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1 Introduction

It is well known [29] that modern analysis directly or
indirectly involve the applications of convexity. Due to its
applications and significant importance, the concept of
convexity has been extended and generalized in several
directions, see [1,2,5,6,7,8,9,17,18,19,20,21,22,24,25,
26,33,35]. Inspired and motivated by research going in
this dynamic and fascinating field, Noor [20] introduced
and studied a new class of convex set and convex function
with respect to an arbitrary function; which is called as
relative convex set and relative convex function. These
relative convex sets and relative convex functions are
nonconvex. It is worth mentioning that these relative
convex sets and relative convex functions are quite
different than those of relative convex sets and relative
convex functions considered by Youness [35]. Cristescu
et al. [4] has explored the applications of relative convex
sets of Noor in the fields of transportation, colored image
processing and computer aided design; see example 1 and
example 2. Noor [20] has shown that optimality
conditions of the differentiable relative convex functions
can be characterized by a class of variational inequality.
This aspect has motivated Noor [20] to introduce a new
class of variational inequality, which is called general
variational inequality. For the numerical methods and
other aspects of general variational inequalities, see [20]

and the references theirin.

The concept of convexity and its variant forms have
played a fundamental role in the development of various
fields. Hermite (1883) and Hadamard (1896)
independently have shown that the convex functions are
related to an integral inequality, this inequality is known
as Hermite-Hadamard inequality.

Let f : I ⊆ R → R be a convex function witha < b and
a,b∈ I . Then

f

(

a+b
2

)

≤
1

b−a

b
∫

a

f (x)dx≤
f (a)+ f (b)

2
.

This double inequality is known as classical
Hermite-Hadamard inequality. For different
generalizations and extensions of Hermite-Hadamard
inequalities interested readers are referred to [1,6,7,8,10,
11,12,14,17,18,19,22,24,25,26,28,29,30,31,32,34].

In this paper, we consider the Noor’s relative convex
functions. We derive several new Hermite-Hadamard
inequality for relative convex functions and for its variant
forms. Finally we also introduce the concept of relative
h-convex function. This class also generalizes the class of
relative convex functions. The new ideas and techniques
used in this paper may motivate the interested readers to

∗ Corresponding author e-mail:noormaslam@hotmail.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090129


234 M. A. Noor et. al. : Generalized Convexity and Integral Inequalities

explore the applications of relative convex functions in
various branches of pure and applied sciences.

2 Basic concepts and results

In this section, we recall the definition of relative convex
sets and relative convex functions respectively. We
discuss some previously known results for relative convex
functions.

Definition 1([20]). Let Kg be any set in H. The set Kg
is said to be relative convex with respect to an arbitrary
function g: H → H such that

(1− t)u+ tg(v)∈ Kg, ∀u,v∈ H : u,g(v) ∈ Kg, t ∈ [0,1].

Note that every convex set is relative convex, but the
converse is not true, see [20]. If g = I , the identity
function, then the definition of relative convex set
recaptures the definition of classical convex set.
We remark that this type of relative convex sets are called
Noor convex sets [3,4] and are distinctly different than
that of Youness’s relative convex set [35].

Now we give some examples of relative convex sets,
which shows the significance of relative convex sets. These
examples are mainly due to Cristescu et al [4].

Example 1([4]). One of the most important goals of the
International Union of Railways (U.I.C.) is to enable the
railway companies to measure the impact of their activity
on the environment (see the U.I.C. guide). The
environment indicators in the domain of railway transport
defined under U.I.C. and presented into the above
mentioned guide include the level of noise, which should
be, in normal conditions, in the interval[0,50]db(A). The
actual noise level produced by wagons is[125,130]db(A).
The noise level around the railway stations located in
towns is represented by the set[0,50] ∪ [125,130]. By
relocating the railway transport system outside the towns,
the resulted level of noise becomes[0,50]. Let us denote
by g : R→R the function defined by

g(x) =

{

x i f x∈ [0,50]
0 otherwise (1)

which is the function describing the efforts of kipping the
normal level of sound, which works under this project.
Then the set[0,50]∪ [125,130] is g-convex.

Other examples are easy to find in the domain of
image processing, in which a transformation of the real
planeR

2 into a set of grid-points,Z2 for example, is
necessary. In order to present this type of examples we
need to choose a transformation of the space, which
performs the space digitization. The general definition of
this kind of transformations is

Definition 2. A function f:Rn →Z
n is said to be a method

of digitization ofRn intoZ
n if f (x) = x whenever x∈ Z

n.

In what follows we assume thatn = 2 andg = E = f is
the digitization method used in black and white picture
processing by Rosenfeld (1969) and in colored image
processing by Chassery (1978). It is defined by
f : R2 → Z

2, f (x,y) = (i, j), i ∈ Z, j ∈ Zwhenever(x,y) ∈
[i −1/2, i +1/2)× [ j −1/2, j +1/2).

Example 2([4]). The setA := B∪ < (i, j),(i + m, j) >,
whenever i ∈ Z, j ∈ Z,m ∈ Z and
B⊆ [i −1/2, i +m+1/2)× [ j−1/2, j +1/2) is an union
of triangles having one side< (i, j),(i + m, j) > is
relative convex. Indeed, considering two pointsx,y ∈ A,
there are two numbersk ∈ Z and l ∈ Z such that
x ∈ [i + k − 1/2, i + k + 1/2)× [ j − 1/2, j + 1/2) and
y ∈ [i + l − 1/2, i + l + 1/2) × [ j − 1/2, j + 1/2).
Thereforeg(y) = (i + l , j). Then for anyt ∈ [0,1], there is
the integers betweenk and l such thattx+(1− t)g(y) ∈
[i + s−1/2, i + s+1/2)× [ j −1/2, j +1/2) ⊆ A sinceB
is an union of triangles having one side
< (i, j),(i +m, j) >. It means thatA is relative convex. In
the same manner one can take vertical columns of pixels
and obtain relative convex sets.

Definition 3([20]). A function f : Kg → H is said to be
relative convex, if there exists an arbitrary function
g : H → H such that

f ((1− t)u+ tg(v))≤ (1− t) f (u)+ t f (g(v)),

∀u,v∈ H : u,g(v) ∈ Kg, t ∈ [0,1]. (2)

Clearly every convex function is relative convex, but the
converse is not true. For the properties of relative convex
functions, see [18,19,20].
Note that fort = 1

2 in (2), we have the definition of Jensen’s
relative convex function. That is

f

(

a+g(b)
2

)

≤
f (a)+ f (g(b))

2
.

Definition 4([19]). The function f: Kg → (0,∞) is said to
be relative logarithmic convex, if there exists an arbitrary
function g: H → H such that

f ((1− t)u+ tg(v))≤ ( f (u))1−t( f (g(v)))t ,

∀u,v∈ H : u,g(v) ∈ Kg, t ∈ [0,1]. (3)

This implies that

log f ((1− t)u+ tg(v))≤ (1− t) log f (u)+ t log f (g(v)),

∀u,v∈ H : u,g(v) ∈ Kg, t ∈ [0,1].

Definition 5([19]). The function f: Kg → H is said to be
relative quasi convex, if there exists an arbitrary function
g : H → H such that

f ((1− t)u+ tg(v))≤ max{ f (u), f (g(v))},

∀u,v∈ H : u,g(v) ∈ Kg, t ∈ [0,1]. (4)
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Remark.From inequalities (2), (3) and (4), it follows that

f ((1− t)u+ tg(v)) ≤ ( f (u))1−t( f (g(v)))t

≤ (1− t) f (u)+ t f (g(v))

≤ max{ f (u), f (g(v))}.

This shows that

relativelogconvex function⇒ relative convex functions

⇓

relative quasi convex functions,

but the converse is not true.

Definition 6([18]). Let Kg = [a,g(b)]⊆ R be the interval
and g: H →H be any arbitrary function. Then f is relative
convex function, if and only if,
∣

∣

∣

∣

∣

∣

1 1 1
a x g(b)

f (a) f (x) f (g(b))

∣

∣

∣

∣

∣

∣

≥ 0; a≤ x≤ g(b).

From the above definition one can obtain the following
equivalent forms:

1.f is relative convex function.
2.f (x) ≤ f (a)+ f (g(b))− f (a)

g(b)−a (x−a).

3. f (x)− f (a)
x−a ≤ f (g(b))− f (a)

g(b)−a ≤ f (g(b))− f (x)
g(b)−x .

4. f (a)
(x−a)(g(b)−a) +

f (x)
(g(b)−x)(x−a) +

f (g(b))
(g(b)−a)(g(b)−x) ≥ 0.

5.(g(b)−x) f (a)+(g(b)−a) f (x)+(x−a) f (g(b)) ≥ 0.

Now we recall the definition of similarly ordered
functions.

Definition 7([29]). Two functions f and w are said to be
similarly ordered ( f is w-monotone), if

〈 f (x)− f (y),g(x)−g(y)〉 ≥ 0, ∀x,y∈ R.

Theorem 1.The product of two relative convex functions
f and w is again relative convex provided if f and w are
similarly ordered.

Proof.The proof is obvious. ⊓⊔

We now discuss the optimality condition of the
differentiable relative convex functions on the relative
convex sets. This result is due to Noor [20]. We include it
for the sake of completeness.

Theorem 2([20]). Let Kg be a relative convex set in H
and let f be a differentiable relative convex function. Then,
u∈ Kg is the minimum of f on Kg, if and only if, u∈ Kg,
satisfies

〈 f ′(u),g(v)−u〉 ≥ 0, ∀v∈ H : g(v) ∈ Kg,

where f′(u) is the differential of f at u∈ Kg. Inequality of
the above type is called the general variational inequality.

Now we define generalized Riemann-Liouville fractional
integrals, with respect to an arbitrary functiong.

Definition 8. Left-sided and right-sided generalized
Riemann-Liouville fractional integrals of orderα ∈ R

+

are respectively defined as

Jα
a+ f (x) =

1
Γ (α)

x
∫

a

(x− t)α−1 f (t)dt,

0≤ a< x≤ g(b), (5)

and

Jα
g(b)− f (x) =

1
Γ (α)

g(b)
∫

x

(t − x)α−1 f (t)dt,

0≤ a< x≤ g(b), (6)

whereΓ (x) =
∞
∫

0
e−ttx−1dt, x> 0 is the gamma function.

It is clear from (5) and (6) thatJα
a+ f (a) = 0, and

Jα
g(b)− f (g(b)) = 0. For g = I , where I is the identity

function then above definition of generalized
Riemann-Liouville fractional integrals reduces to the
definition of classical Riemann-Liouville fractional
integrals, see [13,15,16].

3 Hermite-Hadamard inequalities

In this section we derive some Hermite-Hadamard type of
integral inequalities for relative convex functions. From
now onward Throughout this sectionKg = [a,g(b)] be the
interval unless otherwise specified.

Theorem 3([19]). Let f : Kg → R be a relative convex
function. Then, we have

f

(

a+g(b)
2

)

≤
1

g(b)−a

g(b)
∫

a

f (x)dx≤
f (a)+ f (g(b))

2
. (7)

The inequality (7) is the extension of classical
Hermite-Hadamard inequality for relative convex
functions. For g = I where I is identity function,
inequality (7) reduces to classical Hermite-Hadamard
inequality.

Theorem 4. Let f,w : Kg → R be relative convex
functions. Then for all t∈ [0,1], we have

2 f

(

a+g(b)
2

)

w

(

a+g(b)
2

)

−

[

1
6

M( f ,w;a,g(b))+
1
2

N( f ,w;a,g(b))

]

≤
1

g(b)−a

g(b)
∫

a

f (x)w(x)dx

≤
1
3

M( f ,w;a,g(b))+
1
6

N( f ,w;a,g(b)),

where

M( f ,w;a,g(b)) = f (a)w(a)+ f (g(b))w(g(b)), (8)
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and

N( f ,w;a,g(b)) = f (a)w(g(b))+ f (g(b))w(a). (9)

Proof.Let

f

(

a+g(b)
2

)

w

(

a+g(b)
2

)

= f

(

ta+(1− t)g(b)+(1− t)a+ tg(b)
2

)

×w

(

ta+(1− t)g(b)+(1− t)a+ tg(b)
2

)

≤
1
2
[ f (ta+(1− t)g(b))+ f ((1− t)a+ tg(b))]

×
1
2
[w(ta+(1− t)g(b))+w((1− t)a+ tg(b))]

=
1
4
[ f (ta+(1− t)g(b))w(ta+(1− t)g(b))

+ f ((1− t)a+ tg(b))w((1− t)a+ tg(b))]

+
1
4
[ f (ta+(1− t)g(b))w((1− t)a+ tg(b))

+ f ((1− t)a+ tg(b))w(ta+(1− t)g(b))]

≤
1
4
[ f (ta+(1− t)g(b))w(ta+(1− t)g(b))

+ f ((1− t)a+ tg(b))w((1− t)a+ tg(b))]

+
1
4
[t f (a)+(1− t) f (g(b)))((1− t)w(a)+ tw(g(b)))

+((1− t) f (a)+ t f (g(b)))(tw(a)+(1− t)w(g(b)))]

=
1
4
[ f (ta+(1− t)g(b))w(ta+(1− t)g(b))

+ f ((1− t)a+ tg(b))w((1− t)a+ tg(b))]

+
1
4
[2t(1− t)( f (a)w(a)+ f (g(b))w(g(b)))

+(t2+(1− t)2)( f (g(b))w(a)+ f (a)w(g(b)))
]

.

Integrating with respect tot on [0,1], we have

f

(

a+g(b)
2

)

w

(

a+g(b)
2

)

≤
1
4





2
g(b)−a

g(b)
∫

a

f (x)w(x)dx





+
1
2

[

1
6

M( f ,w;a,g(b))+
1
3

N( f ,w;a,g(b))

]

.

This implies that

2 f

(

a+g(b)
2

)

w

(

a+g(b)
2

)

−

[

1
6

M( f ,w;a,g(b))+
1
3

N( f ,w;a,g(b))

]

≤
1

g(b)−a

g(b)
∫

a

f (x)w(x)dx.

Also

f (ta+(1− t)g(b))w(ta+(1− t)g(b))

≤ [t f (a)+ (1− t) f (g(b))][tw(a)+ (1− t)w(g(b))].

Integrating above inequality with respect tot on [0,1], we
have

1
g(b)−a

g(b)
∫

a

f (x)w(x)dx

≤
1
3

M( f ,w;a,g(b))+
1
6

N( f ,w;a,g(b)).

This completes the proof.⊓⊔

Theorem 5. Let f,w : Kg → R be similarly ordered and
relative convex functions on Kg. Then for all t∈ [0,1], we
have

2 f

(

a+g(b)
2

)

w

(

a+g(b)
2

)

−
1
4

M( f ,w;a,g(b))

≤
1

g(b)−a

g(b)
∫

a

f (x)w(x)dx≤
1
2

M( f ,w;a,g(b)),

where M( f ,w;a,g(b)) is given by(8).

Proof. Using the fact thatf and w are similarly ordered
functions, proof follows from Theorem 4.⊓⊔

Theorem 6.Let f be relative convex function, then for all
λ ∈ (0,1), we have

f

(

a+g(b)
2

)

≤ ∆1(λ ) ≤
1

g(b)−a

g(b)
∫

a

f (x)dx

≤ ∆2(λ )≤
f (a)+ f (g(b))

2
, (10)

where

∆1(λ ) = λ f

(

(2−λ )a+λg(b)
2

)

+(1−λ ) f

(

(1−λ )a+(1+λ )g(b)
2

)

, (11)

and

∆2(λ ) =
f ((1−λ )a+λg(b))+λ f (a)+(1−λ ) f (g(b))

2
. (12)

Now essentially using the technique of [12] one can prove
following result. This result plays a key role in proving our
next result.

Lemma 1. If f (n)(x) for n∈ N exists and is integrable on
[a,g(b)], then

Ξ (a,g(b);k;n; f )

=
(g(b)−a)n

2n!

1
∫

0

tn−1(n−2t) f (n)(ta+(1− t)g(b))dt,

where

Ξ (a,g(b);k;n; f ) =
f (a)+ f (g(b))

2
−

1
g(b)−a

g(b)
∫

a

f (x)dx

−
n−1

∑
k=2

(k−1)(g(b)−a)k

2(k+1)!
f (k)(a)
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Theorem 7.Let f : Kg → R be n-times differentiable and
integrable on Kg. If | f (n)|q where q> 1 is relative convex
function, then

|Ξ (a,g(b);k;n; f )|

≤
(g(b)−a)n

2n!

(

n−1
n+1

)1− 1
q (

G1| f
(n)(a)|q+G2| f

(n)(g(b))|q
)

1
q
,

where

G1 =
n2−2

(n+1)(n+2)
,

and

G2 =
n

(n+1)(n+2)
,

respectively.

Proof. Using Lemma 1, power-mean inequality and the
fact that| f (n)|q is relative convex function, we have

|Ξ (a,g(b);k;n; f )|

=

∣

∣

∣

∣

∣

∣

(g(b)−a)n

2n!

1
∫

0

tn−1(n−2t) f (n)(ta+(1− t)g(b))dt

∣

∣

∣

∣

∣

∣

≤
(g(b)−a)n

2n!





1
∫

0

tn−1(n−2t)dt





1− 1
q

×





1
∫

0

tn−1(n−2t)| f (n)(ta+(1− t)g(b))|qdt





1
q

≤
(g(b)−a)n

2n!

(

n−1
n+1

)1− 1
q

×





1
∫

0

tn−1(n−2t)[t| f (n)(a)|q+(1− t)| f (n)(g(b))|q]dt





1
q

=
(g(b)−a)n

2n!

(

n−1
n+1

)1− 1
q

×

(

n2−2
(n+1)(n+2)

| f (n)(a)|q+
n

(n+1)(n+2)
| f (n)(g(b))|q

)

1
q

.

This completes the proof.⊓⊔

Corollary 1. Under the assumptions of Theorem 7, if q=
1, then

|Ξ (a,g(b);k;n; f )|

≤
(g(b)−a)n

2n!

×

(

n2−2
(n+1)(n+2)

| f (n)(a)|+
n

(n+1)(n+2)
| f (n)(g(b))|

)

.

Now we derive Hermite-Hadamard type of inequalities for
relative logarithmic convex functions.

Theorem 8. Let f : Kg → (0,∞) be relative logarithmic
convex function, then for all t∈ [0,1], we have

f

(

a+g(b)
2

)

≤ exp





1
g(b)−a

g(b)
∫

a

log f (x)dx





≤
√

f (a) f (g(b)).

Theorem 9. Let f : Kg → (0,∞) be relative logarithmic
convex function, then for all t∈ [0,1], we have

f

(

a+g(b)
2

)

≤ exp





1
g(b)−a

g(b)
∫

a

log f (x)dx





≤
1

g(b)−a

g(b)
∫

a

G( f (x), f (a+g(b)−x))dx

≤
1

g(b)−a

g(b)
∫

a

f (x)dx

≤ L[ f (g(b)), f (a)]

≤ A[ f (a), f (g(b))],

where

L[ f (g(b)), f (a)] =
f (g(b))− f (a)

log f (g(b))− log f (a)
,

is the logarithmic mean,

A[ f (a), f (g(b))] =
f (a)+ f (g(b))

2
,

is the arithmetic mean, and

G[ f (a), f (g(b))] =
√

f (a) f (g(b)),

is the Geometric mean respectively.

Proof. The proof of first inequality follows directly from
Theorem 8. In order to prove second inequality, we
proceed as

G( f (x), f (a+g(b)−x)) = exp[logG( f (x), f (a+g(b)−x))] .

Integrating above inequality with respect tox on [a,g(b)],
we have

1
g(b)−a

g(b)
∫

a

G( f (x), f (a+g(b)−x))dx

=
1

g(b)−a

g(b)
∫

a

exp[logG( f (x), f (a+g(b)−x))]dx

≥ exp





1
g(b)−a

g(b)
∫

a

logG( f (x), f (a+g(b)−x)dx





= exp





1
g(b)−a

g(b)
∫

a

log f (x)+ log f (a+g(b)−x)
2

dx





= exp





1
g(b)−a

g(b)
∫

a

log f (x)dx



 .
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UsingAM−GM inequality, we have

G( f (x), f (a+g(b)−x)) ≤
f (x)+ f (a+g(b)−x)

2
.

Integrating the above inequality with respect tox on
[a,g(b)], we have

1
g(b)−a

g(b)
∫

a

G( f (x), f (a+g(b)−x))dx≤
1

g(b)−a

g(b)
∫

a

f (x)dx.

Since f is relative logarithmic convex function, so for all
t ∈ [0,1], we have

f ((1− t)a+ tg(b)) ≤ [ f (a)]1−t [ f (g(b))]t .

Integrating above inequality with respect tot on [0,1], we
have

1
g(b)−a

g(b)
∫

a

f (x)dx ≤ f (a)

1
∫

0

[

f (g(b))
f (a)

]t

dt

=
f (g(b))− f (a)

log f (g(b))− log f (a)

= L[ f (g(b)), f (a)]

≤
f (a)+ f (g(b))

2
= A[ f (a), f (g(b))].

This completes the proof.⊓⊔

Theorem 10.Let f,w : Kg → (0,∞) be relative logarithmic
convex functions, then

logw

(

a+g(b)
2

)

−
1

g(b)−a

g(b)
∫

a

logw(x)dx

≤
1

g(b)−a

g(b)
∫

a

log f (x)dx− log f

(

a+g(b)
2

)

.

Proof. Let f and g be relative logarithmic convex
functions. Then

f

(

a+g(b)
2

)

w

(

a+g(b)
2

)

= f

(

(1− t)a+ tg(b)+ ta+(1− t)g(b)
2

)

w

(

(1− t)a+ tg(b)+ ta+(1− t)g(b)
2

)

≤ [ f ((1− t)a+ tg(b)) f (ta+(1− t)g(b))]
1
2

[w((1− t)a+ tg(b))w(ta+(1− t)g(b))]
1
2 .

Taking log on both sides, we have

log

[

f

(

a+g(b)
2

)

w

(

a+g(b)
2

)]

≤
1
2
[log f ((1− t)a+ tg(b))+ log f (ta+(1− t)g(b))

+ logw((1− t)a+ tg(b))+ logw(ta+(1− t)g(b))] .

Integrating both sides of above inequality with respect tot
on [0,1], we have the required result.⊓⊔

Theorem 11.Let f,w : Kg → R be relative logarithmic
convex functions, then

1
g(b)−a

g(b)
∫

a

f (x)w(a+g(b)−x)dx

≤
[A( f (a), f (g(b)))]2+[A(w(a),w(g(b)))]2

2
.

Proof.Since f ,w be relative logarithmic convex functions,
then, we have

1
g(b)−a

g(b)
∫

a

f (x)w(a+g(b)−x)dx

=

1
∫

0

f (ta+(1− t)g(b))w((1− t)a+ tg(b))dt

≤

1
∫

0

[ f (a)]t [ f (g(b))]1−t [w(a)]1−t [w(g(b))]tdt

=

1
∫

0

[ f (g(b))]

[

f (a)
f (g(b))

]t

w(a)

[

w(g(b))
w(a)

]t

dt

= f (g(b))w(a)

1
∫

0

[

f (a)w(g(b))
f (g(b))w(a)

]t

dt

= f (g(b))w(a)

f (a)w(g(b))− f (g(b))w(a)
f (g(b))w(a)

log f (a)w(g(b))− log f (g(b))w(a)

=
f (a)w(g(b))− f (g(b))w(a)

log f (a)w(g(b))− log f (g(b))w(a)

= L[ f (a)w(g(b)), f (g(b))w(a)]

≤
f (a)w(g(b))+ f (g(b))w(a)

2
= A[ f (a)w(g(b)), f (g(b))w(a)]

≤
1
2

1
∫

0

{

[ f (ta+(1− t)g(b))]2 +[w((1− t)a+ tg(b))]2
}

dt

≤
1
2

1
∫

0

{

[ f (a)]t [ f (g(b))]1−t
}2

dt

+
1
2

1
∫

0

{

[w(a)]1−t [w(g(b))]t
}2

dt

=
[ f (g(b))]2

4

2
∫

0

[

f (a)
f (g(b))

]u

du

+
[w(a)]2

4

2
∫

0

[

w(g(b))
w(a)

]u

du

=
1
4

[ f (a)]2− [ f (g(b))]2

log f (a)− log f (g(b))
+

1
4

[w(a)]2− [w(g(b))]2

logw(a)− logw(g(b))

=
1
2

[

f (a)+ f (g(b))
2

f (a)− f (g(b))
log f (a)− log f (g(b))

]
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+
1
2

[

w(a)+w(g(b))
2

w(a)−w(g(b))
logw(a)− logw(g(b))

]

=
1
2
[A[ f (a), f (g(b))]L[ f (a), f (g(b))]]

+
1
2
[A[w(a),w(g(b))]L[w(a),w(g(b))]]

≤
1
2

[

f (a)+ f (g(b))
2

f (a)+ f (g(b))
2

]

+
1
2

[

w(a)+w(g(b))
2

w(a)+w(g(b))
2

]

=
[A( f (a), f (g(b)))]2+[A(w(a),w(g(b)))]2

2
,

which is the required result.⊓⊔

Theorem 12. Let f,w : Kg → (0,∞) be increasing and
relative logarithmic convex functions on Kg. Then, we
have

f
(

a+g(b)
2

)

L[w(a),w(g(b))]+w
(

a+g(b)
2

)

L[ f (a), f (g(b))]

≤ 1
g(b)−a

g(b)
∫

a
f (x)w(x)dx+L[ f (a)w(a), f (g(b))w(g(b))].

Proof. Let f and w are relative logarithmic convex
functions. Then, we have

f (ta+(1− t)g(b)) ≤ [ f (a)]t [ f (g(b))]1−t

w(ta+(1− t)g(b)) ≤ [w(a)]t [w(g(b))]1−t .

Now, using〈x1 − x2,x3 − x4〉 ≥ 0, (x1,x2,x3,x4 ∈ R) and
x1 < x2 < x3 < x4, we have

f (ta+(1− t)g(b))[w(a)]t [w(g(b))]1−t

+w(ta+(1− t)g(b))[ f (a)]t [ f (g(b))]1−t

≤ f (ta+(1− t)g(b))w(ta+(1− t)g(b))

+[ f (a)]t [ f (g(b))]1−t [w(a)]t [w(g(b))]1−t .

Integrating above inequalities with respect tot on[0,1], we
have

1
∫

0

f (ta+(1− t)g(b))[w(a)]t [w(g(b))]1−tdt

+

1
∫

0

w(ta+(1− t)g(b))[ f (a)]t [ f (g(b))]1−tdt

≤

1
∫

0

f (ta+(1− t)g(b))w(ta+(1− t)g(b))dt

+

1
∫

0

[ f (a)]t [ f (g(b))]1−t [w(a)]t [w(g(b))]1−tdt.

Now, sincef andw are increasing, we have

1
∫

0

f (ta+(1− t)g(b))dt

1
∫

0

[w(a)]t [w(g(b))]1−tdt

+

1
∫

0

w(ta+(1− t)g(b))dt

1
∫

0

[ f (a)]t [ f (g(b))]1−tdt

≤

1
∫

0

f (ta+(1− t)g(b))w(ta+(1− t)g(b))dt

+

1
∫

0

[ f (a)]t [ f (g(b))]1−t [w(a)]t [w(g(b))]1−tdt.

Now computing the simple integration, we have

1
g(b)−a

g(b)
∫

a

f (x)dxL[w(a),w(g(b))]

+
1

g(b)−a

g(b)
∫

a

w(x)dxL[ f (a), f (g(b))]

≤
1

g(b)−a

g(b)
∫

a

f (x)w(x)dx+L[ f (a)w(a), f (g(b))w(g(b))].

Now, using the left hand side of Hermite-Hadamard’s
inequality for relative logarithmic convex functions, we
have

f

(

a+g(b)
2

)

L[w(a),w(g(b))]

+w

(

a+g(b)
2

)

L[ f (a), f (g(b))]

≤
1

g(b)−a

g(b)
∫

a

f (x)w(x)dx+L[ f (a)w(a), f (g(b))w(g(b))].

The desired result.⊓⊔

4 Fractional Hermite-Hadamard inequalities

In this section, we give some Hermite-Hadamard type
inequalities for relative convex functions via
Riemann-Liouville fractional integrals.

Theorem 13. Let f be positive and relative convex
function also f∈ L[a,g(b)], then we have the following
inequality

f

(

a+g(b)
2

)

≤
Γ (α +1)

2(g(b)−a)α [Jα
a+ f (g(b))+Jα

g(b)− f (a)]

≤
f (a)+ f (g(b))

2
.

Proof.Since f is relative convex function, then, we have

2 f

(

a+g(b)
2

)

≤ f (ta+(1− t)g(b))+ f ((1− t)a+ tg(b)).

Multiplying both sides of above inequality bytα−1 and
then integrating it with respect tot on [0,1], we have

2
α

f

(

a+g(b)
2

)

≤

1
∫

0

tα−1 f (ta+(1− t)g(b))dt+

1
∫

0

tα−1 f ((1− t)a+ tg(b))dt.
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Let u= g(b)− t(g(b)−a) andv= a+ t(g(b)−a). Then,
from above inequality, we have

2
α

f

(

a+g(b)
2

)

≤

g(b)
∫

a

(

g(b)−u
g(b)−a

)α−1

f (u)
du

g(b)−a

+

g(b)
∫

a

(

v−a
g(b)−a

)α−1

f (v)
dv

g(b)−a

=
1

(g(b)−a)α







g(b)
∫

a

(g(b)−u)α−1 f (u)du

+

g(b)
∫

a

(v−a)α−1 f (v)dv







=
Γ (α)

(g(b)−a)α







1
Γ (α)

g(b)
∫

a

(g(b)−u)α−1 f (u)du

+
1

Γ (α)

g(b)
∫

a

(v−a)α−1 f (v)dv







=
Γ (α)

(g(b)−a)α [Jα
a+ f (g(b))+Jα

g(b)− f (a)]. (13)

Also

f (ta+(1− t)g(b))+ f ((1− t)a+ tg(b))

≤ t f (a)+(1− t) f (g(b))+(1− t) f (a)+ t f (g(b))

= f (a)+ f (g(b)),

Multiplying both sides of above inequality bytα−1 and
integrating with respect tot on [0,1], we have

1
∫

0

tα−1 f (ta+(1− t)g(b))dt+

1
∫

0

tα−1 f ((1− t)a+ tg(b))dt

≤ { f (a)+ f (g(b))}

1
∫

0

tα−1dt,

Now by simple computation and using the definitions of
Riemann-Liouville integrals, we have

Γ (α)

(g(b)−a)α [Jα
a+ f (g(b))+Jα

g(b)− f (a)]≤
f (a)+ f (g(b))

α
. (14)

After combining (13) and (14) and simple
rearrangements, we have the required result.⊓⊔

Now using the techniques of [31,34], one can prove the
following results respectively.

Lemma 2.Let f : Kg → R be a differentiable function on
K◦

g . If f ′ ∈ L[a,g(b)], then

f (a)+ f (g(b))
2

−
Γ (α +1)

2(g(b)−a)α

[

Jα
a+ f (g(b))+Jα

(g(b))−
f (a)

]

=
g(b)−a

2

1
∫

0

((1− t)α − tα ) f ′(ta+(1− t)g(b))dt.

Lemma 3.Let f : Kg →R be twice differentiable function
on K◦

g. If f ′′ ∈ L[a,g(b)], then

f (a)+ f (g(b))
2

−
Γ (α +1)

2(g(b)−a)α

[

Jα
a+ f (g(b))+Jα

(g(b))−
f (a)

]

=
(g(b)−a)2

2

1
∫

0

1− (1− t)α+1− tα+1

α +1
f ′′(ta+(1− t)g(b))dt.

Theorem 14.Let f : Kg → R be a differentiable function
on K◦

g and f′ ∈ L[a,g(b)]. If | f ′| is relative convex on Kg,
then
∣

∣

∣

∣

f (a)+ f (g(b))
2

−
Γ (α +1)

2(g(b)−a)α

[

Jα
a+ f (g(b))+Jα

(g(b))−
f (a)

]

∣

∣

∣

∣

≤
g(b)−a
2(α +1)

(

1−
1

2α

)

[

| f ′(a)|+ | f ′(g(b))|
]

.

Proof. Using Lemma 2 and the fact that| f ′| is relative
convex, we have
∣

∣

∣

∣

f (a)+ f (g(b))
2

−
Γ (α +1)

2(g(b)−a)α

[

Jα
a+ f (g(b))+Jα

(g(b))−
f (a)

]

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

g(b)−a
2

1
∫

0

((1− t)α − tα ) f ′(ta+(1− t)g(b))dt

∣

∣

∣

∣

∣

∣

≤
g(b)−a

2

1
∫

0

|(1− t)α − tα || f ′(ta+(1− t)g(b))|dt

≤
g(b)−a

2

1
∫

0

|(1− t)α − tα |[t| f ′(a)|+(1− t)| f ′(g(b))|]dt

≤
g(b)−a

2







1
2

∫

0

[(1− t)α − tα ][t| f ′(a)|+(1− t)| f ′(g(b))|]dt

+

1
∫

1
2

[(tα − (1− t)α )][t| f ′(a)|+(1− t)| f ′(g(b))|]dt







=
g(b)−a

2
[I1+ I2]. (15)

Now

I1 =

1
2

∫

0

[(1− t)α − tα ][t| f ′(a)|+(1− t)| f ′(g(b))|]dt

= | f ′(a)|

[

1
(α +1)(α +2)

−

( 1
2

)α+1

α +1

]

+| f ′(g(b))|

[

1
α +2

−

( 1
2

)α+1

α +1

]

, (16)

and

I2 =

1
∫

1
2

[tα(1− t)α ][t| f ′(a)|+(1− t)| f ′(g(b))|]dt
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= | f ′(a)|

[

1
α +2

−

( 1
2

)α+1

α +1

]

+| f ′(g(b))|

[

1
(α +1)(α +2)

−

( 1
2

)α+1

α +1

]

. (17)

Combining (15), (16) and (17) completes the proof.⊓⊔

Theorem 15. Let f : Kg → R be twice differentiable
function on K◦g and f′′ ∈ L[a,g(b)]. If | f ′′| is relative
convex on Kg, then
∣

∣

∣

∣

f (a)+ f (g(b))
2

−
Γ (α +1)

2(g(b)−a)α

[

Jα
a+ f (g(b))+Jα

(g(b))−
f (a)

]

∣

∣

∣

∣

=
α(g(b)−a)2

2(α +1)(α +2)

(

| f ′′(a)|+ | f ′′(g(b))|
2

)

.

Proof. Using Lemma 3, the proof directly follows from
Theorem 14. ⊓⊔

5 Relativeh-convex functions

In this section, we investigate the class of relativeh-convex
functions and also discuss some special cases.

Definition 9. A function f : Kg → H is said to be relative
h-convex function with respect to two functions h: [0,1]→
(0,∞) and g: H → H such that Kg is a relative convex set,
we have

f ((1− t)x+ tg(y))≤ h(1− t) f (x)+h(t) f (g(y)),

∀x,y∈ H : x,g(y) ∈ Kg, t ∈ (0,1). (18)

Special cases:

I. If we take h(t) = t then we have the definition of
relative convex function.
II. If we take h(t) = t−1 in (18), then the definition of
relative h-convex function reduces to the definition of
relative Godunova-Levin function.

Definition 10. A function f : Kg → H is said to be relative
Godunova-Levin function with respect to g: H → H, if

f ((1− t)x+ tg(y))≤ (1− t)−1 f (x)+ t−1 f (g(y)),

∀x,y∈ H : x,g(y) ∈ Kg, t ∈ (0,1). (19)

III. If we take h(t) = ts in (18), then the definition of
relative h-convex function reduces to the definition of
relatives-convex function.

Definition 11. A function f : Kg → [0,∞) is said to be
relative s-convex function where s∈ (0,1] with respect to
function g: H → H, such that

f ((1− t)x+g(y))≤ (1− t)s f (x)+ ts f (g(y))

∀x,y∈ [0,∞) : x,g(y) ∈ Kg, t ∈ [0,1]. (20)

IV. If we take h(t) = 1 in (18), then the definition of
relative h-convex function reduces to the definition of
relativeP-function.

Definition 12. A function f : Kg → H is said to be relative
P-function with respect to function g: H → H, such that

f ((1− t)x+ tg(y))≤ f (x)+ f (g(y))

∀x,y∈ Kg : x,g(y) ∈ Kg, t ∈ [0,1]. (21)

V. If we take h(t) = t−s in (18), then the definition of
relative h-convex function reduces to the definition of
relatives-Godunova-Levin function.

Definition 13. A function f : Kg → H is said to be relative
s-Godunova-Levin function where s∈ [0,1] with respect to
function g: H → H, such that

f ((1− t)x+ tg(y))≤ (1− t)−s f (x)+ t−s f (g(y))

∀x,y∈ Kg : x,g(y) ∈ Kg, t ∈ [0,1]. (22)

VI. If we takeg= I in (18), then the definition of relative
h-convex function reduces to the definition ofh-convex
function [33].

We now discuss some Hermite-Hadamard inequalities
related to relativeh-convex functions.

Theorem 16. Let f : Kg → R be a relative h-convex
function, such that h(1

2) 6= 0, then, we have

1

2h(1
2)

f

(

a+g(b)
2

)

≤
1

g(b)−a

g(b)
∫

a

f (x)dx

≤ [ f (a)+ f (g(b))]

1
∫

0

h(t)dt.

Remark.For h(t) = t−1,h(t) = ts, h(t) = 1 andh(t) = t−s

in Theorem 16 we have results for relative
Godunova-Levin functions, relatives-convex functions,
relative P-functions and relative s-Godunova-Levin
functions, respectively.

Theorem 17.Let f be relative h1-convex function and w
be relative h2-convex function such that h1(

1
2) 6= 0 and

h2(
1
2) 6= 0, then

[

1

2h1(
1
2)h2(

1
2)

f

(

a+g(b)
2

)

w

(

a+g(b)
2

)

]

−



M( f ,w;a,g(b))

1
∫

0

h1(t)h2(1− t)dt

+N( f ,w;a,g(b))

1
∫

0

h1(t)h2(t)dt





≤
1

g(b)−a

g(b)
∫

a

f (x)w(x)dx

≤



M( f ,w;a,g(b))

1
∫

0

h1(t)h2(t)dt

+N( f ,w;a,g(b))

1
∫

0

h1(t)h2(1− t)dt



 ,
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where, M( f ,w;a,g(b)) = f (a)w(a)+ f (g(b))w(g(b)) and
N( f ,w;a,g(b)) = f (a)w(g(b))+ f (g(b))w(a).

Proof.The proof follows directly from Theorem 4.
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