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Abstract: Inthis paper, coupled nonlinear Burgers’ equations aneesidhrough a variety of meshless methods known as multiguad
quasi-interpolation scheme. In this scheme, the exterfianivariate quasi-interpolation method is used to apipnate the unknown
functions and their spatial derivatives and the Tayloreseexpansion is used to discretize the temporal derivatiles multiquadric
quasi-interpolation scheme is a one-dimensional methaidddn be extend to the two-dimensional by converting to apamtform
and using of a tensor product scheme. The method is testdt@m éxperiments to show the efficiency and accuracy of #o0Alve
demonstrate the validity and applicability of our methodelosor analysis technique based on residual function.
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1 Introduction trivial task. Kansa 19 was the first researcher who

derived a meshless method based on multiquadric (MQ)

RBFs for the numerical solution of PDEs. This idea was

extended later on by Golberg et al3. The existence,

Hniqueness, and convergence of the RBFs approximations
as studied by MicchelliZ3] , Madych [22], Frank and

The nonlinear Burgers’ equation is a fundamental partial
differential equation (PDE) from fluid mechanics. It
appears in various areas of applied mathematics an

physics such as the phenomena of turbulence an ; .
supersonic flow, flow of a shock wave traveling in a Schaback 12 In 1986, Micchelli has shown that the
system of equations obtained from the RBFs

viscous fluid, sedimentation of two kinds of particles in L ; o
approximations is always solvable for distinct

fluid suspensions under the effect of gravity, acoustic. ; .
transmission, heat conduction, traffic and aerofoil ﬂowlnterpolatlon points. The authors have recently used the

theory P.5,24,29,30,31]. Due to its wide range of radial basis collocation method to obtain meshless

applicability some researchers have been interested iHumerlcaI solution of the nonlinear coupled PDEs.

studying its solution using various numerical methods In recent years, other meshless method is proposed
such as, finite difference, finite element, discrete Adomianbased on MQ namely as MQ quasi-interpolation scheme
decomposition, spectral and  Eulerian-Lagrangianthat do not require to solve any linear system of equation
methods. For a survey of these methods, one referk to [ and one do not meet the question of the ill-condition of
10,16,28,29,32] and references cited therein. the matrix. Therefore one can save the computational
Recently, considerable attention has been given tdime and decrease the numerical error. Hon and Wi [
radial basis function (RBF) meshless method for solvingWu [26] and others have provided some successful
the various types of PDEs. Contrary to the mesh baseé&xamples using MQ quasi-interpolation scheme for
methods like the finite difference and finite elementsolving differential equations. Beatson and Powd] |
methods, meshless methods use a set of uniform oproposed three univariate MQ quasi-interpolations,
random points which are not necessarily interconnectechamely, %x , s and %. Wu and Schaback?2[]
in the form of a mesh. Due to this advantageous featurepresented the univariate MQ quasi-interpolati#y and
meshless methods have got increased acceptance sinpeoved that the scheme is shape preserving and
mesh generation in multi-dimensional problems is a nonconvergent. In 7,8, Chen and Wu used MQ
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quasi-interpolation to solve Burgers’ equation and quasi-interpolation of a univariate functidn: [a,b] — R

hyperbolic conservation laws. Recently, Jiang et &F] [  is given by

have introduced a new multi-level univariate MQ N

guasi-interpolation approach with high approximation .Z(f) = Z}f(xi)(n(x),

order compared with initial MQ quasi-interpolation i=

scheme, namely?y, and.%y,. This approach is based

on inverse multiquadric (IMQ) RBF interpolation, and

Wu and Schaback’s MQ quasi-interpolation operaty e \/ﬁ

that have the advantages of high approximation order. Bi(x) =/ (X = %),
The Jiang et al. MQ quasi-interpolation operaféy ,

is Qne.-dimensio_nal operator Fhat USes fpr interpolatiqn Olresented the univariate MQ quasi-interpolation operator

univariate functions. Also, it is summation of two series . that is defined as

that the second series coefficients are combined of firsfgj

series coefficients. By giving relation between two series %

coefficients based on function values, we can convertittoy,, f (x) = Z}f(Xi)wi (x), (1)

a compact form which is based on one series and extend it =

to operator that can be used for higher dimensions. Alsowhere

we do not require to solve any linear system of equation 1 gh(x)— (X—Xo)

for getting of the first series coefficients at each time step Jo(X) = > + BT A

see [Lg. In numerical solution of time dependent PDEs, (1 =%0)

such as Burgers’ and Sine-Gordon equations, by using

MQ quasi-interpolation scheme, if we do not want to i (x) = Ya0) —¢1(X)  ga(x) — (X~ o)

solve a system of equations at each time step it is 2(x2 —x1) 2(x1 —Xo)

necessary to use a low order finite difference

approximation for discretization of time derivatives (see g (x) = W) =) B —dia(x) 2<i< N -2,

where functiong (x) is a linear combination of the MQs

fandc € RT is a shape parameter. [27], Wu and Scheback
p

3

[7,18)) else higher-order approximations can be applied " 2(Xi+1—Xi) 2% —%i-1)

to discretize the time derivatives (sek5]). (2)
In this paper, the extension of the MQ Xy =X)—=Wy_1(X)  Wy_1(X)— P y_2(X)

quasi-interpolation scheme and the differential of it are Jy-1(x) = 206y %y 2(x Xy 2)

used to approximate the solution functions and their S AT A2

spatial derivatives, respectively. Also, a two orderand

approximation based on Taylor series expansion is used _ _

for discretization of the temporal derivatives. Hence, the 4 (X) = 1, % 1) — Xy =)

system of equations must be solved at each time step. 2 20Xy =Xr-1)

The organization of this paper is as follows. In Section |5 RBFs interpolation, high approximation order can
2, we describe the MQ quasi-interpolation scheme. Inpe gotten by increasing the number of interpolation
Section 3, the method is applied on the two-dimensionakenters but we have to solve unstable linear system of
nonlinear Burgers’ equations. The error analysisequations. By using MQ quasi-interpolation scheme, we
technique based on the residual function is developed fogan avoid this problem, whereas, the approximation order
the present method in Section 4. In Section 5, the result$s not good. Therefore, Jiang et al7 defined two MQ
of three experiments are reported and compared with th%uasi-interpolation operators denoted &5 and %y,
analytical solutions and the results ih16,32). Finally, a  \which pose the advantages of RBFs interpolation and MQ
brief discussion and conclusion is presented in Section 6.quasi-interpolation scheme. The process of MQ
quasi-interpolation ofZ, and.%y, are as follows that is
described in17]. B
2 The MQ quasi-inter polation scheme Suppose thafxg; }]{1 is a smaller set from the given
points {x}:”, where ./ is a positive integer satisfying
In this section, at first, we review some elementary ./ < .4 and O=ky <k <... <k 7+1=.4". Using
knowledge about three univariate MQ quasi-interpolationthne IMQ-RBF, the second derivative of(x) can be
operators.Zy,.Zy and .Zy,. Then, we describe our approximated by RBF interpola}, as
approach which converts operatdfy, to the compact 2

N
form. For more information about MQ quasi-interpolation g, X =S ajd(|x—x|), (3)
operators seel[17,27). ,Zl : :

For a giveninterva2 = [a, b] and afinite set of distinct where
points

_ S

A=Xo <X <...<Xy=b h= max (x—x-), ¢(r) RN
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andse€ R* is a shape parameter. The coefficie{m}]{l Substituting Eq.10) into Eq. (L1), yields
are uniquely determined by the interpolation condition
) o) = 1)~ [l 210
Vs B (X — Xy ) (X, = Xig)  S(¥g — X)) (X — Xiey)
" L) = a_ - — Xk :f// ,1<|<e/’/ 4
Si) = 3 @16 =) = 1) (4) T R ey R
. . S(Xi, — Xkg) (X, — Xico)
S;nfi_t?i/l,zqm 's solvable g, so (5) whereas f(x,) = f(xo), f(x,) = f(x2) and
TOX X f(x,) = f(x4). Hence, the substitution of Eqsl() and
where (12) into Eq. (7), leads to

X={Xq, . X}, a=[ay,...,a 7",

and
Ax = [0 =g D], FX = [F" (%) oos £ (3 ]

By using f and the coefficientr defined in Eq. %), a
functione(x) is constructed in the form

e(x) = f(x)—_éan/sz—k(x—xh)z.

Then the MQ quasi-interpolation operatéf, by using
%5 defined by Eqgs. ) and @) on the data
(Xi,e(Xi))o<i<. With the shape parameteris defined as
follows:

Ly f(x) = iaM/SZ+ (X— %)%+ Zze(x).

The shape parametecsand s should not be the same
constant in Eq. 7). In Eq. @), the value offy can be
]

replaced by

(6)

(7)

o 2[<ij - ij,l)f<xkj+1) - (ij+1 - ij,l)f(xkj ) + (ij+1 - ij )f<xkj,1)
% O =X 1) (X g — %) (11— X 1)

when the data’q (g, f (X)) ,{1 are given. So, iffy in
Eq. ) is replaced by

R = [y T (8)

then the quasi-interpolation operator defined by E@p. (
and (7) is denoted by.Zy,. The linear reproducing
property and the high convergence ratefj , were also
studied in [L7].

The operatorZy, can be written in the compact form

N
Ly, f(X) = _;f(xi)lﬁ (), ©)

where the basis functiongfi(x) are obtained by
substituting Egs.5), (6) and @) into Eq. (7). Such_as, let
X = {X0,X1,X%2,X3,X4} andX’ = {xo}. S0/ =4, 4/ =1,
ki =2 and

Zf(sz)

S(Xk, — Xy ) (X, — Xico)

B 2f (Xk1 )
S(Xi, — Xip) (X, — Xy )

Zf(XkO)
S(Xkl - Xko)(xkz - Xko) ’ (10)
e(x) = f(X) —a /P + (X— X )2 (11)

_ 2f(x4)
$/ﬂ2f(x) - [S(X4—X2)(X4—Xo) -

21 (%) — &
+s(Xz—Xo)(X4—Xo)] 52+(X_X2)2+i;f()(|)w'(x>

2f(x2)
S(%2 — X0) (X4 — X2)

2f(x2)
S(X2 —Xo) (Xa — X2)

= [ 2f(xa) B
i;; S(X4 — X2) (X4 — X0)

2f(x0)

S0z —%0) (4 —0) ] m‘ﬁ (X)-

Hence, the basic function (x) are arrived as follows:

o 2AVF X X ()]

Jo(x) A P R Po(x),
_ _ 2 _
)
— 2 _
B - LI XL gy,
and
(I/i(x) = Q)i(x), i=1,3,

where X (X) = 310/ + (X — %2)2di (x). In this paper,
AN =24"is considered.

By converting operator7) to the compact form of9), we
can easily extend MQ quasi-interpolation scheme to
two-dimension space. Also, we will not require to solve
any linear system of equations for getting of the
coefficients o; at each time step when MQ
quasi-interpolation is used for solving of PDEs.

3 The numerical method

We consider the two-dimensional coupled nonlinear
Burgers’ equations:

ut +UUx+VUy: ﬁ(Uxx"’ Uyy), (13)
1

Vi UV + Wy = ﬁ(vxx+vyy), (14)

with the initial conditions:

U(Xa Y, O) = fl(xv y)a (Xa y) € Qa (15)
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Table 1: Comparison of numerical solutions with the solutionsly8p] of u att = 0.01 andt = 0.5 with R= 100 of experiment 1.

Points t=0.01 t=05
MQQI FDM[1] ADM[32] Exact MQQI FDM[1] ADM][32 Exact
N=121 N=441 N =441 N=121 N=441 N =441

(0.1,0.1) 1.16E-04 5.30E-05 5.91E-05 0.62305 3.28E-03 2304 2.78E-04  0.54332
(0.5,0.1) 7.45E-06 1.21E-05 4.84E-06 0.50162 7.11E-05 3E-04 4.52E-04 0.50035
(0.9,0.1) 9.51E-07 1.10E-05 3.41E-08 0.50001 1.39E-04 266@®4  3.37E-06  0.50000
(0.3,0.3) 2.58E-05 6.30E-05 5.91E-05 0.62305 2.15E-04 5B-@3 2.78E-04  0.54332
(0.7,0.3) 7.33E-07 2.07E-06 4.84E-06 0.50162 1.89E-05 3E-@4  4.52E-04  0.50035
(0.1,0.5) 8.80E-06 4.04E-06 1.64E-06 0.74827 6.51E-04 4B04 2.86E-04 0.74221
(0.5,0.5) 2.58E-05 6.30E-05 5.91E-05 0.62305 5.01E-04 0B-03 2.78E-04  0.54332

(0.9,0.5) 4.43E-06 2.07E-06 0.50162 2.57E-04 3.83E-04 0G5
(0.3,0.7) 1.55E-06 4.04E-06 0.74827 7.61E-07 7.64E-04 4227
(0.7,0.7) 2.59E-05 6.30E-05 0.62305 1.15E-04 8.92E-04 4333
(0.1,0.9) 4.83E-07 8.29E-06 0.74999 1.76E-06 8.16E-04 4993
(0.5,0.9) 2.65E-06 4.04E-06 0.74827 1.24E-04 2.04E-04 4227
(0.9,0.9) 1.10E-04 6.30E-05 0.62305 3.74E-04 1.00E-03 4338

Table 2: Comparison of numerical solutions with the solutionsy8p] of v att = 0.01 andt = 0.5 with R= 100 of experiment 1.

Points t=0.01 t=05
MQQI FDM[1] ADM[32 Exact MQQI FDM[1] ADM][32] Exact
N=121 N=441 N =441 N=121 N=441 N =441

(0.1,0.1) 1.16E-04 7.30E-05 5.91E-05 0.87695 3.28E-03 8B®™ 2.78E-04  0.95668
(0.5,0.1) 7.45E-06 7.93E-06 4.84E-06 0.99838 7.11E-05 8B-@3  4.52E-04  0.99965
(0.9,0.1) 9.51E-07 9.00E-06 3.41E-08 0.99999 1.39E-04 9B-@3  3.37E-06  1.00000
(0.3,0.3) 2.58E-05 6.30E-05 5.91E-05 0.87695 2.15E-04 8E-04 2.78E-04  0.95668
(0.7,0.3) 7.33E-07 2.07E-06 4.84E-06 0.99838 1.89E-05 8B-@3  4.52E-04  0.99965
(0.1,0.5) 8.80E-06 5.96E-06 1.64E-06 0.75173 6.51E-04 6Er®4  2.86E-04 0.75779
(0.5,0.5) 2.58E-05 6.30E-06 5.91E-05 0.87695 5.01E-04 2B-04 2.78E-04 0.95668

(0.9,0.5) 4.43E-06 2.07E-06 0.99838 2.57E-04 6.17E-04 99BS
(0.3,0.7) 1.55E-06 4.04E-06 0.75173 7.61E-07 5.56E-04 5179
(0.7,0.7) 2.59E-05 6.30E-05 0.87695 1.15E-04 7.82E-04 5659
(0.1,0.9) 4.83E-07 1.71E-06 0.75001 1.76E-06 8.14E-04 503
(0.5,0.9) 2.65E-06 4.04E-06 0.75173 1.24E-04 2.40E-05 5719
(0.9,0.9) 1.10E-04 6.30E-05 0.87695 3.74E-04 1.09E-03 5669
v(x,y,0) = fa(xy), (xYy) € Q, (16)  approach, the term’ = w (x,tn) is arranged with the help

. of Taylor series expansion as
and the boundary conditions: y P

utl_u At
uxyt) =gixyt),  (xy)er, 17)  W=—pr 5%+ 0. (19)

v, y,t) = d(x,yt), (xy)er, (18)  Differentiating Eq. {3) with respect to timeyg; may be
o written as
where Q = {(x,y)la<x < b,c<y<d} andrl is its n

boundary.u(x,y,t) and v(x,y,t) are the two unknown Ut = (MU + KUy — Uy — v ug)e = p(u
variables which can be regarded as the velocities in

)xx

fluid-related problems.fi(x,y), fa(xy), gi(x,y;t) and W)y — U U V() V. (20)
02(x,y,t) are all known functions an® is the Reynolds
number. A L

First, we discretize Eq1@) in time with time stepat ~ WNE'eH = &-

: T )
by using Taylor series expansion. The main idea behind,, For the time deL"’a“V‘“r n Eq. 0), gsmg forward
difference formulayf; can be rewritten as:

the discretization is to use more time derivatives in Taylor " 7= "=~ /750 el nonel on
series expansion. This approach was demonstrated by LRttt = H(Uac ™ — U + H(Uy™ — Uy ) — U(uy™ — Uy
and Wendroff in finite difference2] and used by Dag

for the one-dimensional Burgers’ equation B].[In this — (U =M V(U ) (V). (21)

(@© 2015 NSP
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Fig. 1: The estimated solutiongXx, y,t) (up) andv(x,y,t) (down)
att = 0.5 with R=100,At = 0.001 andN = 121 of experiment
1.

Substituting Eq. Z1) into Eg. @9 and using the
expression achieved in EdLY), yields the following time
discretized form of Burgers’ equatiot3):

1 1 1 1 1
0™+ At (UM ugu™ ViU VTR

—pAt (Ut (22)

Also, the time discretized form of Eql4) is given as
follows:

2Vn+1—|—At(unVQ+1+qun+l—|—VnV9+l+Vn+1v§)

U = 20"+ At (U +uly).

—PAt (VI T V) = 20+ HAL (VR + V). (23)

Now, we use the multivariate quasi-interpolation
scheme for approximation efandv similar to work that
Ling did in [21]. In this scheme,u" and V' are
approximated as follows:

nx Ny

Ny =3 3 BHEG), (24)
1=0 | =

Pt e
e y o
MR

&

Fig. 2: The estimated solutiongXx, y,t) (up) andv(x,y,t) (down)
att = 0.4 with At = 0.001 andN = 25 of experiment 2.

and

ny Ny
V(X y) = vE Wi (X) T (y), 25

( Y) I;JEO .Jll/( )wJ(Y) ( )
where Ji(x) and @j(y) are the known basis functions
derived from one-dimensional basis functions, is defined
in Eq. ©), associated with thex and y directions,
respectively; andsi; andv;; are the values ofi andv at
the intersection of thé&h horizontal grid line and thgth
vertical grid line, respectively. We can rewrite Eq24)
and @5) as follows:

N

Zluinfﬁi (%,Y),

u(xy) =

N

WMW=ZW@MW,@®
1=

where basis functiong(x,y) are given by tensor product

P(x) in @P(y) and N = (ny + 1)(ny + 1). Now, By

substituting the above approximations into Eq®) (and

(23) and using collocation method, we obtain the

following matrix form:

[A"X]T = (B, (27)

(@© 2015 NSP
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where 1 1 1 1 1 1 W n+1 n n n+1 n+1.n n+1.n
[x]n+t Ut up L ug v VR, FVR)EI Ny T (Bl Ny T UNy)E N + UNx E1N T UN €N x
Bt = Ut BIfg = v for (%) € 99,

n+1 +1.n n+1 +1
(Bt = 20"+ pAt(uk  + uy) +UNY BN W Ny ] — HAL(E] o+ BTNy
(B = 2V + UAt (Vi + Vi )P elsewhere, and the matrix
[

A" can be split into [A" = Ay, + [Aq]" where

Ao (i-+N)(j+N) oi(x.vi) = ¢ij, for
I,j=1,....,N,(%,yi) € andAy; = 0 elsewhere, also
Ag; = 26ij + At(Udij + (u)i'dij +VIdij) — HAL(ij + Bij),
Ad(i+N)(i+N) = 2¢ij +At(uin¢ij + (VY)in‘piJ +Vin¢ij)

—HAL(dij + $ij),
A = At(uy)gij andAg, - = At(w)l'ij for i, j =
2 2
LN whered — 26— 2. — 22 andg — 2.

Using the initial conditions and the boundary conditions,

reprelsented by equatiorsj-(18), equation 27) can give
[X]n+ .

4 Theerror estimate

In this section, an error estimation for the approximate
solutions of the two-dimensional nonlinear Burgers’

= zeg,N + “At(eT,N,xx + eE,N,yy) - RTI_\Ilv (30)

and

26%1 +At[(e] N+ Uﬂ)eznﬂl,x + (S nxt VRl,x)eg,JKIl +(&n

+Vﬁ)€24,_\|1y + (%,N,y + Vrl:l,y)%jl_\ll + Vrlll-j_xleg,N + URHGE,N,X

+VRIJ,§/1e2,N + VRlJrleQn,N,y] - “At(eznjgll,xx + eszKIlyy)

= ZéiN + uAt(e’zn,Nxx + %N,yy) - Rngv (31)
with the homogeneous initial conditions:
Enixy) =8nxy) =0, (xy) e, (32)
and the homogeneous boundary conditions:
gy =&ixy) =0, (xy)er. (33)

By solving the error problems30) and @1) by the
method described in Section 3, the approximatigyf M

equations are obtained. This error estimation has beeBnd €5} to €/ andej' are found, respectively. We

presented in 45 for integro-differential equations. We
modify the error estimation studied in29 for the
two-dimensional nonlinear Burgers’ equations.

Let us call €, = u'(xy) — uj(xy) and
&n = V'(Xy) —Vi(xy) as the error functions of the
approximationsug (x,y) and vj(x,y) to u"(x,y) and
VI(x,y) at n—th time level, respectively, where"(x,y)
andV"(x,y) are the exact solutions of Eq22) and @3).
Thus, uj(x,y) and W(x,y) satisfy the following
problems:

200+ At (URUR A+ U+ VRN VR ) — pAt

(URo - URy) = 2UR + HAL(UR o+ UR ) + RIT (28)

2+ AL (UR VR VR XURT VIV + TR ) — pAt

(Vb V) = 2V + HAL (VY s+ Vi) + RERE (29)

whereRI{(x,y) andR3 (' (x,y) are the residual function
associated withil, " (x,y) andviy (x,y).

By subtracting 28) and @9 from (22) and @3),
respectively, the error functions n(X,y) and exn(X,Y)
satisfy the equations:

1 1 1
20+ AL (] + U + (Bl nx+ W ETN + (€

note that if the exact solution of the problem is not
known, then we can estimate the error function&€pby,,

andej iy

5 The numerical experiments

Three experiments is studied to investigate the
robustness and accuracy of the proposed method. We
compare the numerical results of the two-dimensional
nonlinear Burgers’ equations by using the presented
scheme with the analytical solutions and solutionslin [
16,32]. We denote our scheme by MQQI. In all of the
experiments, the shape parameter= 0.815h and the
shape parametsr= 2c are denoted.

The computations associated with our experiments are
performed in Maple 16 on a PC with a CPU of 2.4 GHZ.

Experiment 1. In this experiment, we consider the
two-dimensional nonlinear Burgers’ equatioris3)( and
(14) with exact solutions

3 1
MY 2 A e A -0/ G2 (34)
v(X,y,t) = §+ ! .
T 4 A1+exp—4x+4y—t)/(32u)]
Above solutions obtained wusing a Hopf-Cole

transformation in 11]. The initial conditions are obtained
from (34) att = 0, and the boundary conditions can be

(@© 2015 NSP
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Table 3: Comparison of the actual and estimated absolute errargafvarious values oN andM att = 0.1 of experiment 1.

Points N =25 N =49
Actual Estimated Actual Estimated
M =381 M =121 M =381 M =121
(0.1,0.2) 8.36599E-3 4.11070E-3 4.47301E-3 456647E-3 01370E-3 2.43801E-3
(0.5,0.1) 9.20573E-3 8.57831E-3 8.40817E-3 7.72798E-4 018B4E-3 8.66505E-4
(0.9,0.1) 3.68497E-3 4.14192E-3 4.00703E-3 5.60015E-4 307R9E-4 5.63710E-4
(0.3,0.3) 6.26737E-3 4.98879E-3 5.90883E-3 2.28397E-3 997B9E-3 1.99956E-3
(0.7,0.3) 3.80637E-3 3.98595E-3 3.82165E-3 1.33129E-3 4755E-3 1.33432E-3
(0.1,0.5) 6.50740E-3 5.88473E-3 5.64751E-3 5.22721E-4 083 1E-4 4.35187E-4
(0.5,0.5) 4,95619E-3 4.21532E-3 4.67833E-3 1.59856E-3 295B2E-3 1.42484E-3
(0.9,0.5) 8.72283E-3 8.13613E-3 8.96242E-3 1.52989E-3 478B4E-3 1.48977E-3
(0.3,0.7) 2.99622E-3 3.00702E-3 2.99346E-3 3.38276E-4 41523E-4 3.43224E-4
(0.7,0.7) 5.94465E-3 4.84669E-3 5.81430E-3 2.14067E-3 835ROE-3 1.87950E-3
(0.1,0.9) 2.22972E-3 2.64162E-3 2.47664E-3 1.30503E-4 12Qr4E-4 1.32391E-4
(0.5,0.9) 6.17633E-3 5.78486E-3 6.26674E-3 7.01168E-5 447I3E-5 2.30941E-5
(0.9,0.9) 8.14830E-3 5.47280E-3 6.70321E-3 4.22399E-3 507B6E-3 3.96765E-3

Table 4: Comparison of the actual and estimated absolute errar$avfvarious values oN andM att = 0.1 of experiment 1.

Points N =25 N =49
Actual Estimated Actual Estimated
M =81 M=121 M =81 M=121
(0.1,0.2) 8.36599E-3 4.02052E-3 4.40868E-3 4.56647E-3 00222E-3 2.42845E-3
(0.5,0.1) 9.20573E-3 8.53947E-3 8.37281E-3 7.72798E-4 O0177AE-3 8.67754E-3
(0.9,0.1) 3.68497E-3 4.,16592E-3 4.01610E-3 5.60015E-4 307R9E-4 5.63785E-3
(0.3,0.3) 6.26737E-3 4.95325E-3 5.84778E-3 2.28397E-3 993B7E-3 1.99810E-3
(0.7,0.3) 3.80637E-3 3.99094E-3 3.82330E-3 1.33129E-3 473U9E-3 1.33341E-3
(0.1,0.5) 6.50740E-3 5.90057E-3 5.65963E-3 5.22721E-4 O07744E-4 4,33195E-3
(0.5,0.5) 4.95619E-3 4.20151E-3 4.64820E-3 1.59856E-3 296BOE-3 1.42400E-3
(0.9,0.5) 8.72283E-3 8.16894E-3 8.96959E-3 1.52989E-3 475B6E-3 1.48457E-3
(0.3,0.7) 2.99622E-3 2.99749E-3 2.98899E-3 3.38276E-4 419B5E-4 3.44046E-3
(0.7,0.7) 5.94465E-3 4.85485E-3 5.75885E-3 2.14067E-3 833D4E-3 1.87742E-3
(0.1,0.9) 2.22972E-3 2.64536E-3 2.47788E-3 1.30503E-4 120B6E-4 1.32401E-3
(0.5,0.9) 6.17633E-3 5.78838E-3 6.26142E-3 7.01168E-5 38%8E-5 2.28619E-3
(0.9,0.9) 8.14830E-3 5.42632E-3 6.62525E-3 4.22399E-3 50227E-3 3.95704E-3

Table 5: Comparison of numerical solutions with the solutions3g][for u att = 0.1 andt = 0.4 of experiment 2.

Points t=0.1 t=04
MQQI Error ADM[32] Error MQQI Error ADM[32] Error
N=25 N =441 N=25 N =441
(0.1,0.1) 0.18367 1.46E-29 0.18368  3.31E-06 0.17647 #ZBE 0.17657 1.02E-04
(0.3,0.1) 0.34694 7.83E-30 0.34694  5.56E-06 0.23529 3ZYE 0.23585  5.59E-04
(0.2,0.2) 0.36735 2.68E-29 0.36735 6.62E-06 0.35294 528BE 0.35314  2.04E-04
(0.4,0.2) 0.53061 2.41E-29 0.53062  8.87E-06 0.41176 4ZWE 0.41242  6.61E-04
(0.1,0.3) 0.38776 1.72E-29 0.38776  7.67E-06 0.47059 83E 0.47044 1.51E-04
(0.3,0.3) 0.55102 4.03E-29 0.55103  9.92E-06 0.52941 6XBBE 0.52972  3.06E-04
(0.2,0.4) 0.57143 2.67E-29 0.57144  1.10E-05 0.64706 2ZE 0.64701  4.90E-05
(0.3,0.4) 0.65306 2.46E-29  0.65307  1.21E-05 0.67647 4ZBE 0.67665 1.79E-04
(0.5,0.5) 0.91837 8.75E-31  0.91838  1.65E-05 0.88235 7XBE 0.88286  5.10E-04
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Table6: Comparison of numerical solutions with the solutions3g]ffor v att = 0.1 andt = 0.4 of experiment 2.

Points t=0.1 t=04

MQQI Error ADM[32] Error MQQI Error ADM[32] Error

N =25 N =441 N =25 N =441
(0.1,0.2) -0.02041 4.48E-31  -0.02041 1.05E-06 -0.1176534B-30 -0.11729 3.55E-04
(0.3,0.1) 0.18367 1.07E-29  0.18368 3.31E-06 0.17647 43JYE 0.17657 1.02E-04
(0.2,0.2) -0.04082 1.64E-30 -0.04082 2.11E-06 -0.2352922E3:29  -0.23458  7.10E-04
(0.4,0.2) 0.16327 1.06E-29 0.16327  2.54E-06 0.05882 1ZHE 0.05928 4.57E-04
(0.1,0.3) -0.26531 1.43E-29 -0.26531  7.52E-06 -0.6470653B:29  -0.64574  1.32E-03
(0.3,0.3) -0.06122 5.65E-30 -0.06123 3.16E-06 -0.3529479#-29  -0.35188 1.06E-03
(0.2,0.4) -0.28571 1.97E-29 -0.28572  8.58E-06 -0.7647147#29 -0.76303 1.67E-03
(0.3,0.4) -0.18367 9.65E-30 -0.18368 6.40E-06 -0.6176592B-29 -0.61610 1.55E-03
(0.5,0.5) -0.10204 8.00E-31 0.10205 5.27E-06 -0.58824 4630 -0.58646  1.77E-03

Table 7: Comparison of the actual and estimated absolute erraraoflv for N = 25 and various values &1 att = 0.1 of experiment

2.

Points u Y
Actual Estimated Actual Estimated
M =121 M =169 M =121 M =169
(0.1,0.1) 1.46202E-29 1.32664E-29 1.29426E-29 4.4813BE-7.54813E-31 667521.E-31
(0.3,0.1) 7.83593E-30 4.98913E-30 5.38983E-30 1.0782®E-7.80647E-30 9.01124E-30
(0.2,0.2) 2.68547E-29 2.37818E-29 2.58809E-29 1.64482E-1.69025E-30 1.18328E-30
(0.4,0.2) 2.41042E-29 1.83444E-29 2.42130E-29 1.0667%BE-9.04872E-30 8.03798E-30
(0.1,0.3) 1.72958E-29 1.26705E-29 1.56837E-29 1.43182E-9.51576E-30 1.34034E-29
(0.3,0.3) 4.,03099E-29 3.78846E-29 3.77727E-29 5.6518BE-5.31464E-30 5.31109E-30
(0.2,0.4) 2.67397E-29 2.41620E-29 2.25413E-29 1.97588E-1.63000E-29 1.67743E-29
(0.3,0.4) 2.46994E-29 1.49021E-29 2.02653E-29 9.6523ME-8.91184E-30 7.44918E-30
(0.5,0.5) 8.75109E-31 6.58501E-59 4.00627E-61 8.0058PE-8.12006E-61 2.01538E-61

Table 8: Comparison of numerical solutions with the solutionslifi][for u andv att = 0.625 withR = 500 of experiment 3.

Points u %

MQQI Jain and Holla16] MQQI Jain and Holla16]

N=121 N=289 N=121 N=441 N=121 N=289 N=121 N=441
(0.15,0.10) 0.72051  0.91232  0.75954  0.95691 -0.03638 2aMm6 -0.12880 0.10177
(0.30,0.10) 1.04093 0.99454  1.03780 0.95616 0.10857 0389 -0.25386  0.13287
(0.10,0.20) 0.76793  0.81584  0.79536  0.84257 0.13783  B963 0.22765  0.18503
(0.20,0.20) 0.86793  0.85065 0.83338  0.86399 0.15585 0352 0.27094  0.18169
(0.10,0.30) 0.62630 0.66129  0.63127 0.67667 0.23121  B451 0.31462  0.26560
(0.30,0.30) 0.86238  0.79483  0.78637 0.76876 0.28376 6332 0.40238  0.25142
(0.15,0.40) 0.46529  0.53335  0.44135 0.54408 0.25621 81293 0.18416  0.32084
(0.20,0.40) 0.61387 0.57685  0.58494  0.58778 0.34908 B&81 0.41766  0.30927

obtained from the exact solutions. The computationalMoreover, the graphs of the estimated solutions are
domain for this problem is plottedin Fig. 1.

Q ={(xy)[0<x< 1,0<y< 1}.The absolute errors of Tables 1 and 2 indicate that the proposed method
u and v using our scheme and the exact solutions foryequires less nodes to attain the accuracy of the FIM [
R =100 are listed in Tables 1 and 2, respectively. Theang ADM [32]. In addition, the actual absolute errors for
experiment is also solved by finite difference methodthe various ofN andM, are compared with the estimated
(FDM) [1] and discrete Adomian absolute errors ofi(x,y,t) and v(x,y,t) att = 0.2 in

decomposition method (ADM)3p]. The numerical ~Tables 3 and 4.
computations are performed usifyj= 121 points and From these comparisons, we see that the estimated
At = 0.001, whereas the results of FDM and ADM were absolute errors are almost the same as with the actual
obtained with a uniform mesN = 441 andAt = 0.0001.  absolute errors. We observe from Tables 3 and 4 that the
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estimated errors are closer to the actual errors while value
M increases.

Experiment 2. In this experiment, we take the
two-dimensional nonlinear Burgers’ equations with the
initial conditions at = O that are given by
fixy) =x+y, fa(xy) =x-v.

The exact solutions are given b3 [

X+y—2xt
U(X,y,t)zﬁ7

X—y—2yt

V(vavt) - 1_ 2t2 )
and the boundary functiorg (x, y,t) andgz(Xx,y,t) can be
obtained from the exact solutions. In this experiment, we
consideAt = 0.001 andQ = {(x,y)|0 < x<0.50<y<
0.5}.

The numerical computations were performed using
N = 25 points that distributed uniformly antt = 0.001.
The numerical solutions are compared with the solutions
in [32] at internal points at = 0.1 andt = 0.4 for
arbitrary Reynolds numbeR in Tables 5 and 6. In32],
the numerical results were calculated by ADM with
N =441 andAt = 0.0001.

The graphs of estimated functionsandv att = 0.4
are given in Fig. 2. Therewith, the estimated absolute
errors are compared with the actual absolute errors in
Table 7 and it is seen that they are consistent.

Fig. 3: The graphs of the estimated solutionsugk,y,t) (up)
andv(x,y,t) (down) att = 0.625 withR = 500, At = 0.001 and
N = 121 of experiment 3.

Experiment 3. In the third experiment, the

computational domain is taken as
Q = {(x,y)|0 < x < 050 <y < 05} and Burgers’
equations 13) and (14) are taken with the initial

Since this experiment has not an exact solution, the
numerical values of the approximate solutions are
compared with the values of Jain and Holl&] method

conditions: in Table 8 at some points. Also, since the exact solution is

u(x,y,0) = sin(mx) + cog my), unknown, the estimated absolute error functions are used
for measurement of the reliability. The estimated absolute

V(X,Y,0) = X+, errors are tabulated fo&f = 169 andM = 289 in Table 9.

S We plot the graph of estimated functionsandv at
and the boundary conditions: o
Hncary condi t — 0.625 in Fig. 3.

u(0,y,t) = cogmy), u(0.5,y,t)=1+cogmny),

V(anat) =Y, v(0.5,y,t) =0.5+y, 6 Conclusion

for0<y<05,t>0and _ .

. . In this paper, we have presented a numerical scheme

u(x, 0.t) = 1+sin(mx), u(x,0.5,t) = sin(7), based on high accuracy MQ quasi-interpolation scheme

_ _ for solving the two-dimensional nonlinear Burgers’

v(x,0,t) =x, V(x05,t) =x+05, equation. The numerical results which were given in the

foro<x<05,t>0. previous section demonstrate the efficiency and accuracy
The numerical computations were performed usingof the presented scheme. Tables show that the proposed

N = 121 andN = 289 points forR = 500 att = 0.625  scheme requires less points to attain accuracy than FDM

with At = 0.001 andAt = 0.01, respectively. and ADM. Also, we could getting results similar to the
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Table 9: Numerical solutions and estimated absolute errors Of[ll] C.A.J. Fletcher, Generating exact solutions of the -two

uandvfor N = 169,M = 289 andAt = 0.005 att = 0.625 of dimensional Burgers’ equation, Int. J. Numer. Methods

experiment 3. Fluids3, 213-216 (1983).
Points u _ v _ [12] C. Franke and R. Schaback, Convergence order estimates
MQQI  Estimated MQQI  Estimated of meshless collocation methods using radial basis funsfio
Error Error Adv. Comput. Math8, 381-399 (1998).
(0.3,01) 0.8486  1.63E-1 0.0101  892E-2  [13]M.A. Golberg, C.S. Chen and S.R. Karur, Improved
(0.1,02) 0.7620  6.40E-2 0.1334  3.57E-2 multiquadric approximation for partial differential edioms,
(0.2,0.2) 0.7416 1.33E-1 0.0870 8.01E-2 Eng. Anal. Bound. Elemi8, 9-17 (1996).
(0.1,03) 0.6207  4.87E-2 0.2238  3.21E-2  [14]Y.C. Hon and Z.M. Wu, A quasi-interpolation method for
(0.3,03) 0.7111  8.85E-2 0.1658  6.95E-2 solving stiff ordinary differential equations, Int. J. Nem
(0.2,0.4) 0.5468 3.45E-2 0.2739 2.30E-3 Methods Eng48, 1187-1197 (2000).

[15] Y.C. Hon, A Quasi-Radial Basis Functions Method for
American Options Pricing, Comput. Math. Appl43, 513-
524 (2002).

. . . [16] P.C. Jain and D.N. Hola, Numerical solution of coupled
results of FDM and A.DM by using bigger step time. Burgers’ equations, Int. J. Numer. Meth. EA@, 213-222
Moreover, we have estimated the errors by Eg6)-(33) (1978).

and seen that the estimated absolute errors are almost P7] Z.W. Jiang, R.H. Wang, C.G. Zhu and M. Xu, High accuracy
same as with the actual absolute errors. By using the error 1, ,iiquadric quasi-interpolation, Appl. Math. Modellif25,
estimation given in Section 4, we can estimate the 51g5.2195 (2011).

absolute error for the cases that the exact solution i5[18] Z.W. Jiang and R.H. Wang, Numerical solution of one-

unknown. o _ , dimensional SineGordon equation using high accuracy
Although, we used equidistant data in our numerical  multiquadric quasi-interpolation, Appl. Math. Comp@18,

experiments but our scheme can be used for the scattered 7711-7716 (2012).

data. [19] E.J. Kansa, Multiquadric-a scattered data approxionat
scheme with applications to computational fluid dynamics I,
Comput. Math. Appl19, 127-145 (1990).
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