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Abstract: In this paper, coupled nonlinear Burgers’ equations are solved through a variety of meshless methods known as multiquadric
quasi-interpolation scheme. In this scheme, the extensionof univariate quasi-interpolation method is used to approximate the unknown
functions and their spatial derivatives and the Taylor series expansion is used to discretize the temporal derivatives. The multiquadric
quasi-interpolation scheme is a one-dimensional method that can be extend to the two-dimensional by converting to a compact form
and using of a tensor product scheme. The method is tested on three experiments to show the efficiency and accuracy of it. Also, we
demonstrate the validity and applicability of our method byerror analysis technique based on residual function.
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1 Introduction

The nonlinear Burgers’ equation is a fundamental partial
differential equation (PDE) from fluid mechanics. It
appears in various areas of applied mathematics and
physics such as the phenomena of turbulence and
supersonic flow, flow of a shock wave traveling in a
viscous fluid, sedimentation of two kinds of particles in
fluid suspensions under the effect of gravity, acoustic
transmission, heat conduction, traffic and aerofoil flow
theory [2,5,24,29,30,31]. Due to its wide range of
applicability some researchers have been interested in
studying its solution using various numerical methods
such as, finite difference, finite element, discrete Adomian
decomposition, spectral and Eulerian-Lagrangian
methods. For a survey of these methods, one refers to [1,
10,16,28,29,32] and references cited therein.

Recently, considerable attention has been given to
radial basis function (RBF) meshless method for solving
the various types of PDEs. Contrary to the mesh based
methods like the finite difference and finite element
methods, meshless methods use a set of uniform or
random points which are not necessarily interconnected
in the form of a mesh. Due to this advantageous feature,
meshless methods have got increased acceptance since
mesh generation in multi-dimensional problems is a non

trivial task. Kansa [19] was the first researcher who
derived a meshless method based on multiquadric (MQ)
RBFs for the numerical solution of PDEs. This idea was
extended later on by Golberg et al. [13]. The existence,
uniqueness, and convergence of the RBFs approximations
was studied by Micchelli [23] , Madych [22], Frank and
Schaback [12]. In 1986, Micchelli has shown that the
system of equations obtained from the RBFs
approximations is always solvable for distinct
interpolation points. The authors have recently used the
radial basis collocation method to obtain meshless
numerical solution of the nonlinear coupled PDEs.

In recent years, other meshless method is proposed
based on MQ namely as MQ quasi-interpolation scheme
that do not require to solve any linear system of equation
and one do not meet the question of the ill-condition of
the matrix. Therefore one can save the computational
time and decrease the numerical error. Hon and Wu [14],
Wu [26] and others have provided some successful
examples using MQ quasi-interpolation scheme for
solving differential equations. Beatson and Powell [4]
proposed three univariate MQ quasi-interpolations,
namely, LA , LB and LC. Wu and Schaback [27]
presented the univariate MQ quasi-interpolationLD and
proved that the scheme is shape preserving and
convergent. In [7,8], Chen and Wu used MQ
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quasi-interpolation to solve Burgers’ equation and
hyperbolic conservation laws. Recently, Jiang et al. [17]
have introduced a new multi-level univariate MQ
quasi-interpolation approach with high approximation
order compared with initial MQ quasi-interpolation
scheme, namelyLW and LW 2. This approach is based
on inverse multiquadric (IMQ) RBF interpolation, and
Wu and Schaback’s MQ quasi-interpolation operatorLD
that have the advantages of high approximation order.

The Jiang et al. MQ quasi-interpolation operatorLW 2
is one-dimensional operator that uses for interpolation of
univariate functions. Also, it is summation of two series
that the second series coefficients are combined of first
series coefficients. By giving relation between two series
coefficients based on function values, we can convert it to
a compact form which is based on one series and extend it
to operator that can be used for higher dimensions. Also,
we do not require to solve any linear system of equation
for getting of the first series coefficients at each time step,
see [18]. In numerical solution of time dependent PDEs,
such as Burgers’ and Sine-Gordon equations, by using
MQ quasi-interpolation scheme, if we do not want to
solve a system of equations at each time step it is
necessary to use a low order finite difference
approximation for discretization of time derivatives (see,
[7,18]) else higher-order approximations can be applied
to discretize the time derivatives (see [15]).

In this paper, the extension of the MQ
quasi-interpolation scheme and the differential of it are
used to approximate the solution functions and their
spatial derivatives, respectively. Also, a two order
approximation based on Taylor series expansion is used
for discretization of the temporal derivatives. Hence, the
system of equations must be solved at each time step.

The organization of this paper is as follows. In Section
2, we describe the MQ quasi-interpolation scheme. In
Section 3, the method is applied on the two-dimensional
nonlinear Burgers’ equations. The error analysis
technique based on the residual function is developed for
the present method in Section 4. In Section 5, the results
of three experiments are reported and compared with the
analytical solutions and the results in [1,16,32]. Finally, a
brief discussion and conclusion is presented in Section 6.

2 The MQ quasi-interpolation scheme

In this section, at first, we review some elementary
knowledge about three univariate MQ quasi-interpolation
operatorsLD ,LW and LW2. Then, we describe our
approach which converts operatorLW2 to the compact
form. For more information about MQ quasi-interpolation
operators see [4,17,27].

For a given intervalΩ = [a,b] and a finite set of distinct
points

a = x0 < x1 < .. . < xN = b, h = max
16i6N

(xi − xi−1),

quasi-interpolation of a univariate functionf : [a,b]→ R

is given by

L ( f ) =
N

∑
i=0

f (xi)φi(x),

where functionφi(x) is a linear combination of the MQs

ψi(x) =
√

c2+(x− xi)2,

andc∈R
+ is a shape parameter. In [27], Wu and Scheback

presented the univariate MQ quasi-interpolation operator
LD that is defined as

LD f (x) =
N

∑
i=0

f (xi)ψ̃i(x), (1)

where

ψ̃0(x) =
1
2
+

ψ1(x)− (x− x0)

2(x1− x0)
,

ψ̃1(x) =
ψ2(x)−ψ1(x)

2(x2− x1)
−

ψ1(x)− (x− x0)

2(x1− x0)
,

ψ̃i(x)=
ψi+1(x)−ψi(x)

2(xi+1− xi)
−

ψi(x)−ψi−1(x)
2(xi − xi−1)

, 26 i6N −2,

(2)

ψ̃N −1(x) =
(xN − x)−ψN −1(x)

2(xN − xN −1)
−

ψN −1(x)−ψN −2(x)
2(xN −1− xN −2)

,

and

ψ̃N (x) =
1
2
+

ψN −1(x)− (xN − x)
2(xN − xN −1)

.

In RBFs interpolation, high approximation order can
be gotten by increasing the number of interpolation
centers but we have to solve unstable linear system of
equations. By using MQ quasi-interpolation scheme, we
can avoid this problem, whereas, the approximation order
is not good. Therefore, Jiang et al. [17] defined two MQ
quasi-interpolation operators denoted asLW and LW2,
which pose the advantages of RBFs interpolation and MQ
quasi-interpolation scheme. The process of MQ
quasi-interpolation ofLW andLW2 are as follows that is
described in [17].

Suppose that{xk j}
¯N

j=1 is a smaller set from the given

points {xi}
N
i=0 where ¯N is a positive integer satisfying

¯N < N and 0= k0 < k1 < .. . < k ¯N + 1 = N . Using
the IMQ-RBF, the second derivative off (x) can be
approximated by RBF interpolantS f ′′ as

S f ′′(x) =
¯N

∑
j=1

α jϕ̄(|x− xk j |), (3)

where

ϕ̄(r) =
s2

(s2+ r2)3/2
,
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ands ∈R
+ is a shape parameter. The coefficients{α j}

¯N
j=1

are uniquely determined by the interpolation condition

S f ′′(xki) =

¯N

∑
j=1

α jϕ̄(|xki − xk j |) = f ′′(xki), 16 i 6 ¯N . (4)

Since, the Eq. (4) is solvable [22], so
α = A−1

X . f ′′X , (5)

where

X = {xk1, . . . ,xk ¯N
}, α = [α1, . . . ,α ¯N

]T ,

and

AX = [ϕ̄(|xki − xk j |)], f ′′X = [ f ′′(xk1), . . . , f ′′(xk ¯N
)]T .

By using f and the coefficientα defined in Eq. (5), a
functione(x) is constructed in the form

e(x) = f (x)−
¯N

∑
i=1

αi

√
s2+(x− xki)

2. (6)

Then the MQ quasi-interpolation operatorLW by using
LD defined by Eqs. (1) and (2) on the data
(xi,e(xi))06i6N with the shape parameterc is defined as
follows:

LW f (x) =
¯N

∑
i=1

αi

√
s2+(x− xki)

2+LDe(x). (7)

The shape parametersc and s should not be the same
constant in Eq. (7). In Eq. (4), the value of f ′′xk j

can be

replaced by

f ′′xk j
=

2[(xk j − xk j−1 ) f (xk j+1)− (xk j+1 − xk j−1) f (xk j )+(xk j+1 − xk j ) f (xk j−1)

(xk j − xk j−1)(xk j+1 − xk j )(xk j+1 − xk j−1 )

when the data’s{(xki , f (xki))}
¯N

i=1 are given. So, iff ′′X in
Eq. (5) is replaced by

F ′′
X = [ f ′′xk1

, . . . , f ′′xk ¯N

]T , (8)

then the quasi-interpolation operator defined by Eqs. (6)
and (7) is denoted byLW2. The linear reproducing
property and the high convergence rate ofLW 2 were also
studied in [17].

The operatorLW2 can be written in the compact form

LW2 f (x) =
N

∑
i=0

f (xi)ψ̂i(x), (9)

where the basis functionŝψi(x) are obtained by
substituting Eqs. (5), (6) and (8) into Eq. (7). Such as, let
X = {x0,x1,x2,x3,x4} andX ′ = {x2}. SoN = 4, ¯N = 1,
k1 = 2 and

α =
2 f (xk2)

s(xk2 − xk1)(xk2 − xk0)
−

2 f (xk1)

s(xk1 − xk0)(xk2 − xk1)

+
2 f (xk0)

s(xk1 − xk0)(xk2 − xk0)
, (10)

e(x) = f (x)−α
√

s2+(x− xk1)
2. (11)

Substituting Eq. (10) into Eq. (11), yields

e(x) = f (x)− [
2 f (xk2)

s(xk2 − xk1)(xk2 − xk0)
−

2 f (xk1)

s(xk1 − xk0)(xk2 − xk1)

+
2 f (xk0)

s(xk1 − xk0)(xk2 − xk0)
]
√

s2+(x− xk1)
2. (12)

whereas f (xk0) = f (x0), f (xk1) = f (x2) and
f (xk2) = f (x4). Hence, the substitution of Eqs. (10) and
(12) into Eq. (7), leads to

LW 2 f (x) = [
2 f (x4)

s(x4− x2)(x4− x0)
−

2 f (x2)

s(x2− x0)(x4− x2)

+
2 f (x0)

s(x2− x0)(x4− x0)
]
√

s2+(x− x2)2+
4

∑
i=0

f (xi)ψ̃i(x)

−
4

∑
i=0

[
2 f (x4)

s(x4− x2)(x4− x0)
−

2 f (x2)

s(x2− x0)(x4− x2)

+
2 f (x0)

s(x2− x0)(x4− x0)
]
√

s2+(xi − x2)2ψ̃i(x).

Hence, the basic functionŝψi(x) are arrived as follows:

ψ̂0(x) =
2[
√

s2+(x− x2)2− χ(x)]
s(x2− x0)(x4− x0)

+ ψ̃0(x),

ψ̂2(x) =
−2[

√
s2+(x− x2)2− χ(x)]

s(x2− x0)(x4− x2)
+ ψ̃2(x),

ψ̂4(x) =
2[
√

s2+(x− x2)2− χ(x)]
s(x4− x2)(x4− x0)

+ ψ̃4(x),

and

ψ̂i(x) = ψ̃i(x), i = 1,3,

where χ(x) = ∑4
i=0

√
s2+(xi − x2)2ψ̃i(x). In this paper,

N = 2 ¯N is considered.
By converting operator (7) to the compact form of (9), we
can easily extend MQ quasi-interpolation scheme to
two-dimension space. Also, we will not require to solve
any linear system of equations for getting of the
coefficients αi at each time step when MQ
quasi-interpolation is used for solving of PDEs.

3 The numerical method

We consider the two-dimensional coupled nonlinear
Burgers’ equations:

ut + uux+ vuy =
1
R
(uxx + uyy), (13)

vt + uvx+ vvy =
1
R
(vxx + vyy), (14)

with the initial conditions:
u(x,y,0) = f1(x,y), (x,y) ∈ Ω , (15)
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Table 1: Comparison of numerical solutions with the solutions in [1,32] of u at t = 0.01 andt = 0.5 with R = 100 of experiment 1.
Points t = 0.01 t = 0.5

MQQI FDM [1] ADM [ 32] Exact MQQI FDM [1] ADM [ 32] Exact
N = 121 N = 441 N = 441 N = 121 N = 441 N = 441

(0.1,0.1) 1.16E-04 5.30E-05 5.91E-05 0.62305 3.28E-03 9.72E-04 2.78E-04 0.54332
(0.5,0.1) 7.45E-06 1.21E-05 4.84E-06 0.50162 7.11E-05 7.13E-04 4.52E-04 0.50035
(0.9,0.1) 9.51E-07 1.10E-05 3.41E-08 0.50001 1.39E-04 6.92E-04 3.37E-06 0.50000
(0.3,0.3) 2.58E-05 6.30E-05 5.91E-05 0.62305 2.15E-04 1.25E-03 2.78E-04 0.54332
(0.7,0.3) 7.33E-07 2.07E-06 4.84E-06 0.50162 1.89E-05 7.43E-04 4.52E-04 0.50035
(0.1,0.5) 8.80E-06 4.04E-06 1.64E-06 0.74827 6.51E-04 9.14E-04 2.86E-04 0.74221
(0.5,0.5) 2.58E-05 6.30E-05 5.91E-05 0.62305 5.01E-04 1.10E-03 2.78E-04 0.54332
(0.9,0.5) 4.43E-06 2.07E-06 0.50162 2.57E-04 3.83E-04 0.50035
(0.3,0.7) 1.55E-06 4.04E-06 0.74827 7.61E-07 7.64E-04 0.74221
(0.7,0.7) 2.59E-05 6.30E-05 0.62305 1.15E-04 8.92E-04 0.54332
(0.1,0.9) 4.83E-07 8.29E-06 0.74999 1.76E-06 8.16E-04 0.74995
(0.5,0.9) 2.65E-06 4.04E-06 0.74827 1.24E-04 2.04E-04 0.74221
(0.9,0.9) 1.10E-04 6.30E-05 0.62305 3.74E-04 1.00E-03 0.54332

Table 2: Comparison of numerical solutions with the solutions in [1,32] of v at t = 0.01 andt = 0.5 with R = 100 of experiment 1.
Points t = 0.01 t = 0.5

MQQI FDM [1] ADM [ 32] Exact MQQI FDM [1] ADM [ 32] Exact
N = 121 N = 441 N = 441 N = 121 N = 441 N = 441

(0.1,0.1) 1.16E-04 7.30E-05 5.91E-05 0.87695 3.28E-03 9.08E-04 2.78E-04 0.95668
(0.5,0.1) 7.45E-06 7.93E-06 4.84E-06 0.99838 7.11E-05 1.38E-03 4.52E-04 0.99965
(0.9,0.1) 9.51E-07 9.00E-06 3.41E-08 0.99999 1.39E-04 1.39E-03 3.37E-06 1.00000
(0.3,0.3) 2.58E-05 6.30E-05 5.91E-05 0.87695 2.15E-04 7.18E-04 2.78E-04 0.95668
(0.7,0.3) 7.33E-07 2.07E-06 4.84E-06 0.99838 1.89E-05 1.38E-03 4.52E-04 0.99965
(0.1,0.5) 8.80E-06 5.96E-06 1.64E-06 0.75173 6.51E-04 7.96E-04 2.86E-04 0.75779
(0.5,0.5) 2.58E-05 6.30E-06 5.91E-05 0.87695 5.01E-04 1.72E-04 2.78E-04 0.95668
(0.9,0.5) 4.43E-06 2.07E-06 0.99838 2.57E-04 6.17E-04 0.99965
(0.3,0.7) 1.55E-06 4.04E-06 0.75173 7.61E-07 5.56E-04 0.75779
(0.7,0.7) 2.59E-05 6.30E-05 0.87695 1.15E-04 7.82E-04 0.95668
(0.1,0.9) 4.83E-07 1.71E-06 0.75001 1.76E-06 8.14E-04 0.75005
(0.5,0.9) 2.65E-06 4.04E-06 0.75173 1.24E-04 2.40E-05 0.75779
(0.9,0.9) 1.10E-04 6.30E-05 0.87695 3.74E-04 1.09E-03 0.95668

v(x,y,0) = f2(x,y), (x,y) ∈ Ω , (16)

and the boundary conditions:

u(x,y, t) = g1(x,y, t), (x,y) ∈ Γ , (17)

v(x,y, t) = g2(x,y, t), (x,y) ∈ Γ , (18)

where Ω = {(x,y)|a 6 x 6 b,c 6 y 6 d} and Γ is its
boundary.u(x,y, t) and v(x,y, t) are the two unknown
variables which can be regarded as the velocities in
fluid-related problems.f1(x,y), f2(x,y), g1(x,y, t) and
g2(x,y, t) are all known functions andR is the Reynolds
number.

First, we discretize Eq. (13) in time with time step∆ t
by using Taylor series expansion. The main idea behind
the discretization is to use more time derivatives in Taylor
series expansion. This approach was demonstrated by Lax
and Wendroff in finite difference [20] and used by Daǧ
for the one-dimensional Burgers’ equation in [9]. In this

approach, the termun
t = ut(x, tn) is arranged with the help

of Taylor series expansion as

un
t =

un+1− un

∆ t
−

∆ t
2

un
tt +O(∆ t2). (19)

Differentiating Eq. (13) with respect to time,un
tt may be

written as

un
tt = (µun

xx + µun
yy − unun

x − vnun
y)t = µ(un

t )xx

+µ(un
t )yy−un(un

t )x−un
t un

x −vn(un
t )y−vn

t un
y. (20)

whereµ = 1
R .

For the time derivativeun
t in Eq. (20), using forward

difference formula,un
tt can be rewritten as:

∆ tun
tt = µ(un+1

xx − un
xx)+ µ(un+1

yy − un
yy)− un(un+1

y − un
x)

−(un+1−un)un
x −vn(un+1

y −un
y)−un

y(v
n+1−vn). (21)
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Fig. 1: The estimated solutionsu(x,y, t) (up) andv(x,y, t) (down)
at t = 0.5 with R = 100,∆ t = 0.001 andN = 121 of experiment
1.

Substituting Eq. (21) into Eq. (19) and using the
expression achieved in Eq. (13), yields the following time
discretized form of Burgers’ equation (13):

2un+1+∆ t(unun+1
x + un

xun+1+ vnun+1
y + vn+1un

y)

−µ∆ t(un+1
xx + un+1

yy ) = 2un + µ∆ t(un
xx + un

yy). (22)

Also, the time discretized form of Eq. (14) is given as
follows:

2vn+1+∆ t(unvn+1
x + vn

xun+1+ vnvn+1
y + vn+1vn

y)

−µ∆ t(vn+1
xx + vn+1

yy ) = 2vn + µ∆ t(vn
xx + vn

yy). (23)

Now, we use the multivariate quasi-interpolation
scheme for approximation ofu andv similar to work that
Ling did in [21]. In this scheme,un and vn are
approximated as follows:

un(x,y) =
nx

∑
i=0

ny

∑
j=0

un
i jψ̂i(x)ψ̂ j(y), (24)

Fig. 2: The estimated solutionsu(x,y, t) (up) andv(x,y, t) (down)
at t = 0.4 with ∆ t = 0.001 andN = 25 of experiment 2.

and

vn(x,y) =
nx

∑
i=0

ny

∑
j=0

vn
i jψ̂i(x)ψ̂ j(y), (25)

where ψ̂i(x) and ψ̂ j(y) are the known basis functions
derived from one-dimensional basis functions, is defined
in Eq. (9), associated with thex and y directions,
respectively; andui j andvi j are the values ofu andv at
the intersection of theith horizontal grid line and thejth
vertical grid line, respectively. We can rewrite Eqs. (24)
and (25) as follows:

un(x,y) =
N

∑
i=1

un
i ϕi(x,y), vn(x,y) =

N

∑
i=1

vn
i ϕi(x,y), (26)

where basis functionsϕ(x,y) are given by tensor product
ψ̂(x) in ψ̂(y) and N = (nx + 1)(ny + 1). Now, By
substituting the above approximations into Eqs. (22) and
(23) and using collocation method, we obtain the
following matrix form:
[A]n[X ]n+1 = [B]n+1, (27)
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where
[X ]n+1 = [un+1

1 ,un+1
2 , . . . ,un+1

N ,vn+1
1 ,vn+1

2 , . . . ,vn+1
N ],

[B]n+1
i = un+1

i , [B]n+1
i+N = vn+1

i for (xi,yi) ∈ ∂Ω ,
[B]n+1

i = 2un
i + µ∆ t(uxx + uyy)

n
i ,

[B]n+1
i+N = 2vn

i + µ∆ t(vxx + vyy)
n
i elsewhere, and the matrix

[A]n can be split into [A]n = Ab + [Ad ]
n where

Abi j = Ab(i+N)( j+N)
= ϕ j(xi,yi) = ϕi j, for

i, j = 1, . . . ,N,(xi,yi) ∈ Γ andAbi j = 0 elsewhere, also

Adi j = 2ϕi j +∆ t(un
i ϕ̂i j +(ux)

n
i ϕi j + vn

i ϕ̌i j)− µ∆ t(ϕ́i j + ϕ̀i j),

Ad(i+N)( j+N)
= 2ϕi j +∆ t(un

i ϕ̂i j +(vy)
n
i ϕi j + vn

i ϕ̌i j)

−µ∆ t(ϕ́i j + ϕ̀i j),

Adi( j+N)
= ∆ t(uy)

n
i ϕi j andAd(i+N) j

= ∆ t(vx)
n
i ϕi j for i, j =

1, . . . ,N whereϕ̂i =
∂ϕ
∂x , ϕ̌i =

∂ϕ
∂y , ϕ́i =

∂ 2ϕ
∂x2 andϕ̀i =

∂ 2ϕ
∂y2 .

Using the initial conditions and the boundary conditions,
represented by equations (15)-(18), equation (27) can give
[X ]n+1.

4 The error estimate

In this section, an error estimation for the approximate
solutions of the two-dimensional nonlinear Burgers’
equations are obtained. This error estimation has been
presented in [25] for integro-differential equations. We
modify the error estimation studied in [25] for the
two-dimensional nonlinear Burgers’ equations.

Let us call en
1,N = un(x,y) − un

N(x,y) and
en

2,N = vn(x,y) − vn
N(x,y) as the error functions of the

approximationsun
N(x,y) and vn

N(x,y) to un(x,y) and
vn(x,y) at n− th time level, respectively, whereun(x,y)
andvn(x,y) are the exact solutions of Eqs. (22) and (23).
Thus, un

N(x,y) and vn
N(x,y) satisfy the following

problems:

2un+1
N +∆ t(un

Nun+1
N,x + un

N,xun+1
N + vn

Nun+1
N,y + vn+1

N un
N,y)− µ∆ t

(un+1
N,xx + un+1

N,yy) = 2un
N + µ∆ t(un

N,xx + un
N,yy)+Rn+1

1,N , (28)

2vn+1
N +∆ t(un

Nvn+1
N,x + vn

N,xun+1
N + vn

Nvn+1
N,y + vn+1

N vn
N,y)− µ∆ t

(vn+1
N,xx + vn+1

N,yy) = 2vn
N + µ∆ t(vn

N,xx + vn
N,yy)+Rn+1

2,N , (29)

whereRn+1
1,N (x,y) andRn+1

2,N (x,y) are the residual function

associated withun+1
N (x,y) andvn+1

N (x,y).
By subtracting (28) and (29) from (22) and (23),
respectively, the error functionse1,N(x,y) and e2,N(x,y)
satisfy the equations:

2en+1
1,N +∆ t[(en

1,N + un
N)e

n+1
1,N,x +(en

1,N,x + un
N,x)e

n+1
1,N +(en

2,N

+vn
N)e

n+1
1,N,y +(en

1,N,y + un
N,y)e

n+1
2,N + un+1

N,x en
1,N + un+1

N en
1,N,x

+un+1
N,y en

2,N + vn+1
N en

1,N,y]− µ∆ t(en+1
1,N,xx + en+1

1,N,yy)

= 2en
1,N + µ∆ t(en

1,N,xx + en
1,N,yy)−Rn+1

1,N , (30)

and

2en+1
2,N +∆ t[(en

1,N + un
N)e

n+1
2,N,x +(en

2,N,x + vn
N,x)e

n+1
1,N +(en

2,N

+vn
N)e

n+1
2,N,y +(en

2,N,y + vn
N,y)e

n+1
2,N + vn+1

N,x en
1,N + un+1

N en
2,N,x

+vn+1
N,y en

2,N + vn+1
N en

2,N,y]− µ∆ t(en+1
2,N,xx + en+1

2,N,yy)

= 2en
2,N + µ∆ t(en

2,N,xx + en
2,N,yy)−Rn+1

2,N , (31)

with the homogeneous initial conditions:

e0
1,N(x,y) = e0

2,N(x,y) = 0, (x,y) ∈ Ω , (32)

and the homogeneous boundary conditions:

en+1
1,N (x,y) = en+1

2,N (x,y) = 0, (x,y) ∈ Γ . (33)

By solving the error problems (30) and (31) by the
method described in Section 3, the approximationsen+1

1,N,M

and en+1
2,N,M to en+1

1,N and en+1
2,N are found, respectively. We

note that if the exact solution of the problem is not
known, then we can estimate the error functions byen+1

1,N,M

anden+1
2,N,M.

5 The numerical experiments

Three experiments is studied to investigate the
robustness and accuracy of the proposed method. We
compare the numerical results of the two-dimensional
nonlinear Burgers’ equations by using the presented
scheme with the analytical solutions and solutions in [1,
16,32]. We denote our scheme by MQQI. In all of the
experiments, the shape parameterc = 0.815h and the
shape parameters = 2c are denoted.

The computations associated with our experiments are
performed in Maple 16 on a PC with a CPU of 2.4 GHZ.

Experiment 1. In this experiment, we consider the
two-dimensional nonlinear Burgers’ equations (13) and
(14) with exact solutions

u(x,y, t) =
3
4
−

1
4[1+exp(−4x+4y− t)/(32µ)]

,
(34)

v(x,y, t) =
3
4
+

1
4[1+exp(−4x+4y− t)/(32µ)]

.

Above solutions obtained using a Hopf-Cole
transformation in [11]. The initial conditions are obtained
from (34) at t = 0, and the boundary conditions can be
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Table 3: Comparison of the actual and estimated absolute errors ofu for various values ofN andM at t = 0.1 of experiment 1.
Points N = 25 N = 49

Actual Estimated Actual Estimated
M = 81 M = 121 M = 81 M = 121

(0.1,0.1) 8.36599E-3 4.11070E-3 4.47301E-3 4.56647E-3 2.01370E-3 2.43801E-3
(0.5,0.1) 9.20573E-3 8.57831E-3 8.40817E-3 7.72798E-4 1.01854E-3 8.66505E-4
(0.9,0.1) 3.68497E-3 4.14192E-3 4.00703E-3 5.60015E-4 5.30799E-4 5.63710E-4
(0.3,0.3) 6.26737E-3 4.98879E-3 5.90883E-3 2.28397E-3 1.99799E-3 1.99956E-3
(0.7,0.3) 3.80637E-3 3.98595E-3 3.82165E-3 1.33129E-3 1.47575E-3 1.33432E-3
(0.1,0.5) 6.50740E-3 5.88473E-3 5.64751E-3 5.22721E-4 4.08371E-4 4.35187E-4
(0.5,0.5) 4.95619E-3 4.21532E-3 4.67833E-3 1.59856E-3 1.29532E-3 1.42484E-3
(0.9,0.5) 8.72283E-3 8.13613E-3 8.96242E-3 1.52989E-3 1.47864E-3 1.48977E-3
(0.3,0.7) 2.99622E-3 3.00702E-3 2.99346E-3 3.38276E-4 3.41523E-4 3.43224E-4
(0.7,0.7) 5.94465E-3 4.84669E-3 5.81430E-3 2.14067E-3 1.83520E-3 1.87950E-3
(0.1,0.9) 2.22972E-3 2.64162E-3 2.47664E-3 1.30503E-4 1.12074E-4 1.32391E-4
(0.5,0.9) 6.17633E-3 5.78486E-3 6.26674E-3 7.01168E-5 6.44743E-5 2.30941E-5
(0.9,0.9) 8.14830E-3 5.47280E-3 6.70321E-3 4.22399E-3 3.50706E-3 3.96765E-3

Table 4: Comparison of the actual and estimated absolute errors ofv for various values ofN andM at t = 0.1 of experiment 1.
Points N = 25 N = 49

Actual Estimated Actual Estimated
M = 81 M = 121 M = 81 M = 121

(0.1,0.1) 8.36599E-3 4.02052E-3 4.40868E-3 4.56647E-3 2.00242E-3 2.42845E-3
(0.5,0.1) 9.20573E-3 8.53947E-3 8.37281E-3 7.72798E-4 1.01774E-3 8.67754E-3
(0.9,0.1) 3.68497E-3 4.16592E-3 4.01610E-3 5.60015E-4 5.30799E-4 5.63785E-3
(0.3,0.3) 6.26737E-3 4.95325E-3 5.84778E-3 2.28397E-3 1.99367E-3 1.99810E-3
(0.7,0.3) 3.80637E-3 3.99094E-3 3.82330E-3 1.33129E-3 1.47349E-3 1.33341E-3
(0.1,0.5) 6.50740E-3 5.90057E-3 5.65963E-3 5.22721E-4 4.07764E-4 4.33195E-3
(0.5,0.5) 4.95619E-3 4.20151E-3 4.64820E-3 1.59856E-3 1.29630E-3 1.42400E-3
(0.9,0.5) 8.72283E-3 8.16894E-3 8.96959E-3 1.52989E-3 1.47586E-3 1.48457E-3
(0.3,0.7) 2.99622E-3 2.99749E-3 2.98899E-3 3.38276E-4 3.41985E-4 3.44046E-3
(0.7,0.7) 5.94465E-3 4.85485E-3 5.75885E-3 2.14067E-3 1.83304E-3 1.87742E-3
(0.1,0.9) 2.22972E-3 2.64536E-3 2.47788E-3 1.30503E-4 1.12086E-4 1.32401E-3
(0.5,0.9) 6.17633E-3 5.78838E-3 6.26142E-3 7.01168E-5 6.38928E-5 2.28619E-3
(0.9,0.9) 8.14830E-3 5.42632E-3 6.62525E-3 4.22399E-3 3.50227E-3 3.95704E-3

Table 5: Comparison of numerical solutions with the solutions in [32] for u at t = 0.1 andt = 0.4 of experiment 2.
Points t = 0.1 t = 0.4

MQQI Error ADM[32] Error MQQI Error ADM[32] Error
N = 25 N = 441 N = 25 N = 441

(0.1,0.1) 0.18367 1.46E-29 0.18368 3.31E-06 0.17647 7.28E-29 0.17657 1.02E-04
(0.3,0.1) 0.34694 7.83E-30 0.34694 5.56E-06 0.23529 3.57E-29 0.23585 5.59E-04
(0.2,0.2) 0.36735 2.68E-29 0.36735 6.62E-06 0.35294 5.18E-29 0.35314 2.04E-04
(0.4,0.2) 0.53061 2.41E-29 0.53062 8.87E-06 0.41176 4.00E-29 0.41242 6.61E-04
(0.1,0.3) 0.38776 1.72E-29 0.38776 7.67E-06 0.47059 8.77E-30 0.47044 1.51E-04
(0.3,0.3) 0.55102 4.03E-29 0.55103 9.92E-06 0.52941 6.63E-29 0.52972 3.06E-04
(0.2,0.4) 0.57143 2.67E-29 0.57144 1.10E-05 0.64706 2.51E-29 0.64701 4.90E-05
(0.3,0.4) 0.65306 2.46E-29 0.65307 1.21E-05 0.67647 4.34E-29 0.67665 1.79E-04
(0.5,0.5) 0.91837 8.75E-31 0.91838 1.65E-05 0.88235 7.68E-30 0.88286 5.10E-04
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Table 6: Comparison of numerical solutions with the solutions in [32] for v at t = 0.1 andt = 0.4 of experiment 2.
Points t = 0.1 t = 0.4

MQQI Error ADM[32] Error MQQI Error ADM[32] Error
N = 25 N = 441 N = 25 N = 441

(0.1,0.1) -0.02041 4.48E-31 -0.02041 1.05E-06 -0.11765 8.34E-30 -0.11729 3.55E-04
(0.3,0.1) 0.18367 1.07E-29 0.18368 3.31E-06 0.17647 4.57E-30 0.17657 1.02E-04
(0.2,0.2) -0.04082 1.64E-30 -0.04082 2.11E-06 -0.23529 3.22E-29 -0.23458 7.10E-04
(0.4,0.2) 0.16327 1.06E-29 0.16327 2.54E-06 0.05882 1.05E-29 0.05928 4.57E-04
(0.1,0.3) -0.26531 1.43E-29 -0.26531 7.52E-06 -0.64706 3.53E-29 -0.64574 1.32E-03
(0.3,0.3) -0.06122 5.65E-30 -0.06123 3.16E-06 -0.35294 4.79E-29 -0.35188 1.06E-03
(0.2,0.4) -0.28571 1.97E-29 -0.28572 8.58E-06 -0.76471 4.47E-29 -0.76303 1.67E-03
(0.3,0.4) -0.18367 9.65E-30 -0.18368 6.40E-06 -0.61765 3.92E-29 -0.61610 1.55E-03
(0.5,0.5) -0.10204 8.00E-31 0.10205 5.27E-06 -0.58824 5.34E-30 -0.58646 1.77E-03

Table 7: Comparison of the actual and estimated absolute errors ofu andv for N = 25 and various values ofM at t = 0.1 of experiment
2.

Points u v
Actual Estimated Actual Estimated

M = 121 M = 169 M = 121 M = 169
(0.1,0.1) 1.46202E-29 1.32664E-29 1.29426E-29 4.48113E-31 7.54813E-31 667521.E-31
(0.3,0.1) 7.83593E-30 4.98913E-30 5.38983E-30 1.07899E-29 7.80647E-30 9.01124E-30
(0.2,0.2) 2.68547E-29 2.37818E-29 2.58809E-29 1.64432E-30 1.69025E-30 1.18328E-30
(0.4,0.2) 2.41042E-29 1.83444E-29 2.42130E-29 1.06676E-29 9.04872E-30 8.03798E-30
(0.1,0.3) 1.72958E-29 1.26705E-29 1.56837E-29 1.43162E-29 9.51576E-30 1.34034E-29
(0.3,0.3) 4.03099E-29 3.78846E-29 3.77727E-29 5.65158E-30 5.31464E-30 5.31109E-30
(0.2,0.4) 2.67397E-29 2.41620E-29 2.25413E-29 1.97598E-29 1.63000E-29 1.67743E-29
(0.3,0.4) 2.46994E-29 1.49021E-29 2.02653E-29 9.65210E-30 8.91184E-30 7.44918E-30
(0.5,0.5) 8.75109E-31 6.58501E-59 4.00627E-61 8.00562E-31 8.12006E-61 2.01538E-61

Table 8: Comparison of numerical solutions with the solutions in [16] for u andv at t = 0.625 withR = 500 of experiment 3.
Points u v

MQQI Jain and Holla [16] MQQI Jain and Holla [16]
N = 121 N = 289 N = 121 N = 441 N = 121 N = 289 N = 121 N = 441

(0.15,0.10) 0.72051 0.91232 0.75954 0.95691 -0.03638 0.06210 -0.12880 0.10177
(0.30,0.10) 1.04093 0.99454 1.03780 0.95616 0.10857 0.08993 -0.25386 0.13287
(0.10,0.20) 0.76793 0.81584 0.79536 0.84257 0.13783 0.16339 0.22765 0.18503
(0.20,0.20) 0.86793 0.85065 0.83338 0.86399 0.15585 0.15203 0.27094 0.18169
(0.10,0.30) 0.62630 0.66129 0.63127 0.67667 0.23121 0.25134 0.31462 0.26560
(0.30,0.30) 0.86238 0.79483 0.78637 0.76876 0.28376 0.23263 0.40238 0.25142
(0.15,0.40) 0.46529 0.53335 0.44135 0.54408 0.25621 0.29381 0.18416 0.32084
(0.20,0.40) 0.61387 0.57685 0.58494 0.58778 0.34908 0.28156 0.41766 0.30927

obtained from the exact solutions. The computational
domain for this problem is
Ω = {(x,y)|0 6 x 6 1,06 y 6 1}.The absolute errors of
u and v using our scheme and the exact solutions for
R = 100 are listed in Tables 1 and 2, respectively. The
experiment is also solved by finite difference method
(FDM) [1] and discrete Adomian

decomposition method (ADM) [32]. The numerical
computations are performed usingN = 121 points and
∆ t = 0.001, whereas the results of FDM and ADM were
obtained with a uniform meshN = 441 and∆ t = 0.0001.

Moreover, the graphs of the estimated solutions are
plotted in Fig. 1.

Tables 1 and 2 indicate that the proposed method
requires less nodes to attain the accuracy of the FDM [1]
and ADM [32]. In addition, the actual absolute errors for
the various ofN andM, are compared with the estimated
absolute errors ofu(x,y, t) and v(x,y, t) at t = 0.2 in
Tables 3 and 4.

From these comparisons, we see that the estimated
absolute errors are almost the same as with the actual
absolute errors. We observe from Tables 3 and 4 that the
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estimated errors are closer to the actual errors while value
M increases.

Experiment 2. In this experiment, we take the
two-dimensional nonlinear Burgers’ equations with the
initial conditions att = 0 that are given by

f1(x,y) = x+ y, f2(x,y) = x− y.

The exact solutions are given by [3]

u(x,y, t) =
x+ y−2xt

1−2t2 ,

v(x,y, t) =
x− y−2yt

1−2t2 ,

and the boundary functionsg1(x,y, t) andg2(x,y, t) can be
obtained from the exact solutions. In this experiment, we
consider∆ t = 0.001 andΩ = {(x,y)|06 x 6 0.5,06 y 6
0.5}.

The numerical computations were performed using
N = 25 points that distributed uniformly and∆ t = 0.001.
The numerical solutions are compared with the solutions
in [32] at internal points att = 0.1 and t = 0.4 for
arbitrary Reynolds numberR in Tables 5 and 6. In [32],
the numerical results were calculated by ADM with
N = 441 and∆ t = 0.0001.

The graphs of estimated functionsu andv at t = 0.4
are given in Fig. 2. Therewith, the estimated absolute
errors are compared with the actual absolute errors in
Table 7 and it is seen that they are consistent.

Experiment 3. In the third experiment, the

computational domain is taken as
Ω = {(x,y)|0 6 x 6 0.5,0 6 y 6 0.5} and Burgers’
equations (13) and (14) are taken with the initial
conditions:

u(x,y,0) = sin(πx)+ cos(πy),

v(x,y,0) = x+ y,

and the boundary conditions:

u(0,y, t) = cos(πy), u(0.5,y, t) = 1+ cos(πy),

v(0,y, t) = y, v(0.5,y, t) = 0.5+ y,

for 06 y 6 0.5, t > 0 and

u(x,0, t) = 1+ sin(πx), u(x,0.5, t) = sin(πx),

v(x,0, t) = x, v(x,0.5, t) = x+0.5,

for 06 x 6 0.5, t > 0.
The numerical computations were performed using

N = 121 andN = 289 points forR = 500 at t = 0.625
with ∆ t = 0.001 and∆ t = 0.01, respectively.

Fig. 3: The graphs of the estimated solutions ofu(x,y, t) (up)
andv(x,y, t) (down) att = 0.625 withR = 500,∆ t = 0.001 and
N = 121 of experiment 3.

Since this experiment has not an exact solution, the
numerical values of the approximate solutions are
compared with the values of Jain and Holla [16] method
in Table 8 at some points. Also, since the exact solution is
unknown, the estimated absolute error functions are used
for measurement of the reliability. The estimated absolute
errors are tabulated forN = 169 andM = 289 in Table 9.

We plot the graph of estimated functionsu and v at
t = 0.625 in Fig. 3.

6 Conclusion

In this paper, we have presented a numerical scheme
based on high accuracy MQ quasi-interpolation scheme
for solving the two-dimensional nonlinear Burgers’
equation. The numerical results which were given in the
previous section demonstrate the efficiency and accuracy
of the presented scheme. Tables show that the proposed
scheme requires less points to attain accuracy than FDM
and ADM. Also, we could getting results similar to the
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Table 9: Numerical solutions and estimated absolute errors of
u andv for N = 169, M = 289 and∆ t = 0.005 att = 0.625 of
experiment 3.

Points u v
MQQI Estimated MQQI Estimated

Error Error
(0.3,0.1) 0.8486 1.63E-1 0.0101 8.92E-2
(0.1,0.2) 0.7620 6.40E-2 0.1334 3.57E-2
(0.2,0.2) 0.7416 1.33E-1 0.0870 8.01E-2
(0.1,0.3) 0.6207 4.87E-2 0.2238 3.21E-2
(0.3,0.3) 0.7111 8.85E-2 0.1658 6.95E-2
(0.2,0.4) 0.5468 3.45E-2 0.2739 2.30E-3

results of FDM and ADM by using bigger step time.
Moreover, we have estimated the errors by Eqs. (30)-(33)
and seen that the estimated absolute errors are almost the
same as with the actual absolute errors. By using the error
estimation given in Section 4, we can estimate the
absolute error for the cases that the exact solution is
unknown.

Although, we used equidistant data in our numerical
experiments but our scheme can be used for the scattered
data.
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