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Abstract: We go through the several ways that the Jaynes-CummingsIn@odernerstone in the study of light-matter interactions,
may be solved. We emphasize two not well known methods (osedoan the London phase operator and the other one on thé direc
diagonalization of the Hamiltonian) considering that tinesry be of help for solving other systems like the interactbtight with a
moving mirror, ion-laser interactions, etc.
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1 Introduction functions have complete information of the quantum state
of light.

The fact that some other problems, such as the
The Jaynes-Cummings (JC) moddl 2] is one of the ion-laser interaction 16 are similar to the atom-field
simplest representations of the interaction between lighinteraction, has made possible to produce JC-type
(a quantized field) and matter (a two-level atom). Becausénteraction in these system&#-21], such as multiphonon
it may be solved exactly, it is an important tool in and anti-JC interactions2f]. This has allowed the
qguantum optics. Its simplicity, however, does not affectreconstruction of quasiprobability distributions also in
the amount of phenomena arising from it. Among the such systems3].
many products we may think about, we may count:  Generalizations of the JC model can either have more
collapses and revivals in the atomic inversiod],[ than one atom in the cavit@f], more than one fieldZd],
generation of Schrodinger cat stat8g4] of the quantized multilevel atoms 26], and nonlinear media may also be
field, squeezingq], transfer of atomic coherence to the considered?5,27]
quantized field 6], etc. Moreover, because of
entanglement, the process of measuring atoms as they
leave the cavity gives information about the field state,2 Traditional approach
because while the atoms spend time in the cavity, they
acquire knowledge of the field and as they leave theThe JC Hamiltonian reads (we $et 1)
cavity and are measured, knowledge about the quantized @
field may be retrieved. This was noted by Satyanarayan#l = wh+—0,+g(a'o_ + o, a), (1)
et al. [7], when they studied the interaction between a 2
field initially prepared in a squeezed state with a two-levelwherea' anda are the creation and annihilation operators
atom and a feature of the field was imprinted in the for the field mode, respectively, obeyirig a'] = 1 and
atomic inversion producing ringing revival§][ It was A = a'a is the number operator. The operators
possible later to obtain full information about the field via o} = |€)(g|, ando_ = |g)(e| are the raising and lowering
the Wigner function $-11], one of the fundamental atomic operatorsie) being the excited state and) the
quasiprobability distribution functions, that togethdathw  ground state of the two-level atom. The atomic operators
the Husimi fl2, 13] and Glauber-Sudarshanl4, 15 obey the commutation relation$o.,0_] = o0, and
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[07,0.] = £204. w is the field frequencywy the atomic  where %2 is the 2x 2 unity matrix. It is clear then that
transition frequency anglis the interaction constant. EE

We can transform to a frame rotating at frequency e ™Mt — (Ell E12> (13)
via the transformatiohl, = RHR', with R = e 1@t(f+02/2) 21 =22
to produce the interaction Hamiltonian where

A
A E11 = cos(B.t) —i— sin(Bit
H = EO-Z_'— g(aT07 + O-Jra)’ 2 11 (Bn ) ZBn (Bn )7

whergA = ap — w is the detuning. We may propose a gm
solution of the form Eio=Ex=— sin(Bit) ,

w(t) = iocn(t)|n>|e>+Dn(t)|n+ 109, 3 and

Epo = cos(fBt) +1i % sin(Bqt).

n

which, if inserted in the Schrodinger equation

0|q1( ) U lw(t 4 We now may apply the solution (exponential) to any initial
ot IO ) (condition) state.
yields the system of equations
- A )
Gy = 5Ca+ gVATID,, ) 3 Stenholm’s method
- A Somehow a close relative to this way of solving the JC
IDn=gvn+1C, — ED“' ®)  model is a method introduced by Stenhof8][ in which
We can rewrite the above system in the compact form the Hamiltonian is written in terms of Pauli matrices
A
.drp _ ga
=M ™ = (g —é)’ 4
with and realize that its powers are
_(Cn - 2 gv/n+1 x (B 0O
= (5) M) @ ().

To solve the above system of differential equations, we@nd
can find t.he eigenval'ues and eigenvectorsidh order to kil _ 2B2k gaB
diagonalize the matrix. However we can also realize that ™ ga*rB r%kl )

2k
M2 (BB BO ) , 9) with [see equation (11)]Bx = /AT2 +graal and
and that Ba-1=1/ ATZ +g2afa. Therefore, we can write a solution
M2+ — BZKM (10) to equation (4) in the form
where we have defined () = et (o)), (15)

2

A . .l £ .
B2 = = +®n+1). (11) where|((0)) is the initial (atom-field) wave function. As

we have done in the previous Section, develop the
exponential in Taylor series to finally recover an

The solution to) is given by expresion in terms of trigonometric functions. We then

rn(t) = exp(—iMt)rn(0), (12)  Write the evolution operator as
and the exponential in the above equation may beU(t)=e ™Mt = <811 812> . (16)
developed in Taylor series, in particular we may split the 2122
series in even and odd powers where
00 k4 2k A
t . .
R L Uns = cos(Bit) ~ i sin(B).
M2 (_1)kt2k+1ﬁr$k+1 1
- IB_n kZO (2k+1)! J U= —|gaBn7 sin(Ba-1t),
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Uy = —igaT[; in(Bat), 5 Boson inverse operators method
n
and We define the boson inverse operators3s-36]
U2z = cos(fBa-1t) 1oy 1 ik 23
| SIN(Ppa—11) .
2Ba-1 i and

We are now in a position to apply the evolution operator 1 hd

to any initial states in order to obtain the evolved gt — Z \/—1
wavefunction. Let us for simplicity take the detuning

equal to zero, such that Their actions on the Fock state are

1K) (k+ 1. (24)

coggtvaal) —isin(gtvaa')Vv _| 0= 2 ki), 5)
U= 17
® <—iVTsin(gt\/aaT) coggtva'a) ’ 17 \/ 1
whereV is the so-called London phase opera8-31]
Ve (18) Tkl \/R“( b kO (26)
= A—a’
et and%(0) =
and we have used the propeat(A) = f (A+1)a[32]. The We may note thatia # 1, butal = 1 just as the
above equation gives us an introduction to next Section. London operators also havepeeferredorder. In fact, we
find that [34-36]
1, 1
—,a'| =|a, =] =10)(0|. 27
4 London phase operator method [5-al=1a31=100 27)

We mention in Section 2 that one of the approaches to
Consider again the interaction Hamiltonidr( and write ~ solve the system of differential equations (7) was to

it in terms of the London operator diagonalize the matrix. Naively, we could think we can
also diagonalize the interaction Hamiltnonian despite the
A A+ 1T fact that it contains non-commuting elements. We
Hi (gvfjm g A ) ; (19)  follow [37] in order to do this. However, we correct here
2 the method proposed in there.
we can rewrite it as33] Consider the diagonal matrices
= i1 O
_(VO\( 5 gv/R)(Vio Dz(ﬁ“l_A ) (28)
H|—<Ol> <g\/: _% 01/} (20) 0 Bn—l
g
Note that the matrix in the middle has only elements that T azﬁﬁ,l _aZEn 1 29
commute with each other and therefore we can treat them Pi1ts Bri- ' (29)
as ac-numbers. Note thav 'V = 1 —|0)(0|. Therefore B i
(see Appendix A) we can obtain for timeth power of the  and
interaction Hamiltonian (Bn é)
s=| %# 2 (30)
BE (Bn"‘ ) 1

= (VOY( 8 oV (vio 1)
=\ 01)\gvh -4 01)’ It is not difficult to prove thatTS= 1 but ST # 1.
Moreover, we can also prove thidf = TDS Therefore it
and it is straightforward to calculate then the evolutionis straightforward to find the powers ¢f and then its

operator (16) via Taylor series. The evolution operatorexponential. So we write the evolution operator as (see

then may be written as Appendix B)
_(Vvo ANV AN ATAN e it Q
(22)
and the exponential may be obtained with the methodhat is exactly the evolution operator given in equation
outlined in Section 2. (16).
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JC model may be solved. In particular, we have analyzed Dispersion
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