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Abstract: We study the structure of generators of the Banach algeémg') [0, 1],:;) and (WF(,”) [0, 1],@), whereg denotes
the convolution produc%r defined by(f ;g) (x) := [5 f(x+a—t)g(t)dt, and the so-called Duhamel produgt We also give

some description of cyclic vectors of usual convolutionrapars acting in the Sobolev spa\bﬁﬁn) [0,1] by the formulaKyf (x) =
Jok(x=1) f (t)dy.
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1 Introduction In this article, we consider the Banach algebra
W,g”) [0,1] and describe its all x-generators and

() .\
LetWp := W%Jg’ J1=p<e) be(znghe Sobolev space ®-generators (see Theorem 2 in Section 3 and Corollary 1
of functionsC*""[0,1] such thatf™ < Lp[0,1]. The  j; ‘Section 2). We also study cyclic vectors of some
norm inWé”) is defined by convolution operators (see Theorem 1 in Section 2).

¥l =11 Pl + |7

Lp . .
b 2 Cyclic vectors of convolution operators

It is easy to verify thaw,gn) is a Banach algebra with

respect to the classical convolution product In Wp”) [0,1], the Duhamel product is defined (see, for
instance 1,4]) by the following formula:

<f*g><x>=0/f<x—t>g<t>dt. (feg 0= [ fx-ng@ar

X
We will denote then-th convolution power byf*" = f =/0 f'(x=t)g(t)dt+f(0)g(x), (1)
ok fl

(n) * _ _
Foranyf e Wy [0,1], f7(0) =0, n= 1727?;1)'"7 SO where f,g € Wy [0,1]. One can use results of
that it is clear that a necessary condition for Wy’ [0, 1] operational calculus9] (see also 4]) to show that

to generatwp”) [0,1], that is W,g”) [0,1] is commutative and associative algebra with
respect to the Duhamel produet and it is clear fron{1)
span{f,fxf, fxfxf,. .} :Wé") 0,1], that an identity function 1 is the unit for the algebra

) o o o (Wé”) 0, 1],@). It is also easy to verify that actually
is that f (0) # 0. But it is not known if this condition is )
sufficient. (Wp 0, 1],@) is a Banach algebra (see, for instance,
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Karaev f]). The operator By induction we obtain that
72¢9:=f®g HMf=F®.oF)@f=F*"®f=2(F*"

is called the Duhamel operator associated with theform=0,1,2,..., from which we have
function f € W [0,1]. Mt m> 0l — oM. s

Let us consider the usual convolution operatty on span{."f :m> 0} = span{ 7 :m> 0
W,S”) 0,1] : = P¢span{F®M: m> 0}.

X Now, since {F®M™:m>0} is a complete system in
/ K{x—t @) W,S”) [0,1], by applying Lemma 1, it is easy to show that

f € Cyc(#) if and only if f(0) # 0 (because it is
wherek € WS" [0,1] is a fixed function. Here we shall immediate from Lemma 1 that the Duhamel operatgr
examine cyclic vectors of the operatofy. Recall that s invertible in W,S”) if and only if f(0) # 0), which

fe Wf,”) [0,1] is a cyclic vector for#y if the vectors proves the theorem.
f, 068, H2F, . AT 3 x-generators ofwy" [0,1]
Here we will consider the following convolutional product
span the aIgebM/,g”) [0,1], that is, % which is defined by the formula
span{.#"f : k> 0} = clos lin{#"f : m> 0} =Wg" 0,1]. (fz0) 0= [ 1 x+a-vgat

Clearly, wherk € Cyc(#x) (the set of all cyclic vectors of
the operator#), this is just a problem of descriptionef  for any two functionsf,g € Wp (n) [0,1], wherea € [0, 1)
generators of the Banach aIget(M/p”) [0,1], ) Recall  is a fixed number. Itis not difficult to prove th% [0,1]

that about description of generators of the Banach algebrai§ @ commutative Banach algebra with respect to the
of smooth functions is initiated by Ginsberg and Newmanconvolutional product (we omit it). We will denote the

in [2]. correspondmg* convolut|on operator by the symbol
The following key lemma can be proved by the sameK
methods as in4,5,6,7,8,10], and therefore omitted.

Ke.a@() = (:9) ().
Lemma 1Let ferén> [0,1]. Then f is®-invertible if and our followi it ai h i ationef
only if  (0) £ 0. ur following result gives some characterizatiorxe

i (n)
An immediate corollary of Lemma 1, is the following, ger?erfi\tors of the radical Bana(?h algeé\% [0,4] ’Zk:) ’
which characterizesy-generators of the Banach algebra Which is the main result of Section 3.

(Wé”) [0,1] ,@) : Theorem 2Let f € W [0,1] and f(a) # 0. Then f is a

) x-generator of the algebréwp [0,1], )if and only if
Corollary 1.The function fe Wy’ [0,1] generates the ¢ a

Banach algebrs Wy 0,1],®) if and only if f(0) 0. Span{L.F, i oF, #7F, ...} =WV 0,1],

Theorem 1Let ke WS" [0,1], f € WS [0,1] be two  Where F(x) = [ f (t)dt
functions and % be a corresponding convolution
operator defined b)(Z) Let us denote E= [J'k(t ) dt.
Suppose that{F®M}>  (for m =0 we putl) is a
complete system mW [0,1]. Then fe Cyc(#) if and
only if f(0) # 0.

ProofNote that it is not difficult to see that the method of
the Karaev's paper] allow us to prove that the Sobolev
spaceWén> [0,1] is also Banach algebra with respect to the
product®, which is defined by

a

ProofWe use the similar arguments irb][ Clearly, f®g=£/xf(x+a—t)g(t)dt
F’(x) = k(x). Therefore, for everg € WF(,") [0,1] we have
Therefore, "the a-Duhamel operator”
(#4Q) (X / k(x—t)g / F(x—t)g D a0 = %f;f(m—a—t)g(t)dt is a bounded operator
—(Fog)(x). in (wg,m [0,1],%), and || Ztal| = [|flly - Since
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F'(x) = f(x), we have (see the proof of Theorem 1) From this, by considering that the conditidna) # 0

Hta = Yra, that is Hia9 = Zrqg for all
ge W, [0,1]. In particular,

(v%/f,af)( ) (-@Faf

/fx+a—t (t)dt

:/ t (x-+a —t)F (t)dt+ f (a) F (x)
= (-@f,aF) (X)a

where%s 4 is an invertible operator |Wé ) [0,

1], because

means invertibility of the corresponding Duhamel
operatorZs o, we deduce that

—_wm
span{f,fzf,fgfzf,...}_wp [0,1]
if and only if

Span{17 Fw%/ﬁal:a‘%/f?al:?'“} :WF()m [07 1]5

which proves Theorem 2.

it can be also shown by the similar arguments of the paper

by Gurdal and Sohref] that elementf € wi" >,®> is
a
invertible if and only iff (o) # 0. Thus,

f :-@f,al (31)

and
fxf="rqF (32)

Further, we have:
f;k{f;k{f :e%/f?af = Hra (Hraf)

—%a(%"a"’f(a) )
— (e%/f,ajgf’,a (a)%‘ O!)
= (%/f/p"' f( ) ) (%/fpr':)
= @f,a (%‘,C{F) )

= =%/f,a (@f,aF)

and thus
fofxf=Psq(HaF); (33)
Ll : :

and thus
fxf=%a (AEaF). (34)

By induction we deduce that
A = Dr g (;szm—lF) (Ym>1).  (Gm+1)

Now, from formulag3m.1), m> 0, we have:

span{f,fzf,fgf;k{f,...}

= Span{-@f,a]-, Dt,aF, Dt a («%/f,aF) Dt a (%/f?aF) 7}

= closZs gspan{1,F, %5 oF, HFGF, ..} .
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