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1 Introduction and the references theirin.

The concept of convexity and its variant forms have
It is well known 29 that modern analysis directly or played a fundamental role in the development of various

indirectly involve the applications of convexity. Due te it fields. Hermite (1883) and Hadamard (1896)
applications and significant importance, the concept ofdependently have shown that the convex functions are
convexity has been extended and generalized in sever&flated to an integral inequality, this inequality is known
directions, see12,5,6,7,8,9,17,18,19,20,21,22,24,25  as Hermite-Hadamard inequality.

26,33,35]. Inspired and motivated by research going in ) .

this dynamic and fascinating field, Noa2(] introduced L&t f :1 S R — R be a convex function witla < b and

and studied a new class of convex set and convex functiof:P € I Then

with respect to an arbitrary function; which is called as b

relative convex set and relative convex function. These; @) - i/f(x)dx< f(a)+ f(b)

relative convex sets and relative convex functions are 2 “b-a - 2 '

nonconvex. It is worth mentioning that these relative a

convex sets and relative convex functions are quiteThis double inequality is known as classical
different than those of relative convex sets and relativeHermite-Hadamard inequality. For different
convex functions considered by Youne&$|[ Cristescu  generalizations and extensions of Hermite-Hadamard
et al. 4] has explored the applications of relative convex inequalities interested readers are referred.f6,[7, 8,10,

sets of Noor in the fields of transportation, colored imagel11,12,14,17,18,19,22,24,25,26,28,29,30,31,32,34].
processing and computer aided design; see example 1 and

example 2. Noor 20] has shown that optimality In this paper, we consider the Noor’s relative convex
conditions of the differentiable relative convex functon functions. We derive several new Hermite-Hadamard
can be characterized by a class of variational inequalityinequality for relative convex functions and for its vaitian
This aspect has motivated Nod( to introduce a new forms. Finally we also introduce the concept of relative
class of variational inequality, which is called general h-convex function. This class also generalizes the class of
variational inequality. For the numerical methods andrelative convex functions. The new ideas and techniques
other aspects of general variational inequalities, 2% [ used in this paper may motivate the interested readers to
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explore the applications of relative convex functions in In what follows we assume that=2 andg=E = f is
various branches of pure and applied sciences. the digitization method used in black and white picture
processing by Rosenfeld (1969) and in colored image
processing by Chassery (1978). It is defined by
2 Basic concepts and results f:R?— 7%, f(xy) = (i,]),i € Z,] € Zwhenevefx,y) €
[[—1/2,i+1/2)x[j—1/2,j+1/2).
In this section, we recall the definition of relative convex L .
sets and relative convex functions respectively. weEXample 2(f). The setA:=Bu < (i,]),(i+mj) >,
discuss some previously known results for relative convexVhenever i e Z,j € Zm ¢ Z  and
functions. BC[i—1/2,i+m+1/2)x[j—1/2,j+1/2)is an union
of triangles having one side< (i,j),(i + m,j) > is
Definition 1([20]). Let Ky be any set in H. The setgK relative convex. Indeed, considering two poirty € A,
is said to be relative convex with respect to an arbitrary there are two number& ¢ Z and | € Z such that
function g: H — H such that xeli+k—1/2ji+k+1/2) x [j —1/2,j+1/2) and
. yel i+l —1/2i+1+1/2) x [j —1/2,j + 1/2).
(1-tu+tgv) €Ky, VuvEH 1ug(v) €Kyt €[0,1] There[zforeg(y) :/(i +1,]). Th/en)for f[;myc 6{0, 1], the/re)is
Note that every convex set is relative convex, but thethe integers betweerk andl such thatx+ (1 —t)g(y) €

converse is not true, se€(. If g =1, the identity [i+s—1/2,i+s+1/2)x[j—1/2,j+1/2)C AsinceB
function, then the definition of relative convex setis an wunion of triangles having one side
recaptures the definition of classical convex set. < (i,]),(i+m,j) >. It means thaA is relative convex. In

We remark that this type of relative convex sets are calledhe same manner one can take vertical columns of pixels
Noor convex sets3 4] and are distinctly different than and obtain relative convex sets.
that of Youness's relative convex s&f.
Definition 3([20]). A function f: Ky — H is said to be
Now we give some examples of relative convex sets relative convex, if there exists an arbitrary function
which shows the significance of relative convex sets. Thesg : H — H such that

examples are mainly due to Cristescu et4dl [ F((L— U+ tg(v)) < (1—)F(U) + t(g(V)),

Example 1(#]). One of the most important goals of the VUVEH :u.aV) € Kot e 0.1 2
International Union of Railways (U.I.C.) is to enable the ’ $Ug(v) €Kyt [0.1] @

railway companies to measure the impact of their activity clearly every convex function is relative convex, but the
on the environment (see the U.I.C. guide). Theconyerse is not true. For the properties of relative convex
environment indicators in the domain of railway transport fynctions, see1s, 19, 20].

defined under U.LC. and presented into the aboveyote thatfort = 3 in (2), we have the definition of Jensen’s
mentioned guide include the level of noise, which shouldg|ative convex function. That is

be, in normal conditions, in the interv@l, 50/db(A). The

actual noise level produced by wagon§ligs 130db(A). ¢ <a+ g(b)) . f@) +f(g(b)

The noise level around the railway stations located in - 2

towns is represented by the sf@50] U[12513(. By
relocating the railway transport system outside the towns
the resulted level of noise becom@s50]. Let us denote
by g: R — R the function defined by

Definition 4([19]). The function f: Kg — (0, ) is said to
be relative logarithmic convex, if there exists an arbitrar
function g: H — H such that

if
90x) = {3 horian (D f(@-tuttgv) < (FW)(FEm)),

Y H: Kg,t € 10,1]. 3
which is the function describing the efforts of kipping the uVEH:ugy) €Kgt€[0.2) 3

normal level of sound, which works under this project. This implies that

Then the sef0,50] U [125 13( is g-convex.
logf((1—t)u+tg(v)) < (1—t)logf(u)+tlogf(g(v)),
Other examples are easy to find in the domain of Yu,veH :u,g(v) € Kg,t €[0,1].
image processing, in which a transformation of the real
plane R? into a set of grid-pointsZ? for example, is
necessary. In order to present this type of examples Weefinjtion 5([19]). The function f: Kq — H is said to be

need to choose a transformation of the space, whicheaiive quasi convex, if there exists an arbitrary funatio
performs the space digitization. The general definition ofg “H — H such that

this kind of transformations is
Definition 2. A function f: R" — Z" is said to be a method F(A-tu-+tg(v) < max{(f(u), f(g(v))},
of digitization ofR" into Z" if f (x) = x whenever x Z". VuveH:ug(v) eKgte[0,1.  (4)
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RemarkFrom inequalities (2), (3) and (4), it follows that  Definition 8. Left-sided and right-sided generalized
Riemann-Liouville fractional integrals of ordexr € R™

F((1=tu+tg(v) < (F(u) " (F(g(v) are respectively defined as
< (@-tf(u)+tfg(v)) x
< max{f(u), f(g(v))}. o f(x) — % JESERIOLS
This shows that ( )a
relativelog convex functiors relative convex functions O<a<x=<g(b), )
) and
relative quasi convex functions 1 9(b)
a _ = _y\a-1
but the converse is not true. Jg(o)- fx) = I (a / (t=x)7 " (t)dt,
X
Definition 6([18]). Let Ky = [a,9(b)] € R be the interval 0<a<x<g(b), (6)
and g: H — H be any arbitrary function. Then f is relative °
convex function, if and only if, wherel (x) = [e 't*1dt, x > 0 is the gamma function.
0
1 1 1 It is clear from (5) and (6) thatl? f(a) = 0, and
a x gb |>0; a<x<g(b). 3y f(g(b)) = 0. For g =1, wherel is the identity

a(
f(a) f(x) f(a(b)) function then above definition of generalized

From the above definition one can obtain the following Riémann-Liouville fractional integrals reduces to the
equivalent forms: definition of classical Riemann-Liouville fractional

integrals, seel[3,15,16].

1.f is relative convex function.

f(g(b))—f
2.6(x) < f(a) + 19-1E (x—a).

3 f0-f(a) o fgb)-f@) o f(gb)-f(x) 3 Hermite-Hadamard inequalities
oxa = db-a = gb-x -
f(a) f(x) f(g(b)) i i i e
4.<X7a><g(b>7a) + @B T G- Eh=x = 0. In this section we derive some Hermite-Hadamard type of
5.(g(b) —x) f(a) + (g(b) —a) f (x) + (x—a) f (g(b)) > 0. integral inequalities for relative convex functions. From

now onward Throughout this sectidfy = [a, g(b)] be the

Now we recall the definition of similarly ordered ;,iarvalunless otherwise specified.

functions. _
L . . Theorem 3([19)). Let f: Ky — R be a relative convex
Definition 7([29]). Two functions f and w are said to be fynction. Then, we have

similarly ordered (f is w-monotone), if
f(a)+ f(g(b)

(109~ (9,900 ~9(y) 0. VxycR. (202 < g [ fooaxs TEEJERL )

The inequality (7) is the extension of classical
Hermite-Hadamard inequality for relative convex

g(b)

Theorem 1. The product of two relative convex functions
f and w is again relative convex provided if f and w are
similarly ordered.

functions. Forg = | where | is identity function,
Proof. The proof is obvious. O inequality (7) reduces to classical Hermite-Hadamard
inequality.

We now discuss the optimality condition of the
differentiable relative convex functions on the relative
convex sets. This result is due to No@f[. We include it

Theorem 4. Let f,w : Ky — R be relative convex
functions. Then for all £ [0, 1], we have

for the sake of completeness. o <a+ g(b) ) w (a+ g(b))

Theorem 2([20]). Let Ky be a relative convex set in H 2 z

and let f be a differentiable relative convex function. Then _ FM(f w.a,g(b)) + }N(f.w-a g(b))}
u € Kg is the minimum of f on  if and only if, ue Kg, 6 T
satisfies a(b)

(f'(u),g(v) —u) >0, wWeH:g(v) €Kg,

g
where f(u) is the differential of f at e Kg. Inequality of < %M(f,W: a.g(b)) + }N(tw; a.g(b)),

the above type is called the general variational inequality 6
Now we define generalized Riemann-Liouville fractional where
integrals, with respect to an arbitrary functign M(f,w;a,g(b)) = f(a)w(a)+ f(g(b))w(g(b)), (8)
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and
N(f,w;a,9(b)) = f(a)w(g(b)) + f(g(b))w(a).
Proof. Let

¢ (at9b)y  (atgb)
<f (t§+(1)t)(g(b)iﬂ)t)a—i—tg(b))
2

ta+ (1—t)g(b) + (1—t)a+tg(b)
XW( : )

f(ta+ (1—-t)g(b)) + f((1—t)a+tg(b))]

IN
NI =

[w(ta+(1-t)g(b)) +w((1—-t)a+tg(b))]
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(1-t)f(a) +tf(g(b)))(tw(@) + (1—t)w(g(b)))]
ta+ (1-t)g(b
((1—-t)a+tg(b)
[2t(1-t)(f(a)w(a) + f(g(b))w(g(b)))

t2 4 (1-t)?)(f (9(b))w(a) + f(a)W(g(b)))] :

Integrating with respect tbon [0, 1], we have

; <a+3(b))w(a+éq(b)>
o, W
< [g(b)_a / f(x)w(x)dx]

+% {%M(f,w;a,g(b)H %N(ﬁW;avg(b))} :

This implies that

ot (a+§(b)>w<a+g(b))
- {%M(f,W;a,g(b))—i— %N(f,w;a,g(b))}
1 g(b)
< 4 "3 ! f(x)W(x)dx
Also
f(ta+ (1—t)g(b))w(ta+ (1—t)g(b))
<[tf(a)+(1—-t)f

—h
—

+ 4+ MNP 4+ + 4 MNP 4+ 4 DX

Nl =
N

+

—

(9(b))]ftw(a) + (1 —t)w(g(b))].

Integrating above inequality with respecttton [0, 1], we
) have

alb)
/ F(W(x)dx

9(b)-a )
1 1
< 3M(f.wiag(b) + ZN(f,wiag(b)).
This completes the proof.O

Theorem 5. Let f,w: Kg — R be similarly ordered and
relative convex functions ongKThen for all te [0, 1], we

have
2f (a+29(b)>w(a+zg(b)> _ %M(f,w;a,g(b))
1 g(b) .
=gl -a | 10owegax < SM(f.wag().

where M f,w;a,g(b)) is given by(8).

Proof. Using the fact thatf andw are similarly ordered
functions, proof follows from Theorem 4.0

Theorem 6.Let f be relative convex function, then for all
A €(0,1), we have

f<L§(b)) < M) Sg(b)l—a / f(x)dx

<AA) < (10)
where
M(A) =Af <(2—7\)32+7\9(b))
1) ((1—A)a+él+)\)g(b))7 1)
and
) = HA=MatAgb) +Af@)+A-N)i(gb) ),

2

Now essentially using the technique 2] one can prove
following result. This result plays a key role in proving our
next result.

Lemma 1.1f f("(x) for n € N exists and is integrable on
[2,g(b)], then

Z(a,g(b);k;n; f)

n 1
<9<b;n—!a> O/ t"3(n—2t) £V (tat (1—t)g(b))dlt,

where

9(b)
Z(agbyknf) = f(a)+;(g(b))—g(b)1_a [ 160

S k=1)(g(b) —a)

2, 2(k+1)! NG
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Theorem 7.Let f: Kg —> R be n-times differentiable and Theorem 8. Let f: Ky — (0,) b

integrable on K. If |f("
function, then

Z(a,g(b);k;n; )]

_a\n o l—é 1
o (ETD (It @[T+t (g(0)) .

)|9 where g> 1 is relative convex

IN

where

and

respectively.

Proof. Using Lemma 1, power-mean inequality and the

fact that|f (|9 is relative convex function, we have

|=(a,9(b);kim; )]

h 1
_ %/tnfl(n_z)f(n)(ta.q_(1—t)g(b))dt

1-1
q
n-1
= 2n| (/t n 2[ )

1 €
X (/t”l(n— 20)| " (ta+ (1—t)9(b))th)

0

. <g<b;r;a>" (H)lé
)

(n—20)]
_ <g<b2r:a>” (L:Dl

" n—20) [t/ @)+ (1-1)] f<”)(9(b))lq}dt)
|

al-

110 (@) 4 \f<”><g<b>>\‘*)

n—2 n
X((n+1)(n+2) N+ 1)(n+2)

This completes the proof.O

Corollary 1. Under the assumptions of Theorem 7, i£q
1, then

Z(a,g(b);k;n; f)]

(g(b) —a)"

<
- 2n!

(n)
I <g<b>>\).

n n
LCTES (n+1)(n+2

n2—2
x <(n+l)(n+2)

Now we derive Hermite-Hadamard type of inequalities for _ exp

relative logarithmic convex functions.

e relative logarithmic

convex function, then for all4 [0, 1], we have
(b)

f(a+§(b)) <exp[ i

J [orisnd

<V f@f(g(b)).

Theorem 9. Let f: Ky — (0,0) b
convex function, then for all¢ [0,1],
)

a(b

f(a+§1(b)) <eXp[W1—aa/ gf(x)dx]

e relative logarithmic
we have

is the arithmetic mean, and

G[f(a), f(g(h))] = v f(a)f(g(b)),
is the Geometric mean respectively.
Proof. The proof of first inequality follows directly from

Theorem 8. In order to prove second inequality, we
proceed as
G(f(x). f(a+g(b) —x)) = expllogG(f (x), f (a-+g(b) —x))]

Integrating above inequality with respectton [a, g(b)],
we have
9(b)

G(f(x), f(a+g(b) —x))dx

QJ
m\

g(b)

/ expllogG(f(x), f(a+g(b) —x))] dx

—a

i g(b)

/ logG(f (%), f (a+g(b) —x)dx]

R ECEY!

)
| 1 | log f (x) + log ;(a+g(b)—x) dx]
a
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UsingAM — GM inequality, we have

G(f(x), f X)) < f(X)+f(a2-|—g(b)_x)'

Integrating the above inequality with respect xoon
[a,9(b)], we have

(a+g(b) -

1 g(b) L g(b)
50— / G(1().f(a+g(b) ~X)dx< / f(x)dx

Sincef is relative logarithmic convex function, so for all
t € [0,1], we have

f((1-ta+tg(b)) < [f(a)* [f(g(b))]"

Integrating above inequality with respecttton [0, 1], we
have

This completes the proof.D

Theorem 10.Let f,w: Kg— (0, ) be relative logarithmic
convex functions, then
/ logw(x)

Iogw(eH_g )
< g(b);—a / log f (x)dx—log f (Lg(b)) .

a(b)
Proof. Let f and g be relative logarithmic convex
functions. Then

((a+gb)\  (atglb)
<f ((it))a—l—t(g(b)ita%)— (1—t)g(b))
2

(1-t)a+tg(b) +ta+ (1—-t)g(b)
( : )

<[f((1-t)a+tg(b))f (ta+ (1—t)g(b))] 2
W((1—t)a-+tg(b))w(ta-+ (1—t)g(b))] 2.
Taking log on both sides, we have

| ()2

logf((1—t)a+tg(b))+log f(ta+ (1—t)g(b))
+logw((1—t)a+tg(b)) +logw(ta+ (1—t)g(b))].

I\)ll—‘

Integrating both sides of above inequality with respedt to

on [0, 1], we have the required resultO

Theorem 11.Let f,w: Kg — R be relative logarithmic
convex functions, then

Proof. Sincef,w be relative logarithmic convex functions,
then, we have

Lo
/ f(xw(a+g(b) —

x)dx

_ b))w(a)
= OO o T (awig(b) —log F(aB)w(a)
__ f(a)w(g(b) — f(g(b)w(a)
log f(a)w(g(b)) — Tog f(g(b) w(a)
— L[ ()w(g(b)), F((b)w(a)
f(a)w(g(b)) + f (g(b)w(a)
2
— Al (@w(g(b), f (g(b)w(a)]
< [{if(ta+ @-0gb)P + [w(-va+tgb)) ot
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1
1 [w(a)+w(g(b))  w(a)—w(g(b))
+§{ . logw(a) —Togw(g(b ))} O/f (ta+ (1—t)g(b))w(ta+ (1—t)g(b))dt
= % [Alf(a), f(g(b)IL[f(a), f(g(b))]]
1 - / )~ (@) [w(g(b) | et
+5 [Aw(@), w(g(b)) L [w(a), w(g(b))]]
<@+ fgb) f(a)+ f(g(b))} Now computing the simple integration, we have
-2 2 2
9(b)
1 [w(a) +w(g(b)) w(a) +w(g(b)) ‘
3 |25 o] s | T9eRnta)walo)
_ [A(f (@), f(g(b)))* + [A(w(@), w(g(b)))]? , b
2 dxL[f (), f (g(b
which is the required result.00 "B -a a/ HOOBET (@ b))
Theorem 12. Let f,w: Kg — (0,») be increasing and 1 W
relative logarithmic convex functions ongKThen, we < ™ / FOOw(x)dx+L[f(a)w(a), f(g(b))w(g(b))].
have a

Now, using the left hand side of Hermite-Hadamard’s
inequality for relative logarithmic convex functions, we
have

¢ (%g(b)) Liw(a), w(g(b))]

(242 Lwia), wig(b))] +w (242 ) L[ (a), f(g(b))]

(b)
- i (w(x)dx+L[f(a)w(a), f(g(b))w(g(b))].

Proof. Let f and w are relative logarithmic convex
functions. Then, we have
fta+ (1-t)g(b)) < [f(@)]'[f(g(b))]*" "
w(ta+ (1 —t)g(b)) < [w(a)]'[w(g(b))* . :
Now, USING (s — Yo% - Xa) > 0, (e soae CB) and = T3 / f(x)w(x)dx-+L[f (a)w(a), f (g(b))w(g(b))]-
X1 < X2 < X3 < X4, We have _
The desired result. O
f(ta+(1—t)g(b))[w(@)]' w(g(b))]* !
+w(ta+ (1—t)g(b))[f (a)]'[f (g(b))]*
< f(ta+ (1-t)g(b))w(ta+ (1—t)g(b))
+[f ()] [f (g(b))]* ()] [w(g(b))]* .

Integrating above inequalities with respect tm [0, 1], we
have

4 Fractional Hermite-Hadamard inequalities

In this section, we give some Hermite-Hadamard type
inequalities for relative convex functions via
Riemann-Liouville fractional integrals.

Theorem 13. Let f be positive and relative convex
function also fe L[a,g(b)], then we have the following

)[w(@)]' w(g(b))]*dt

) inequality
+ 0/ w(ta+ (1-t)g(b)) [ f(a)]![f(g(b))]* el f (a+ g@) <, (g (f)j 2) 192 (g(b)) + 3¢, ()]
i _ f@+f(gb)
g/ f(ta-+ (1—t)g(b))w(ta+ (1—t)g(b))dt - 2 '
0 Proof.Sincef is relative convex function, then, we have

)]+ [w(@)]" [w(g(b))J*"dt.

Now, sincef andw are increasing, we have
))dt /
1

1
+ [ wita (1-g(b)t [ [1(@)][F(g(b))* et
0

0

1

/ (ta+(1-t)g

0

1 tdt

2t (Lg(b)) < f(ta+ (1-t)g(b)) + F((1—t)a+tg(b)).

Multiplying both sides of above inequality by~ and
then integrating it with respect toon [0, 1], we have

gf(aJrg(b))

1 1
< /t"*lf(ta—k(1—t)g(b))dt+/t"’*lf((l—t)a—ktg(b))dt.
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Letu=g(b) —t(g(b) —a) andv=a+t(g(b) —
from above inequality, we have

2 (a+ ég(b) )
g(b)

na-1
</ Gos) ana

a). Then,

—h

(13)

Also
f(ta+ (1—t)g(b))+ f((1—t)a+tg(b))
<tf(a)+(1-t)f(g(b)) + (1-t)f(a) +tf(g(b))
= f(a)+f(g(b)).
Multiplying both sides of above inequality by —* and
integrating with respect toon [0, 1], we have
1 1

/‘tﬂflf(taﬂl—t)g(b))du /'tf’*lf((l—t)aﬂg(b))dt

Lemma 3.Let f: Kg — R be twice differentiable function
on Kg. If f” € L[a,g(b)], then

f(a)+ 2f<g<b)) ~ 2(g ((s)j 2) 38 F(a(0)) + 38, - ()
2 1 . _+\a+1l_ o+l
:(g(b)z 3) /1 (1 ;):1 7 a1 tyg()dt

Theorem 14.Let f: Kg — R be a differentiable function
onKj and f € L[a,g(b )] If || is relative convex on &
then

f@+f(gb) T(a+l) [ )
‘ 2 " 2(g(b)—a)? [Ja+f(g(b))+3(g(b)),f(a)]
: st)l S (1‘ 2i) ('@ -+ (a(b))]] -

Proof. Using Lemma 2 and the fact that’| is relative
convex, we have
f(a)+f(gh) r(a+1)
2 2(g(b) —a)7

(36 1(g(0)) + 9%, (2]

1
g(b)—a/((l )% —t%)f'(ta+ (1—t)g(b))dt

2

0

1
< g(b)z_a/\(l )% —t9|f'(ta+ (1—t)g(b))|dt

0
- g(b)—a/l(l )% —t9[t|'(a)| + (1 t)| f'(g(b)) [Jdt
- 2

0

< S0 {/ [(1-0)% —t9][t](@)|+ (1~ )| ((b) It
0

1
+ [l - @)+ (10l (gl ))Hdt}
<{f(a / ta-1qt, 1
. o _gb=a, Ly (15)
Now by simple computatlon and using the definitions of 2
Riemann-Liouville integrals, we have Now
@)  a a f(a)+ f(g(b))
W[‘]‘ﬁ f(9(b) +Jyp)- f(@)] < — - 14 o
After combining (13) and (14) and simple 1 / (A=) =t][t| ' (@) + (1= t)[F"(g(b))[Jdt
rearrangements, we have the required restit. 0
a+1
Now using the techniques 081,34], one can prove the —f'(a)| 1 _ (2)
following results respectively. (a+1)(a+2) a+1
Lemma 2.Let f: Ky — R be a differentiable function on 1 (;)“*1
Kg- If f" € L[a,g(b)], then +['(g(b))| at2 " 2+1 (16)
fl@+flgb) ra+l) r. a
2 " 2(g(b) —a)® SRCCIES ARG and

1-1)7 —tM)f'(ta+ (1 —t)g(b))dt.

1
_gb)—a s
-2 !((
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1 a+1
“ir@l| - 2
(l)Gle
+1(g(0)] @+)@a+2) aii | (7

Combining (15), (16) and (17) completes the prodf]

Theorem 15. Let f: Kg — R be twice differentiable
function on K and ' € L[a,g(b)]. If |[f"] is relative
convex on i, then

f(@+f(gb) Tr(a+l) 1.4 a
2~ agh) a5 OO+, 1@
__a(gb)—a)? (\f”(a)|+\f”(g(b))\)
2a+1)(a+2) 2

Proof. Using Lemma 3, the proof directly follows from
Theorem 14. O

5 Relative h-convex functions

In this section, we investigate the class of relativeonvex
functions and also discuss some special cases.

Definition 9. A function f: Ky — H is said to be relative
h-convex function with respect to two functiong® 1] —
(0,00) and g: H — H such that k is a relative convex set,
we have

f((1-t)x+tg(y)) <h(1—-t)f(x)+h(t)f(g(y)),
Vx,y € H:x,g(y) € Kg,t € (0,1).

Special cases:

(18)

I. If we take h(t) =t then we have the definition of
relative convex function.

Il. If we take h(t) =t=! in (18), then the definition of
relative h-convex function reduces to the definition of
relative Godunova-Levin function.

Definition 10. A function f: Ky — H is said to be relative
Godunova-Levin function with respect tolg — H, if

F(L—t)x+tg(y)) < (1—t) )+t (g(y)),
vx,y e H:x,0(y) € Kg,t € (0,1). (19)

I. If we take h(t) = t° in (18), then the definition of
relative h-convex function reduces to the definition of
relatives-convex function.

Definition 11. A function f: Kg — [0,) is said to be
relative s-convex function wheress(0, 1] with respect to
function g: H — H, such that

F((1-0)x+g(y)) < (1-1)°F(x) +t°F(g(y))
Ux,y € [0,0) :1x,g(y) € Kg,t €[0,1].  (20)
IV. If we take h(t) = 1 in (18), then the definition of

relative h-convex function reduces to the definition of
relativeP-function.

Definition 12. A function f: Ky — H is said to be relative
P-function with respect to function:dd — H, such that

FI(1-t)x+tg(y)) < f(x) + f(a(y)
WX,y € Kg:x,9(y) € Kg, t € [0,1]. (22)
V. If we take h(t) =t~° in (18), then the definition of

relative h-convex function reduces to the definition of
relatives-Godunova-Levin function.

Definition 13. A function f: Ky — H is said to be relative
s-Godunova-Levin function whereg0, 1] with respect to
function g: H — H, such that

FIL—t)x+tg(y)) < (1-1)>F(x) +t>F(g(y))
Vxy e Kg:x9(y) € Kg, t €[0,1]. (22)
VI. If we takeg = I in (18), then the definition of relative

h-convex function reduces to the definition lofconvex
function [33].

We now discuss some Hermite-Hadamard inequalities
related to relativéa-convex functions.

Theorem 16. Let f: Ky — R be a relative h-convex
function, such that () # 0, then, we have

g(b)
1 a+g(b)
Zh(%)f( : ) Sg(b)—a/ f(x)dx

a

1
< [1(@)+ 1(g(b)] [ hit)dt.
0

RemarkForh(t) =t=1 h(t) =t h(t) = 1 andh(t) =t~

in Theorem 16 we have results for relative
Godunova-Levin functions, relative-convex functions,
relative P-functions and relative ssGodunova-Levin
functions, respectively.

Theorem 17.Let f be relative h-convex function and w
be relative h-convex function such thatlh%) # 0 and
ha(3) # 0, then

{2n@;n@>f(a+3mX>W(a+gm)]

1

M(f7w;a7g(b))/hl(t)hz(l—t)dt
0

1
+N(f7w;a7g(b))/hl(t)hg(t)dt]
0

g(b

)
/ F(W(x)dx

“olb)-a )

1
M(f,w;a,g(b))/hl(t)hz(t)dt
0

<

+N(f7w;a7g(b))/hl(t)hg(l—t)dt] 7
0
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where, M f,w;a,g(b)) = f(a)w(a)+ f(g(b))w(g(b)) and
N(f,w;a,9(b)) = f(a)w(g(b)) + f(g(b))w(a).

Proof. The proof follows directly from Theorem 4.
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