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Abstract: TheR-set relative to a pair of distinct vertices of a connecteabiG is the set of vertices whose distances to these vertices
are distinct. In this papeR-sets are used to show that metric dimensiam(Ne,) = 3 whenn is odd and 2 otherwise, wheMg, is

the necklace graph of orden2- 2. It is also shown that the exchange property of the baseséctar space does not hold for minimal
resolving sets oNe, if nis even.
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1 Introduction for G and the number of elements in a basis istietric
dimension dim(G) of G. The problem of determining

Let G be a connected graph. The distani¢a, v) between whetherim(G) < kis anNP-complete problemd, 7].

two verticesu,v € V(G) is the length of a shortest path Determining whether a given sét C V(G) is a resolving

between them and thdiameter diam(G) of G is max set ofG need only be verified for the vertices\t(G)\W,
uvev(G) since every vertexv € W is the only vertex ofG whose

d(u,v). distance fronW is 0.

For a pairp = {x,y} of distinct vertices ofG, we shall ~ An excellent survey of results on the metric dimension
denote byRS(p) or RS(x,y) the set of verticeg € V(G)  and its applications appears B 4]. Let .7 = (Gp)n>1 be
such thatd(z x) # d(zy). Such a set will be called the a family of connected grapl;, of order¢(n) for which

resolving set (or theR-set) relative to the paifx, y}. r!immd)(n) = oo, If there exists a consta > 0 such that
If d(z,x) # d(zy), thenz is said to resolve .andy. Itis dim(G) < C for everyn > 1 then we shall say thaf has
clear that{x,y} C RS(x,y) € V(G) for any pair{x,y}. bounded metric dimension. Properties of the metric

The metric dimension of a connected graBhwas first  gimension of infinite graphs and extremal properties
defined in [8,13,14]. An equivalent definition is the jnyolying metric dimension and diameter were considered
following [6]: Let W = {wy, w2, ..., Wi} be an ordered set [3,9,18].

of vertices of G and letv be a vertex ofG. The |fg)| graphsin have the same metric dimension (which
representation r(v|W) of v with respect toW is the  ggesnot depend an), .7 is called a family with constant
k-tuple(d(v,.vvl'),d(v,wz),...,d(\{,wk)). .If distinct vertices  metric  dimension 10. A connected graphG has

of G have distinct representations with respecftothen dim(G) = 1 if and only if G is a path §]; cyclesC, have

W is called aresolving set or landmarks [11] for G. In metric dimension 2 for every > 3. Also generalized

other words, a set of vertic¥ is a resolving set if every  petersen graptR(n, 2), antiprismsA, and Harary graphs
vertex is uniquely determined by its vector of distances o, are families of graphs with constant metric

the vertices iW. It is clear that for any pair of distinct  gimension L0].
vertices{x,y} of G there exists a vertew; € W such that e following families of graphs have unbounded metric
dixw) 7 d(y,wi). Hence RS(x,y) "W # 0 for any  gimension: ifW, denotes a wheel with spokes andan

resolving sew. o o , the graph deduced from the wheéb, by alternately
A resolving set of minimum cardinality is calledbasis
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deleting n spokes, thendim(Ws) = |%g2] for every
n>7, see 2] and dim(Jzn) L%J for everyn > 4, see
[16]. An example of a family which has bounded metric
dimension is the family of necklace@Ne,)n>1. The
necklace graph, denoted hye, [15 is a cubic Halin
graph [L2] obtained by joining by a cycle all vertices of
degree 1 of a caterpillar (also called comb) havimg
vertices of degree 3 and + 2 vertices of degree 1,
denoted byu,up,...,up and v, vy, ..., Vo1, respectively
(see Fig. 1). We have

V(NQ"I) = {V07 < Vg1, U, - Un}
and
E(Nen) = {Vivita; Uity 15 Uivi 1 1 <i < nj}
U {VoV1;VoU1; VaVn4-1; UnVini1}-

The metric dimensiondim(Ne,) is bounded but not
constant and it depends on the paritymofThis will be

Theorem 2.For every n > 1 we have

. _[ 2,/ ifniseven;
dim(Nen)= { 3,if nis odd.
Proof.a) Let n = 2k. In this case a resolving set b, is
W = {vp, } since the representations of the vertices with
respect taV are the following:

(i, k—i), foro<i<k;

r(vi|W):{(n—i+2,i—k),fork+1<i<n+1.

and

(iLk—i+1), for1<i<k;

r(“i"’\’):{(n—i+2,i—|<+1),for|<+1<i<n.

Since all vertices have distinct representations we obtain
dim(Ney) = 2 in this case.
b) Whenn = 2k+ 1 we show thaWW = {vo, k.1, Uk} IS

shown in the next section. The following lemma is baseda resolving set. The representations of the verticé$eaf

on the observation that if for a pajK,y} of vertices, the
distanced(x,y) is even, then the middle vertex of a
shortest path betweetandy has equal distances xand
toy, hencev ¢ RS(x,y).

Lemma 1[17] If RS(x,y) = V(G) for a pair {x,y} of
distinct vertices of a connected graph G then d(x,y) is
odd.

Lemma 2.[17] If RS(x,y) = {x,y} for each pair {x,y} of
distinct vertices of a connected graph G then G is a
complete graph.

Theorem 1.[17] If G hasn vertices and diam(G) = 2 then
the number of pairs {x,y} such that RS(x,y) =V (G) is
bounded above by |n?/4|. This bound is reached only for

Kin/2).mn/21-

If a graphG of ordern hasdiam(G) = n—1 thenGis a
path P, and every pair of vertice$x,y} of P, such that
d(x,y) is odd satisfieRS(x,y) = V(P,); the number of
such pairs equalg?/4].

By joining by an edge the centers of the stﬁﬁﬂgz 1
and Ky rn/2)-1 for any n > 4 the resulting grap has
diameter 3 and the number of pairs such
RS(x,y) = V(G) equals|n?/4|. This property also holds
for even cycles.

These facts lead to the following conjecture:
Conjecture [17]. For any connected graph G of order
n > 2 the number of pairs {xy} such that
RS(x,y) = V(G) is bounded above by |n?/4].

2 Metric dimension of necklace graph
Since necklace gragle, is not a path we havéim(Ne,)

> 2 for anyn > 1. Ney is K4, sodim(Ne;) = 3 and also
dim(Ney) = 2.

that

with respect tdJ = {vp, .1} are the following:

o k—i+1), 0<i<k+1;
I'(V||U)—{(n_i+27i_k_1)’k—|—2<i<I’]—|—1.
and

o [ ik=i+2), 1<i<k+1;

Ir(“'|U>—{(n-i+2,i-|<),|<+2<i<n.

U distinguishes all vertices dfle, unlessu; and vy o

for 1 <i <k+1. This can be done by, henceW is a
resolving set, implying thadim(Ne,) < 3.

We will show thatdim(Ne,) > 3, by proving that any
resolving set has at least three vertices. Suppose that ther
exists a resolving sV of Ne, such thatW| = 2. We
shall prove that this leads to a contradiction.

By taking into account the action of the automorphism
group of Ne,, it is sufficient to consider only the cases
whenvi 1, Vk.2,... Or Vi1 belongs toV, where

diam(Ney) = k+ 2.

A. Let vpy1 € W. We getd(Vk,Vni1) = d(Uk, Vnr1) =
d(Vir1, V1) = d(Uks1,Vnr1) = k4 1 (see Fig. 1). Also

Viel Vie2 Va3

U Uipr Ugip Ups u

Fig. 1: Nen

RS(Vi, Uk+1) = {Uk42, Uk43, -, Un, V1, V2 ..., Vi1 FU
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{vo} U {Vi, U1 15 RS(Vicr 1, Uk ) =
{vo} U {Virr,u} U {ug, U, ..., U1, Vi 2, Viy 3 -5 Vn };
RS(Vk7 uk+1)m

RS(Vki1,Uk) = {vo} but d(vo,w) = d(vo,ux) = k. It

follows that there is no resolving set having two vertices

includingvp. 1.
B. Let Vik+1 € W. As
d(Vkt2, Vikr1) = d(Uks1,Vkr1) = d(Vk, Vkp1) = 1, we get
(see Fig. 1):

RS(Vk7 uk+1) = {V17V27 w00y V=1, Uk 2,5 Uk 435 -5 Un}u

{vo} U{Vic, U1 }; RS(Vi2, Uk1) = {Vicy 2, U1 U
{U17U27~-aUk7Vk+37~~aVn} U
RSV, Ukr1) N RS(Vii2,Uks1) =
d(Uk;1,Vks2) = 2=

d(uks1,Vk) andvk,Vii2 have unit distances from, ;. It
follows thatvy. 1 ¢ W, a contradiction.

C. Letvk,2 € W. In this caseRS(Vicy 1, Uky2) = {Vni1}
U{VL yeees Vi Uk35 -+ Un} U {Vk+17 Uk+2};

RS(Vk+3a uk+2) = {V07Vn+1} U {Vk+47 yeees Vi, U2, e,

U1} U{Viki3,Uki2) (See Fig. 1).

We haveRS(Vi 3, Uk+2) N RS(Vis 1, Uk+2) = {Vn+1,

Ukt2}. Butd(Vk, Vni1) = d(Uksa, Vny1) @ndd(Vi, Vi 2)

= d(Uks+1,Vks2)- SO W contains .2 and ug,o. But
neither resolves the pajii.1,Vki3} SOVki2 € W.

D. If i e W andk+ 3 <i < n we shall consider its
antipodal vertexy; _x_1 (for which d(vj,Ui_k_1) = k+ 2)
and its neighbors (see Fig. 2).

{Vnta};

{Ukta}, but

Ut Uiko Upgeq Uik Uiis u,

Fig. 2. Ne, (n odd) with two antipodal vertices

d(Vi,Vi—k-1) = d(Vi,Uik—2) = d(Vi,Ui_x) = k+ 3 and
d(vi,v1) =d(vi,u1) =n—i+3.

Since vy;1 and vy have equal distances to and vy,
respectively, it follows that vo,vhr1 ¢ W. Also
d(vj,v1) = d(vj,ur) and d(uj,v1) = d(uj,uy) for every
k43 < j <n, which implies that

(WA\{Vvi}) N{Vo,Vk+3, -+, Vi1, Uk 13, -, Un } = 0.

For anyx,y € V(Ne,) andx # y denote byRS(x,y) the
setRS(X,¥)\{Vo, Vk+3; ---,Vn+1, Uk i3, -, Un } -

We deduceRS (Ui_k_2,Vi—k-1) = {Vi—k; .., Vicr2, U1,
colizke1y U {Uik2,Vick-1}; RS(UikVik-1) =
{1, Vick-2, Uickg 1, o, Uk2} U {Ui—k,Vik-1} hence
RS(Ui—k-2,Vik-1) N RS (Ui, Vi k-1) = {Vik1}. It
follows thatW = {vi,vi_x_1}. But verticesu;_y_» and

—

We ge

U_k have equal distances from both vertice\Gf
a contradiction. Consequently, every resolving set of

V(Ney) has at least three vertices foodd.

3 Exchange property

We have seen that a sub¥étof vertices of a grapls is a
resolving set if every vertex i is uniquely determined

by its distances to the vertices &Y. Resolving sets
behave like bases in a vector space in that each vertex in
the graph can be uniquely identified relative to the
vertices of these sets. But though resolving sets do share
some of the properties of bases in a vector space, they do
not always have the exchange property from linear
algebra. Resolving sets are said to have the exchange
property inG if wheneverS andR are minimal resolving
sets forG andr € R, then there exists € S so that

S— {s}u{r} is a minimal resolving setl].

If the exchange property holds for a gra@hthen every
minimal resolving set forG has the same size and
algorithmic methods for finding the metric dimension of
G are more feasible. Thus to show that the exchange
property does not hold in a given graph, it is sufficient to
show two minimal resolving sets of different size.
However, since the converse is not true, knowing that the
exchange property does not hold does not guarantee that
there are minimal resolving sets of different size.

The following results concerning exchange property for
resolving sets were deduced itj:[

U1 U2 Uy 4 U1 ‘ Un

Fig. 3: Ne, (n even) with a minimal resolving set

Theorem 3.[1] The exchange property holds for resolving
setsin trees.

Theorem 4.[1] For n > 8, resolving sets do not have the
exchange property in n-wheelsW.

The following question was proposed by Boutin if.[
Question [1]: In which planar graphs does the exchange
property hold for resolving sets?

In this section we study the exchange property for
resolving sets in necklace graphs, which are planar
graphs.

Theorem 5.For n > 4, n even, resolving sets of the
necklace graph Ne, do not have the exchange property.
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Proof.If n = 2k, we have seen that a minimal resolving
set, which is also minimum i$vo, v, 2 }. We shall prove
thatW = {vi, Ux_1, Uk 1} is another minimal resolving set

[6] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann,
Resolvability in graphs and metric dimension of a graph,
Discrete Appl. Math., 105(2000,99— 113.

containing three vertices. The representations of the [71M. R. Garey, D. S. JohnsoiGompuiters and intractability:

vertices not belonging t&V with respect towW are the
following:

(k,k—1k+1), i =0;
(k—i,k—i,k—i+2), 1<i<k-1,
. ) (i—ki—k+2/i—k),
r(v[W) = K+1<i<n-—1;
(k7k+17 )a |:n,
(k+ 1,k k), i=n+1.
and
(k—i+1k—i—1k—i+1),
1<i<k-2;
r(Ui |W) = (17 17 1)7 i = k,
(i—k+21i—k+1i—k-1),
k+2<i<n.

We deduce that these representations are different, whic
implies thatw is a resolving set.

W is also minimal, sinceA = {vn/z, un/z,l} c W,

B= {Vn/27un{2+l} CW andC = {Up/2_1,Upj241} CW

are not resolving sets: verticeg,_; andu,, have equal
distances to vertices @, v,,/»,; anduy , to vertices ofB
andvg andv; to vertices ofC. This concludes the proof.
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