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Abstract: We study the structure of generators of the Banach algebras
(

W(n)
p [0,1] ,∗

α

)

and
(

W(n)
p [0,1] ,⊛

)

, where ∗
α

denotes

the convolution product∗
α

defined by
(

f ∗
α

g
)

(x) :=
∫ x
0 f (x+α − t)g(t)dt, and the so-called Duhamel product⊛. We also give

some description of cyclic vectors of usual convolution operators acting in the Sobolev spaceW(n)
p [0,1] by the formulaKk f (x) =

∫ x
0 k(x− t) f (t)dy.
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1 Introduction

Let W(n)
p := W(n)

p [0,1] (1≤ p< ∞) be the Sobolev space
of functionsC(n−1) [0,1] such that f (n) ∈ Lp [0,1] . The

norm inW(n)
p is defined by

‖ f‖
W

(n)
p

:= ‖ f‖C(n−1) +
∥

∥

∥
f (n)

∥

∥

∥

Lp
.

It is easy to verify thatW(n)
p is a Banach algebra with

respect to the classical convolution product

( f ∗g)(x) =

x
∫

0

f (x− t)g(t)dt.

We will denote then-th convolution power byf ∗n = f ∗
...∗ f .

For any f ∈ W(n)
p [0,1] , f ∗n (0) = 0, n = 1,2,3, ..., so

that it is clear that a necessary condition forf ∈W(n)
p [0,1]

to generateW(n)
p [0,1] , that is

span{ f , f ∗ f , f ∗ f ∗ f , ...}=W(n)
p [0,1] ,

is that f (0) 6= 0. But it is not known if this condition is
sufficient.

In this article, we consider the Banach algebra

W(n)
p [0,1] and describe its all ∗

α
-generators and

⊛-generators (see Theorem 2 in Section 3 and Corollary 1
in Section 2). We also study cyclic vectors of some
convolution operators (see Theorem 1 in Section 2).

2 Cyclic vectors of convolution operators

In W(n)
p [0,1] , the Duhamel product is defined (see, for

instance [1,4]) by the following formula:

( f ⊛g)(x) =
d
dx

∫ x

0
f (x− t)g(t)dt

=

∫ x

0
f ′ (x− t)g(t)dt+ f (0)g(x) , (1)

where f ,g ∈ W(n)
p [0,1] . One can use results of

operational calculus [9] (see also [4]) to show that

W(n)
p [0,1] is commutative and associative algebra with

respect to the Duhamel product⊛, and it is clear from(1)
that an identity function 1 is the unit for the algebra
(

W(n)
p [0,1] ,⊛

)

. It is also easy to verify that actually
(

W(n)
p [0,1] ,⊛

)

is a Banach algebra (see, for instance,
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Karaev [4]). The operator

D f g := f ⊛g

is called the Duhamel operator associated with the

function f ∈W(n)
p [0,1] .

Let us consider the usual convolution operatorKk on

W(n)
p [0,1] :

(Kk f ) (x) =
∫ x

0
k(x− t) f (t)dt, (2)

wherek ∈ W(n)
p [0,1] is a fixed function. Here we shall

examine cyclic vectors of the operatorKk. Recall that

f ∈W(n)
p [0,1] is a cyclic vector forKk if the vectors

f ,Kk f ,K 2
k f , ...,K n

k f , ...

span the algebraW(n)
p [0,1] , that is,

span{K m
k f : k≥ 0}= clos lin{K m

k f : m≥ 0}=W(n)
p [0,1] .

Clearly, whenk∈Cyc(Kk) (the set of all cyclic vectors of
the operatorKk), this is just a problem of description of∗-

generators of the Banach algebra
(

W(n)
p [0,1] ,∗

)

. Recall

that about description of generators of the Banach algebras
of smooth functions is initiated by Ginsberg and Newman
in [2].

The following key lemma can be proved by the same
methods as in [4,5,6,7,8,10], and therefore omitted.

Lemma 1.Let f ∈W(n)
p [0,1] . Then f is⊛-invertible if and

only if f (0) 6= 0.

An immediate corollary of Lemma 1, is the following,
which characterizes⊛-generators of the Banach algebra
(

W(n)
p [0,1] ,⊛

)

.

Corollary 1.The function f∈ W(n)
p [0,1] generates the

Banach algebra
(

W(n)
p [0,1] ,⊛

)

if and only if f(0) 6= 0.

Theorem 1.Let k ∈ W(n)
p [0,1] , f ∈ W(n)

p [0,1] be two
functions and Kk be a corresponding convolution
operator defined by(2) . Let us denote F:=

∫ x
0 k(t)dt.

Suppose that{F⊛m}
∞
m=0 (for m = 0 we put 1) is a

complete system in W(n)p [0,1] . Then f∈ Cyc(Kk) if and
only if f (0) 6= 0.

Proof.We use the similar arguments in [5]. Clearly,

F ′ (x) = k(x) . Therefore, for everyg∈W(n)
p [0,1] we have

(Kkg)(x) =
∫ x

0
k(x− t)g(t)dt =

d
dx

∫ x

0
F (x− t)g(t)dt

= (F ⊛g)(x) .

By induction we obtain that

K
m

k f = (F ⊛ ...⊛F)⊛ f = F⊛m
⊛ f = D f F

⊛m

for m= 0,1,2, ..., from which we have

span{K m
k f : m≥ 0}= span

{

D f F
⊛m : m≥ 0

}

= D f span{F⊛m : m≥ 0}.

Now, since {F⊛m : m≥ 0} is a complete system in

W(n)
p [0,1] , by applying Lemma 1, it is easy to show that

f ∈ Cyc(Kk) if and only if f (0) 6= 0 (because it is
immediate from Lemma 1 that the Duhamel operatorD f

is invertible in W(n)
p if and only if f (0) 6= 0), which

proves the theorem.

3 ∗
α
-generators ofW(n)

p [0,1]

Here we will consider the following convolutional product
∗
α
, which is defined by the formula

(

f ∗
α

g
)

(x) :=
∫ x

0
f (x+α − t)g(t)dt

for any two functionsf ,g ∈ W(n)
p [0,1] , whereα ∈ [0,1)

is a fixed number. It is not difficult to prove thatW(n)
p [0,1]

is a commutative Banach algebra with respect to the
convolutional product∗

α
(we omit it). We will denote the

corresponding∗
α
-convolution operator by the symbol

K f ,α :

K f ,αg(x) :=
(

f ∗
α

g
)

(x) .

Our following result gives some characterization of∗
α
-

generators of the radical Banach algebra
(

W(n)
p [0,1] ,∗

α

)

,

which is the main result of Section 3.

Theorem 2.Let f ∈W(n)
p [0,1] and f(α) 6= 0. Then f is a

∗
α
-generator of the algebra

(

W(n)
p [0,1] ,∗

α

)

if and only if

span
{

1,F,K f ,αF,K 2
f ,αF, ...

}

=W(n)
p [0,1] ,

where F(x) =
∫ x

α f (t)dt.

Proof.Note that it is not difficult to see that the method of
the Karaev’s paper [4] allow us to prove that the Sobolev

spaceW(n)
p [0,1] is also Banach algebra with respect to the

product⊛
α
, which is defined by

f ⊛
α

g=
d
dx

∫ x

α
f (x+α − t)g(t)dt.

Therefore, ”the α-Duhamel operator”
D f ,αg := d

dx

∫ x
α f (x+α − t)g(t)dt is a bounded operator

in

(

W(n)
p [0,1] ,⊛

α

)

, and
∥

∥D f ,α
∥

∥ = ‖ f‖
W

(n)
p

. Since
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F ′ (x) = f (x) , we have (see the proof of Theorem 1)
K f ,α = DF,α , that is K f ,αg = DF,αg for all

g∈W(n)
p [0,1] . In particular,

(

K f ,α f
)

(x) = (DF,α f ) (x) =
d
dx

∫ x

α
f (x+α − t)F (t)dt

=

∫ x

α
f ′ (x+α − t)F (t)dt+ f (α)F (x)

=
(

D f ,αF
)

(x) ,

whereD f ,α is an invertible operator inW(n)
p [0,1] , because

it can be also shown by the similar arguments of the paper

by Gürdal and Şöhret [3] that elementf ∈

(

W(n)
p ,⊛

α

)

is

invertible if and only if f (α) 6= 0. Thus,

f = D f ,α1 (31)

and
f ∗

α
f = D f ,αF. (32)

Further, we have:

f ∗
α

f ∗
α

f = K
2
f ,α f = K f ,α

(

K f ,α f
)

= K f ,α
(

D f ,αF
)

= K f ,α
(

K f ′,α + f (α) I
)

F

=
(

K f ,αK f ′,α + f (α)K f ,α
)

F

=
(

K f ′,α + f (α) I
)(

K f ,αF
)

= D f ,α
(

K f ,αF
)

,

and thus
f ∗

α
f ∗

α
f = D f ,α

(

K f ,αF
)

; (33)

f ∗
α

f ∗
α

f ∗
α

f = K
3
f ,α f = K f ,α

(

K
2
f ,α f

)

= K f ,αD f ,α
(

K f ,αF
)

= D f ,αK f ,α
(

K f ,αF
)

= D f ,α
(

K
2
f ,αF

)

,

and thus
f ∗

α
f ∗

α
f ∗

α
f = D f ,α

(

K
2
f ,αF

)

. (34)

By induction we deduce that

K
m
f ,α f = D f ,α

(

K
m−1
f ,α F

)

(∀m≥ 1) . (3m+1)

Now, from formulas(3m+1) , m≥ 0, we have:

span
{

f , f ∗
α

f , f ∗
α

f ∗
α

f , ...
}

= span
{

D f ,α1,D f ,αF,D f ,α
(

K f ,αF
)

,D f ,α
(

K
2
f ,αF

)

, ...
}

= closD f ,αspan
{

1,F,K f ,αF,K 2
f ,αF, ...

}

.

From this, by considering that the conditionf (α) 6= 0
means invertibility of the corresponding Duhamel
operatorD f ,α , we deduce that

span
{

f , f ∗
α

f , f ∗
α

f ∗
α

f , ...
}

=W(n)
p [0,1]

if and only if

span
{

1,F,K f ,αF,K 2
f ,αF, ...

}

=W(n)
p [0,1] ,

which proves Theorem 2.
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