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Abstract: TheR-set relative to a pair of distinct vertices of a connected graphG is the set of vertices whose distances to these vertices
are distinct. In this paperR-sets are used to show that metric dimensiondim(Nen) = 3 whenn is odd and 2 otherwise, whereNen is
the necklace graph of order 2n+2. It is also shown that the exchange property of the bases in avector space does not hold for minimal
resolving sets ofNen if n is even.
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1 Introduction

Let G be a connected graph. The distanced(u,v) between
two verticesu,v ∈ V (G) is the length of a shortest path
between them and thediameter diam(G) of G is max

u,v∈V (G)

d(u,v).
For a pairp = {x,y} of distinct vertices ofG, we shall
denote byRS(p) or RS(x,y) the set of verticesz ∈ V (G)
such thatd(z,x) 6= d(z,y). Such a set will be called the
resolving set (or theR-set) relative to the pair{x,y}.
If d(z,x) 6= d(z,y), thenz is said to resolvex andy. It is
clear that{x,y} ⊆ RS(x,y)⊆V (G) for any pair{x,y}.
The metric dimension of a connected graphG was first
defined in [8,13,14]. An equivalent definition is the
following [6]: Let W = {w1,w2, ...,wk} be an ordered set
of vertices of G and let v be a vertex ofG. The
representation r(v|W ) of v with respect toW is the
k-tuple (d(v,w1),d(v,w2), ...,d(v,wk)). If distinct vertices
of G have distinct representations with respect toW , then
W is called aresolving set or landmarks [11] for G. In
other words, a set of verticesW is a resolving set if every
vertex is uniquely determined by its vector of distances to
the vertices inW . It is clear that for any pair of distinct
vertices{x,y} of G there exists a vertexwi ∈ W such that
d(x,wi) 6= d(y,wi). Hence RS(x,y) ∩ W 6= /0 for any
resolving setW .
A resolving set of minimum cardinality is called abasis

for G and the number of elements in a basis is themetric
dimension dim(G) of G. The problem of determining
whetherdim(G)< k is anNP-complete problem [6,7].
Determining whether a given setW ⊆V (G) is a resolving
set ofG need only be verified for the vertices inV (G)\W ,
since every vertexw ∈ W is the only vertex ofG whose
distance fromW is 0.
An excellent survey of results on the metric dimension
and its applications appears in [3,4]. Let F = (Gn)n≥1 be
a family of connected graphsGn of orderϕ(n) for which
lim
n→∞

ϕ(n) = ∞. If there exists a constantC > 0 such that

dim(G)≤C for everyn ≥ 1 then we shall say thatF has
bounded metric dimension. Properties of the metric
dimension of infinite graphs and extremal properties
involving metric dimension and diameter were considered
in [3,9,18].
If all graphs inF have the same metric dimension (which
does not depend onn), F is called a family with constant
metric dimension [10]. A connected graphG has
dim(G) = 1 if and only if G is a path [6]; cyclesCn have
metric dimension 2 for everyn ≥ 3. Also generalized
Petersen graphsP(n,2), antiprismsAn and Harary graphs
H4,n are families of graphs with constant metric
dimension [10].
The following families of graphs have unbounded metric
dimension: ifWn denotes a wheel withn spokes andJ2n
the graph deduced from the wheelW2n by alternately
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deleting n spokes, thendim(Wn) = ⌊2n+2
5 ⌋ for every

n ≥ 7, see [2] and dim(J2n) = ⌊2n
3 ⌋ for everyn ≥ 4, see

[16]. An example of a family which has bounded metric
dimension is the family of necklaces(Nen)n≥1. The
necklace graph, denoted byNen [15] is a cubic Halin
graph [12] obtained by joining by a cycle all vertices of
degree 1 of a caterpillar (also called comb) havingn
vertices of degree 3 andn + 2 vertices of degree 1,
denoted byu1,u2, ...,un and v0,v1, ...,vn+1, respectively
(see Fig. 1). We have

V (Nen) = {v0, ...,vn+1,u1, ...,un}

and

E(Nen) = {vivi+1;uiui+1;uivi : 1≤ i ≤ n}

∪ {v0v1;v0u1;vnvn+1;unvn+1}.

The metric dimensiondim(Nen) is bounded but not
constant and it depends on the parity ofn. This will be
shown in the next section. The following lemma is based
on the observation that if for a pair{x,y} of vertices, the
distanced(x,y) is even, then the middle vertexv of a
shortest path betweenx andy has equal distances tox and
to y, hencev 6∈ RS(x,y).

Lemma 1.[17] If RS(x,y) = V (G) for a pair {x,y} of
distinct vertices of a connected graph G then d(x,y) is
odd.

Lemma 2.[17] If RS(x,y) = {x,y} for each pair {x,y} of
distinct vertices of a connected graph G then G is a
complete graph.

Theorem 1.[17] If G has n vertices and diam(G) = 2 then
the number of pairs {x,y} such that RS(x,y) = V (G) is
bounded above by ⌊n2/4⌋. This bound is reached only for
K⌊n/2⌋,⌈n/2⌉.

If a graphG of ordern hasdiam(G) = n− 1 thenG is a
path Pn and every pair of vertices{x,y} of Pn such that
d(x,y) is odd satisfiesRS(x,y) = V (Pn); the number of
such pairs equals⌊n2/4⌋.
By joining by an edge the centers of the starsK1,⌊n/2⌋−1
and K1,⌈n/2⌉−1 for any n ≥ 4 the resulting graphG has
diameter 3 and the number of pairs such that
RS(x,y) = V (G) equals⌊n2/4⌋. This property also holds
for even cycles.
These facts lead to the following conjecture:
Conjecture [17]. For any connected graph G of order
n ≥ 2 the number of pairs {x,y} such that
RS(x,y) =V (G) is bounded above by ⌊n2/4⌋.

2 Metric dimension of necklace graph

Since necklace graphNen is not a path we havedim(Nen)
≥ 2 for anyn ≥ 1. Ne1 is K4, so dim(Ne1) = 3 and also
dim(Ne2) = 2.

Theorem 2.For every n ≥ 1 we have

dim(Nen)=

{

2, if n is even ;
3, if n is odd.

Proof.a) Let n = 2k. In this case a resolving set ofNen is
W = {v0,vk} since the representations of the vertices with
respect toW are the following:

r(vi|W ) =

{

(i,k− i), for 0≤ i ≤ k;
(n− i+2, i− k), for k+1≤ i ≤ n+1.

and

r(ui|W ) =

{

(i,k− i+1), for 1≤ i ≤ k;
(n− i+2, i− k+1), for k+1≤ i ≤ n.

Since all vertices have distinct representations we obtain
dim(Nen) = 2 in this case.
b) When n = 2k+ 1 we show thatW = {v0,vk+1,uk} is
a resolving set. The representations of the vertices ofNen
with respect toU = {v0,vk+1} are the following:

r(vi|U) =

{

(i,k− i+1), 0≤ i ≤ k+1;
(n− i+2, i− k−1), k+2≤ i ≤ n+1.

and

r(ui|U) =

{

(i,k− i+2), 1≤ i ≤ k+1;
(n− i+2, i− k), k+2≤ i ≤ n.

U distinguishes all vertices ofNen unlessui and vn+2−i
for 1 ≤ i ≤ k + 1. This can be done byuk, henceW is a
resolving set, implying thatdim(Nen)≤ 3.
We will show thatdim(Nen) ≥ 3, by proving that any
resolving set has at least three vertices. Suppose that there
exists a resolving setW of Nen such that|W | = 2. We
shall prove that this leads to a contradiction.
By taking into account the action of the automorphism
group of Nen, it is sufficient to consider only the cases
whenvk+1,vk+2, ... or vn+1 belongs toW , where
diam(Nen) = k+2.
A. Let vn+1 ∈ W . We get d(vk,vn+1) = d(uk,vn+1) =
d(vk+1,vn+1) = d(uk+1,vn+1) = k+1 (see Fig. 1). Also
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Fig. 1: Nen

RS(vk,uk+1) = {uk+2,uk+3, ...,un,v1,v2 ...,vk−1}∪

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 63-67 (2015) /www.naturalspublishing.com/Journals.asp 65

{v0} ∪ {vk,uk+1};RS(vk+1,uk) =
{v0} ∪ {vk+1,uk} ∪ {u1,u2, ...,uk−1,vk+2,vk+3 ...,vn};
RS(vk,uk+1)∩
RS(vk+1,uk) = {v0} but d(v0,vk) = d(v0,uk) = k. It
follows that there is no resolving set having two vertices
includingvn+1.
B. Let vk+1 ∈ W . As
d(vk+2,vk+1) = d(uk+1,vk+1) = d(vk,vk+1) = 1, we get
(see Fig. 1):
RS(vk,uk+1) = {v1,v2, ...,vk−1,uk+2,uk+3, ...,un}∪
{v0}∪{vk,uk+1}; RS(vk+2,uk+1) = {vk+2,uk+1}∪
{u1,u2, ...,uk,vk+3, ...,vn} ∪ {vn+1};
RS(vk,uk+1) ∩ RS(vk+2,uk+1) = {uk+1}, but
d(uk+1,vk+2) = 2=
d(uk+1,vk) andvk,vk+2 have unit distances fromvk+1. It
follows thatvk+1 6∈W , a contradiction.
C. Let vk+2 ∈W . In this caseRS(vk+1,uk+2) = {vn+1}
∪{v1, , ...,vk,uk+3, ...,un}∪{vk+1,uk+2};
RS(vk+3,uk+2) = {v0,vn+1}∪{vk+4, , ...,vn,u2, ...,
uk+1}∪{vk+3,uk+2} (see Fig. 1).
We haveRS(vk+3,uk+2)∩RS(vk+1,uk+2) = {vn+1,
uk+2}. But d(vk,vn+1) = d(uk+1,vn+1) andd(vk,vk+2)
= d(uk+1,vk+2). So W contains vk+2 and uk+2. But
neither resolves the pair{vk+1,vk+3} sovk+2 6∈W .
D. If vi ∈ W and k + 3 ≤ i ≤ n we shall consider its
antipodal vertexui−k−1 (for which d(vi,ui−k−1) = k + 2)
and its neighbors (see Fig. 2). We get
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Fig. 2: Nen (n odd) with two antipodal vertices

d(vi,vi−k−1) = d(vi,ui−k−2) = d(vi,ui−k) = k + 3 and
d(vi,v1) = d(vi,u1) = n− i+3.
Since vn+1 and v0 have equal distances tou1 and v1,
respectively, it follows that v0,vn+1 6∈ W . Also
d(v j,v1) = d(v j,u1) and d(u j,v1) = d(u j,u1) for every
k+3≤ j ≤ n, which implies that

(W\{vi})∩{v0,vk+3, ...,vn+1,uk+3, ...,un}= /0.

For anyx,y ∈ V (Nen) andx 6= y denote byRS′(x,y) the
setRS(x,y)\{v0,vk+3, ...,vn+1,uk+3, ...,un}.
We deduceRS′(ui−k−2,vi−k−1) = {vi−k, ...,vk+2,u1,
...,ui−k−1} ∪ {ui−k−2,vi−k−1}; RS′(ui−k,vi−k−1) =
{v1, ...,vi−k−2,ui−k+1, ...,uk+2} ∪ {ui−k,vi−k−1} hence
RS′(ui−k−2,vi−k−1) ∩ RS′(ui−k,vi−k−1) = {vi−k−1}. It
follows that W = {vi,vi−k−1}. But verticesui−k−2 and

ui−k have equal distances from both vertices ofW ,
a contradiction. Consequently, every resolving set of
V (Nen) has at least three vertices forn odd.

3 Exchange property

We have seen that a subsetW of vertices of a graphG is a
resolving set if every vertex inG is uniquely determined
by its distances to the vertices ofW . Resolving sets
behave like bases in a vector space in that each vertex in
the graph can be uniquely identified relative to the
vertices of these sets. But though resolving sets do share
some of the properties of bases in a vector space, they do
not always have the exchange property from linear
algebra. Resolving sets are said to have the exchange
property inG if wheneverS andR are minimal resolving
sets for G and r ∈ R, then there existss ∈ S so that
S−{s}∪{r} is a minimal resolving set [1].
If the exchange property holds for a graphG, then every
minimal resolving set forG has the same size and
algorithmic methods for finding the metric dimension of
G are more feasible. Thus to show that the exchange
property does not hold in a given graph, it is sufficient to
show two minimal resolving sets of different size.
However, since the converse is not true, knowing that the
exchange property does not hold does not guarantee that
there are minimal resolving sets of different size.
The following results concerning exchange property for
resolving sets were deduced in [1]:
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Fig. 3: Nen (n even) with a minimal resolving set

Theorem 3.[1] The exchange property holds for resolving
sets in trees.

Theorem 4.[1] For n ≥ 8, resolving sets do not have the
exchange property in n-wheels Wn.

The following question was proposed by Boutin in [1].
Question [1]: In which planar graphs does the exchange
property hold for resolving sets?
In this section we study the exchange property for
resolving sets in necklace graphs, which are planar
graphs.

Theorem 5.For n ≥ 4, n even, resolving sets of the
necklace graph Nen do not have the exchange property.
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Proof.If n = 2k, we have seen that a minimal resolving
set, which is also minimum is{v0,vn/2}. We shall prove
thatW = {vk,uk−1,uk+1} is another minimal resolving set
containing three vertices. The representations of the
vertices not belonging toW with respect toW are the
following:

r(vi|W ) =



























(k,k−1,k+1), i = 0;
(k− i,k− i,k− i+2), 1≤ i ≤ k−1;
(i− k, i− k+2, i− k),

k+1≤ i ≤ n−1;
(k,k+1,k), i = n;
(k+1,k,k), i = n+1.

and

r(ui|W ) =



















(k− i+1,k− i−1,k− i+1),
1≤ i ≤ k−2;

(1,1,1), i = k;
(i− k+1, i− k+1, i− k−1),

k+2≤ i ≤ n.

We deduce that these representations are different, which
implies thatW is a resolving set.
W is also minimal, sinceA = {vn/2,un/2−1} ⊂ W ,
B = {vn/2,un/2+1} ⊂ W and C = {un/2−1,un/2+1} ⊂ W
are not resolving sets: verticesvn/2−1 andun/2 have equal
distances to vertices ofA, vn/2+1 andun/2 to vertices ofB
andv0 andv1 to vertices ofC. This concludes the proof.
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