the
kinds of roles that may exist, it automatically determines
the underlying roles in a network. Second, it
appropriately assigns a mixed-membership of these roles
to each node in the networks. The Figure15 illustrates the
process of RolX.
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Fig. 15: RolX for role extraction

It is important to note that we do not argue that a
method, e.g. simulation equivalence is a “better” way to
study the social network than others, e.g., regular
equivalence. All of these methods are useful, depending
on the question one wishes to answer about the network.
And other reason is that researchers have proposed a wide
variety of definitions, from sociology and data mining,
etc. With this array of definitions comes a corresponding
array of algorithms that seek find the roles so defined.
Unfortunately, it is no easy matter to determine which of
these algorithms are the best, because the perception of
good performance itself depends on how one defines a
role and each algorithm is necessarily good at finding
roles according to its own definition. So a unit/standard
criterion to evaluate the methods of role discovery is key
research direction in future.

5 Structural group discovery

Structural group discovery aims at seeking to capture
more general structures characterized by other networks
properties, tending to mine some hidden but unambiguous
structures without knowing the groups a priori.

The previous work on structural group discovery has
focused mainly on cluttering method. The choice of an
appropriate similarity measure in clustering method is
very important, which include not only density-based
similarity, behavior-based similarity discussed above, but
also many other similarity measure, such as feature-based
similarity measures, distance-based similarity measures
and probabilistic similarity measures, even nodes have
quantifiable properties [93]. Usually, topological
characteristics cannot be captured by one or two measure
indexes. Thus, some methods simultaneously make use of
several similarity measures, and grasp topological
properties from different perspectives, for example,
SNMF [94] make use of various similarity measures to
detect structural groups via semi-supervised strategy.

However, the remarkable feature of most clustering
methods depending on what kind of structures that are of
interest and we must know in advance which properties
define the groups we seek to identify, for example,
community discovery relies on community groups nodes
that are well-connected to each other in advance, social
role discovery relies on social role groups nodes of
similar behavior in advance. This is difficult to mine
hidden structures. In fact, in the case of purely structural
features, two exploratory methods have been devised,
which can identify patterns not anticipated by
pre-conceptions. One based on maximum likelihood
techniques [89] and the other base on data project
techniques, they both aim resolving the internal structure
of complex networks by organizing the nodes into groups
that share something in common, even if we do not know
a priori what the thing is.

5.1 The maximum likelihood method

The maximum likelihood method understand the structure
of social networks from the statistical inference
perspective and able to detect a wide variety of structural
groups and, crucially, does so without requiring us to
specify in advance which particular structure we are
looking for. Its basic idea is that gaining understanding of
the structure of networks by fitting them to a statistical
network model. A very related study has been proposed
recently by M.E.J. Newman et al [95], they show that it is
possible to detect, without prior knowledge of what we
are looking for, a very broad range of types of structure in
networks, using the machinery of probabilistic mixture
models and the expectation-maximization algorithm,
whose objective is to groups nodes with common
connection features into a predefined number of groups.
The idea of maximum likelihood method is similar to the
blockmodel, although the realization and the
mathematical techniques employed are different, or, more
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precisely, is kind of variant of blockmodel. In principle,
any type of structure that can be detection by maximum
likelihood, including community structures, bipartite or
disassortative structures, structural groups and many
others. However, in real world application, an obvious
drawback of the maximum likelihood techniques is that it
is very time consuming, which will definitely fail to deal
with the huge networks.

5.2 Node project method

Recently, a novel clustering method viewed close data
points as linked networks nodes was proposed [96].
Inspired by this idea, the method of “node project” was
proposed which viewed tightly interacted network nodes
as close data points in a feature space, and then one can
study networks or discover hidden structural groups form
a data analysis perspective, and systematic and
sophisticated data analysis tools will be a great
convenience. More specifically, as for structural group
discovery, using a given set of node features (such as
centrality and degree) as the coordinates for each node in
the multi-dimensional feature space, we identify
structural groups as clusters of points in this feature space
[14,97,98]. The Figure16 illustrates the schematic of the
node projection method.

!"#$"%$&$"'(

)'
Node project

Structural group discovery

)'

 

Fig. 16: Schematic illustration of the node projection method

According to Figure16, the node project method has
two key components: Node project and the structural
group discovery in feature space.

A key question of node project is how to get the
feature vector of nodes. The choice of node feature

strictly depends on the application, since there is no
defined rule to perform such a task. For instance, in the
classification of highway networks into different models,
one should consider features related to space and models
with geographical constraints [99]. There are exists
related work which exploits feature extraction from
graphs for several data mining tasks. For example, W.Li
et al extracted node features based on a signal spreading
model [97], L da F Costa et al developed a classification
approach which involves multivariate statistical methods
and pattern recognition techniques to analyze complex
networks based on local and global features extraction
[98], and Keith Henderson et al proposed
ReFeX(Recursive Feature eXtraction) [100], a novel
algorithm, that recursively combines local features with
neighborhood features, and outputs regional
features-capturing “behavioral” information, and so on.
Finding effective node features is the key step in all graph
mining tasks, and is to continue to improve.

Many various methods were used to discover
structural groups in multi-dimensional feature space by
considering the principle: the closer the two nodes are in
feature space, the more common properties they share.
However, it is not easy to use high-dimensional clustering
method for structural group detection, due to the
correlation between features and the difficulty of their
visualization. To overcome these limitations, it is
necessary to use statistical methods for dimensionality
reduction, such as component analysis (PCA) method and
canonical variable analysis. These methods allow not only
the elimination or, at least, reduction of the correlations
between features but also the visualization of the
observations into a reduced number of dimensions. In this
way, although with a little loss of information, they still
find effective structural groups [97,98]. In addition, to
overcome the difficult of visualization of the observations
into a high dimension feature space. Takashi Nishikawa et
al proposed an approach based on visual analytics (called
visual analytics method), which is conceptualized as
exploratory statistics in which analytical reasoning is
facilitated by a visual interactive interface [14]. The
integration of the visual interactive interface allows the
user not only to supervise the process, but also to learn
and create intuition from raking parting in the process,
thus facilitating the search for unanticipated network
structures. And the results of applying this method to real
networks suggest that it is capable of discovering not only
group structures defined by link density, but also more
general group structures, even when different types of
structures coexist in the same network. For example, in
Figure 17, although the teams are organized into 12
conferences (indicate 12 communities), the visual
analytics method identifies 7 structural groups. The
structural groups capture a higher-level organization of
the conferences which is determined by the geographic
proximity of the teams, which cannot be characterized by
the community.
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(a)                                              (b) 

Fig. 17: [14] Characterizing seven structural groups discovered in thefootball network.(a)Layout of the network with the structural
groups indicated by circles, color-coded as in the other panels. The number and color on a node indicate the college football conferences
to which the corresponding team belongs. (b)Geographic distribution of nodes over the US, color-coded by the structural groups in panel
(a).

In fact, structural group includes but not limited to
community and role, because the densely-connected and
behavior may be regarded as a kind of node property. But
the application of structural group detection methods can
detect hidden structures, which is an importantly
scientific signification and potentially benefits, and has
been attracting more and more attentions. Introducing the
techniques from other fields to the study of structural
groups may be helpful to further study, such as visual
analytics method is a successful case.

6 Outlook

In this article, we briefly summarized the progress of
studies on structure discovery, including community
discovery, social role discovery and structural group
discovery. And structure discovery are not limited to the
social networks, but also widely used into the other
real-world networks, such as web page clustering, protein
function prediction and gene analysis, the field has
appealed more and more attention from researchers
across multiple domains and became even more
flourished. In our opinion, Despite many new methods
and tool have been presented, in others existing methods
have been improved, becoming more accurate and faster,
what motivation facilitate structure discovery
development and technical innovation the most are the
concrete applications. With the development of social
media and the requirement of practical application,
structure discovery encounters great challenges as well as
opportunities. We will discuss a number of important
open issues as follow.

Social media networks are often heterogeneous,
having heterogeneous interactions or heterogeneous
nodes. Heterogeneous networks are thus categorized into
multi-dimensional networks, where it has multiple types
of links between the same set of nodes, and multi-mode
networks, where it involves heterogeneous nodes.
However, the most existing structure discovery methods
are constrained to homogeneous networks. Some work
has been done to identify communities in a network of
heterogeneous entities or relations [101,102,103] in
terms of multitype relational clustering. Moreover, some
methods are extend to handle this heterogeneity, for
example, Lei Tang, et al. discuss potential extensions of
community detection in one-dimensional networks to
multi-dimensional networks, present a unified process,
involving four components: network integration, utility
integration, feature integration, and partition integration,
to detect community in multi-dimensional networks
[104], besides, they present an efficient and effective
approach MROC to extract overlapping communities with
different resolutions [105], and use an iterative latent
semantic analysis process to capture evolving structures
in multimode networks [106]. However, these methods
only concentrate on multi-dimensional networks or
multi-mode network and fail to reveal community of
overlap and hierarchical. The most social role discovery
methods can handle heterogeneity, such as RoleSim,
RolX and simulation relation, as well as node project
method can be applied in heterogeneous networks for
discovering structural group, but their performance and
effectiveness in heterogeneous networks require to be
deeply discussed, especial for large-scale heterogeneous
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networks. We are also expecting extended methods or
new methods can also contribute to this domain.

As information technology has advanced, people are
turning more frequently to electronic media for
communication, and social relationships are increasingly
found in online channels. The network presented in social
media can be huge, often in a scale of millions of actors
and hundreds of millions of connections, and it has
exploded at a rapid pace. For example, Facebook claims
to have more than 500 million active users as of August,
2010. While traditional structure discovery methods
normally deals with hundreds of subjects or fewer,
existing structure discovery methods might fail when
applied directly to networks of this astronomical size,
even if its runtime complexity is linear on the number of
edges or nodes. Aim at this problem, one need to combine
techniques for discovering structures, such as incremental
algorithms and distributed algorithms. On the other hand,
as the complete structure of the network is often
unavailable since the entire network is too large and
dynamic. We should try to explore structure from limited
accessible region of a graph, for instance, many
researchers have proposed several local methods that use
partial knowledge of the network to discover the local
community with a certain source vertex [107,108,109].

Up to now, it is no standard way or criterion to
evaluate “good” or “bad” of structures. Although there are
many typical approaches to determine which of
community discovery method are the best, such as
algorithms are tested against real-world networks and are
tested against synthesized networks, for example, Mika
Gustafsson et al compared and validated various classical
community algorithms by using a class of computer
generated networks and three well-studied real networks
[110]. Unfortunately, it is still nothing reported about the
evaluation criterion of the overlap and hierarchical
quality, as well as no method or criterion to evaluate the
role and structural group. In summary, the issue of
evaluating the accuracy of structure methods discovery
method in social networks is an important part.

Although social media present novel challenges for
discovering structure, it also propose the amount of prior
information (external information) of social networks,
thus facilitating the research for discovering structure,
such as the structure discovery methods, performance can
be effectively enhanced by considering some prior
information, like the attributes of nodes. Then, how to
utilize the prior information to improve the structure
methods have draw considerable attention in recent years.
For example, based on semantic information extracted
from user-comment content, ZhengYou Xia et al,
proposed a useful method of discovering the latent
communities, which can handle large-scale networks
[111], Wenjun Zhou et al design a latent community
model, called COCOMP(Collaborator COMmunity
Profiling) [112], to uncover the communities of each user
as well as their associated topics and communities by
taking into account both the contacts and the topics, the

experiments results demonstrate that the model can
discover users, communities effectively, and provide
concrete semantics, Besides, like PCB(belief propagation
and conflict)method [113], RolX and visual analytics
method are also give excellent results by using priori
information, and so on. However, to design effective
algorithms to discover structures by combing priori
information and practical application, we need in-depth
and comprehensive understanding of our application and
priori information extraction.

There are various methods for structure discovery, but
how to choose an appropriate method to discover
structures in specific application is a key problem. We
take friend recommendation as an example, it is obvious
that individuals who share the same structure might be
expected to share the same taste, interests, and so on. But
what types of structure we can use to recommend friends,
due to it has various patterns, such as community, role,
group and so on. The individuals may have same interest
when they are well-connected, i.e. in the same
community, or have the same work when they have same
behavior, i.e. in the same role, or they have the same taste
when they are in the same city, just as in the same
structural group. Thus, choosing an appropriate method
for structure discovery could be of huge practical value,
accounting for the specific application.

Furthermore, the study of structure discovery is a
large and active field of endeavor, with new results
appearing daily and an energetic community of
researchers working on both methods and applications.
Some of developments of structure discovery are of great
importance not only in social network research, but also
in biology, computer science, chemistry and so on.
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