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Abstract: Elliptic Curve Cryptography (ECC) is a relatively recent branch of cryptography which is based on the arithmetic on elliptic
curves and security of the hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP). Elliptic curve cryptographic schemes
are public-key mechanisms that provide encryption, digital signature and key exchange capabilities. Elliptic curve algorithms are also
applied to generation of sequences of pseudo-random numbers. Another recent branch of cryptography is chaotic dynamical systems
where security is based on high sensitivity of iterations ofmaps to initial conditions and parameters. In the present work, we give a
short survey describing state-of-the-art of several suggested constructions for generating sequences of pseudorandom number generators
based on elliptic curves (ECPRNG) over finite fields of prime order. In the second part of the paper we propose a method of generating
sequences of pseudorandom points on elliptic curves over finite fields which is driven by a chaotic map. Such a construction improves
randomness of the sequence generated since it combines goodstatistical properties of an ECPRNG and a CPRNG (Chaotic Pseudo-
Random Number Generator). The algorithm proposed in this work is of interest for both classical and elliptic curve cryptography.
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1 Introduction

Recently, elliptic curve cryptography (ECC) has received
great interest from cryptographers, mathematicians, and
computer scientists around the world [1,2]. The primary
reason for this is its high security over existing public key
cryptographic algorithms. The best algorithm known for
solving the underlying mathematical problem of ECC,
referred to as the elliptic curve discrete logarithm problem
(ECDLP), takes full exponential time. On the contrary,
sub-exponential time algorithms are known for tackling
the integer factorization and the discrete logarithm
problems that RSA and DSA are relied on [3,4]. This
implies that the algorithms for solving the ECDLP
become infeasible much more rapidly as the problem size
increases than those algorithms for tackling the integer
factorization and the discrete logarithm problems. For this
reason, ECC offers a security level equivalent to RSA and
DSA while using a far smaller key size [1].

On the other hand, the security of most cryptographic
systems depends upon the generation of unpredictable
quantities that must be of sufficient size and randomness.

Taking ECC as an example, we need to generate random
bits in order to create random curves and the large secret
integer [1,2]. This implies that we usually need to
implement a random number generator in a cryptographic
system.

However, sources of truly random integers are hard to
use in practice. It is therefore common to search for
pseudo-random number generators (PRNG). Roughly
speaking, a pseudo-random source may not be
distinguished from a truly random source by any
polynomial time algorithm. Several PRNG have been
proposed which are using the form of elliptic curves such
as [5]. Since [6] methods, different approaches for
extracting pseudo randomness from elliptic curves
(ECPRNG) have been proposed by [7,8,9].

As we already remarked, the great advantage of
elliptic curve cryptography is operating over small-size
finite fields (comparing other public-key cryptosystems).
However, in case of PRNG small finite fields imply short
period of a generator. Therefore, to increase the period of
a generator working on an elliptic curve (EC) we propose
to combine it with a chaotic dynamical system.
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Chaotic dynamical systems are another recent branch
of cryptography. Its security is based on high sensitivity
of iterations of maps to initial conditions and parameters.
The idea of application of discrete dynamical systems for
constructing cryptosystems have been presented in [10]
where the authors proposed using chaotic maps’
parameters as a secret key. Their system was
instantaneously broken [11] but an improved
cryptosystem [12] with an initial condition of the chaotic
dynamical system playing the role of a secret key still
remains secure. Recent years such cryptosystems were
extensively studied [13] with large variety of particular
algorithms and applications. Among them Chaotic
Pseudo-Random Number Generators (CPRNG) initiated
in [14] found many effective implementations [15] since
their period is (by theory) infinite.

In this paper we propose a new method of generating
sequences of pseudorandom points on elliptic curves over
finite fields which is driven by a chaotic map. Such a
construction increases randomness of the sequence
generated and makes its period (theoretically) infinite
since it combines positive properties of an ECPRNG and
a CPRNG. After transformation of the points into binary
numbers it can be used for any cryptographic
applications.

The organization of the rest of the paper is as follows.
In Section 2, the background of discrete dynamical
systems and the construction of CPRNG are discussed in
Subsections2.1, 2.2 respectively. In Subsections2.3 and
2.4 we discuss EC over finite fields and describe its
ECPRNG construction. The proposed random number
generator will be described in Section3. Periods of the
proposed generator are analyzed in Section4, while the
test results are reported in Section5. In Section 6,
discussions and conclusions are made.

2 Preliminaries

2.1 Discrete Dynamical Systems

A discrete dynamical system is a pair(S,Φ), whereS is
the state space (usually metric space) and(Φ : S → S) is
a measurable map which is the generator of the semigroup
of iterations [16]. The trajectory starting from the initial
states0 is the sequence(s0)

∞
i=0 of elements ofS obtained

by iteration

si+1 = Φ(si), i = 0,1,2, .... (1)

For our purpose of generating pseudo-random
sequences we assume several properties of discrete
dynamical systems. The most important in our construct
is chaos which means strong (exponential) sensitivity of
trajectories to changes of initial state and/or system’s
parameters. Among many known formal definitions of
chaos [17] the most popular is that using Lyapunov
exponents. Thus, a nonlinear dynamical system is chaotic

in some region if for almost all pointss in this region
(with respect to some Lebesgue invariant measureµ) it
has positive Lyapunov exponents. Chaos in a dynamical
system makes the trajectories very unstable; starting from
two very close initial points, after several iterations we
come to quite different final states, what makes the
system unpredictable.

Two other properties of the dynamical system make
distribution of its iterated states uniform over the state
space. We say that the dynamical system(S,Φ) is ergodic
[16] if and only if it has only trivial invariant sets, i.e.,
eitherµ (B) = 0 or µ (S\B) = 0, whenever the subsetB of
the spaceS is measurable andΦ- invariant (the invariance
of B means thatΦ (B)⊂ B).

Due to ergodicity property, the spaceS cannot be
divided into invariant disjoint parts, nontrivial with
respect to the measureµ . Thus, a trajectory starting from
any points0 ∈ S never localizes in a smaller region and
inversely, knowing the final state of the dynamical
system, one cannot point out the region (smaller thanS)
where the trajectory started. A property stronger than
ergodicity is mixing property. The dynamical system
(S,Φ) is mixing [16] if for each two setsA,B ∈ σ (S),

lim
i→∞

µ
(

Φ−i (A)∩B
)

= µ (A)µ (B) , (2)

whereΦ−i (A) is the pre-image of the setA under thei-th
iteration of Φ. This formula shows that iterations ofΦ
make each setA (asymptotically) statistically independent
from B. This means that the trajectory starting at a fixed
point s0 ∈ S, after iterations, reaches any region of the
spaceS with the same probability. It is also useful for
proving (asymptotic) statistical independence of states of
trajectories of discrete dynamical systems.

2.2 Construction of CPRNG

Consider the dynamical system defined in (1) on the state
spaceS and assume thatµ is a normalized invariant
measure of the system, equivalent to a Lebesgue measure.
The idea of construction of CPRNG is to divide the state
spaceS, µ (S) = 1, into two disjoint partsS0, S1 such that
µ (S0) = µ (S1) = 1

/

2. As a seed we shall consider an
initial point s ∈ S′ ⊆ S, whereS′ is the set of acceptable
seeds (for most systems,µ (S′) = 1). To obtain a
pseudorandom sequence of bits we observe the iterations
of the system governed by the mapΦ starting froms, i.e.,
the sequencesi := Φ i(s). Assume that thei-th bit bi(s) of
the generated pseudo-random sequence is equal to ”0” if
si ∈ S0, and is equal to ”1” otherwise, so as a result of
iterations we obtain the infinite sequence of bitsG(s).
Finally, we obtain the map

G : S′ →
∞

∏
i=1

{0,1}, (3)
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such that

G(s) = {bi(s)}i=1,2,... = {b1(s),b2(s), ...} , (4)

and where∏∞
i=1{0,1} is the Cartesian product of the

infinite number of the two-element set{0,1}.
In the paper [18] it was proven that if the discrete

dynamical system (1) is chaotic, ergodic and it satisfies
the mixing property (2) (which is stronger than
ergodicity), then the CPRNG defined in (3) and (4) has
the fundamental required properties of PRNG:

–unique dependence of the sequence (4) from the seed
s,

–equiprobable occurrence of ”0” and ”1” in the
sequence (4),

–asymptotic statistical independence of bits.

Moreover, theoretically the period of such a CPRNG
is infinite, since it is iterated over the infinite state spaceS.

In many practical applications for constructing
CPRNG we assume thatS = [0, 1] is the interval,
S0 = [0 , 0.5] , S1 = (0.5, 1] are two subsets of the
measure equal 0.5 andΦ : [0, 1] → [0, 1] is a chaotic
map with positive Lyapunov exponentλ . However, in
concrete implementations of such a CPRNG we must
check properties of the particular chaotic map chosen,
especially if its invariant measure is really symmetric over
the two sub-intervalsS0 andS1.

2.3 Elliptic Curves over Finite Fields

For a primep let us denote byFp is the finite field ofp
elements. LetE be an elliptic curve overFp, p > 3, given
by an affine Weierstrass equation of the form

E : y2 = x3+ ax+ b (5)

with coefficientsa,b ∈ Fp, such that 4a3+ 27b2 6= 0. We
recall that the setE(Fp) of Fp-rational points on any
elliptic curveE forms an Abelian group (with a point at
infinity denoted byO as the neutral element) and the
cardinality of this group satisfies the Hasse-Weil bound

∣

∣#E(Fp)− p−1
∣

∣≤ 2
√

p (6)

Point addition and point doubling are the basic EC
operations. Point multiplication on EC requires scalar
multiplication operation. LetP be a point with the
coordinatesx,y on an EC, and one needs to computekP,
wherek is a positive integer. This scalar multiplication
can be done by a series of doubling and addition ofP. For
example, givenk = 13 entails the following sequence of
operations, by which the efficiency of the scalar
multiplication of the points is improved, see Table1.

Table 1: Scalar multiplication of points of EC

P 2P 3P 6P 12P 13P
Doubling Addition Doubling Doubling Addition

Let us start withP = (x1,y1) where P 6= −P . To
determine 2P = (x3,y3) , P is doubled, use the following
equation, which is a tangent to the curve at pointP.

x3 =

(

3x2
1+ a
2y1

)2

−2x1 (7)

and

y3 =

(

3x2
1+ a
2y1

)

(x1− x3)− y1 (8)

To determine 3P, addition of pointsP and 2P is used,
treating 2P=Q. Here,P has coordinatesP= (x1,y1) . Q=
2P has coordinatesQ = (x2,y2) , whereP 6= ±Q . Then
P+Q = (x3,y3) , where

x3 =

(

y2− y1

x2− x1

)2

− x1− x2 (9)

and

y3 =

(

y2− y1

x2− x1

)

(x1− x3)− y1 (10)

Therefore, doubling and addition are applied depending
on a sequence of operations determined fork. Every point
(x3,y3) evaluated by doubling or addition is an affine
point (points on the EC). Observe that dividing one
element by another is multiplication by the inverse of that
element inFp . For this and some other general properties
of elliptic curves see [22,23].

2.4 Construction of ECPRNG

2.4.1 Linear Congruential Generator on EC, EC-LCG

For a given pointG ∈ E (Fp), the EC-LCG is defined as
the sequence:

Ui = G⊕Ui−1 = iG⊕U0, i = 1,2, ... (11)

whereU0 ∈ E(Fp) is the ”initial value”. The EC-LCG
generator has been suggested in [24] and then studied in a
number of papers [9,25,26].
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2.4.2 Power Generator on EC, EC-PG

For a given pointG ∈ E(Fp) and an integere ≥ 2, the EC-
LCG is defined as the sequence:

Ui = eUi−1 = eiG, i = 1,2, ... (12)

whereU0 ∈ E(Fp) is the ”initial value”.
The EC-PG generator has been introduced and studied

in [27], see also [28].

2.4.3 Some Other Constructions

We note that after [6], there have been several other
suggestions and approaches to extracting pseudo
randomness from elliptic curves, see also [7,8,29,30].
However, these methods and results have a slightly
different focus and we do not discuss them in this paper.

3 The Proposed Random Number Generator

For a given pointG ∈ E (Fp), we can define the sequence:

Ui = i(1+ bi)G⊕U0 =

{

iG⊕U0 if bi = 0
2iG⊕U0 if bi = 1 , i = 1,2, ...

(13)
whereU0 ∈ E(Fp) is the ”initial value” andbi is a binary
sequence generated by the chaotic mapΦ

bi =

{

0 if Φ i(s) ∈ S0
1 if Φ i(s) ∈ S1

, i = 1,2, ... (14)

Using EC point sequenceUi and by converting thex,y
coordinates of each pointUi(x,y) into binary format we
can obtain the bit sequenceBi by applying the following
map

Bi =Ui(x,y) =

{

U2x2(x,y)
U3x3(x,y)

This map takes the two right-most bits fromx
coordinate and the two right-most bits fromy coordinate
which denotedU2x2(x,y). Analogously, by taking the
three right-most bits fromx coordinate andy coordinate
which denotedU3x3(x,y) we can obtain another bit
sequence. This generalization can also be used in the case
of the EC-PG generator mentioned in Subsection2.4.2.

Example

Consider the curveE : y2 = x3+x+4 overF11 . This curve
has order 9 and is cyclic. Herep = 11. LetG = (2,5) be a
point onE and chooseU0 = (0,2) as the initial value. The
EC pointsU , together with the bit sequenceB in the two
cases, are listed in Table2.

Table 2: An example of transforming EC points into binary
sequences

i Ui(x,y) Ui(x,y)2 Bi(Ui)2x2 Bi(Ui)3x3
1 (9,4) (1001,0100) (01,00) (001,100)
2 (3,1) (0011,0001) (11,01) (011,001)
3 (9,7) (1001,0111) (01,11) (001,111)
4 (2,5) (0010,0101) (10,01) (010,101)
5 (0,9) (0000,1001) (00,01) (000,001)
6 (2,6) (0010,0110) (10,10) (010,110)
7 (0,9) (0000,1001) (00,01) (000,001)
8 (2,5) (0010,0101) (10,01) (010,101)
9 (0,2) (0000,0010) (00,10) (000,010)

4 Period Analysis

Define the setτp of all triples(a,b,G), wherea andb are
the parameters of the EC (5) andG is some point of this
EC. For any primep ≥ 5 and for anyδ > 0 andε > 0 , the
number of triples(a,b,G) ∈ τp, such that the periodT of
the sequence generated in equation (15),

Ui = G⊕Ui−1 = iG⊕U0, (15)

satisfies the inequality (16),

T < p1−δ (16)

is at most

O(#τp p−2δ/3+ε), (17)

where

#τp = (p2+O(p))(p+O(p1/2))∼ p3. (18)

The result presented in Eqs. (17 - 18), showing that
typically the period of the sequence (15) is large, has been
introduced in [31].

5 Test Results

To ensure good statistical properties (which determine the
quality of a generator) of the proposed ECPRNG we
assume that the dynamical systems used are also ergodic
or preferably mixing. This allows us to use of the
well-developed theory of dynamical systems to prove the
required statistical properties. Traditionally, extensive
statistical testing was used to assess or estimate this
quality. Test suites developed for this purpose may be
found in [19,20,21]. From these tests we selected 5 which
taken together verify random properties of sequences
generated. They are:

1.The monobit test (in Tables3 - 8 namedFrequency
Test), which verifies if the number of ”1” bits in the
sequence lies within specified limits.
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2.The cumulative sums test, which determines whether
the cumulative sum of the partial sequences occurring
in the tested sequence is too large or too small relative
to the expected behavior of that cumulative sum for
random sequences. The test has two modes, which are
either forward through the sequence or backward
through the sequence, named in the TablesC.Sum
(forward) andC.Sum (reverse), respectively.

3.The runs test (Runs Test in the Tables) checking
whether the number of runs (the test is carried out for
runs of zeros and runs of ones) of length 1, 2, 3, 4 and
5 as well as the number of runs which are longer than
5, each lies within specified limits.

4.The long run test (Longest Runs Test) confirming that
in the tested sequence there must be no run of length
equal to or greater than 34 bits.

5.The discrete Fourier transform test (DFT) detecting
the periodic features in the tested sequence that would
indicate a deviation from the assumption of
randomness.

Thus, in these 5 tests, the monobit test verifies if
globally the binary distribution is symmetric, the
cumulative sums tests check if the sequence is
symmetrically growing during bits generation, the runs
test and the long run test confirm bits independence and
the discrete Fourier transform test allows detecting
periodic behavior of the binary sequence generated.
Additional motivation for such a choice of such a set of 5
tests (from all 15 tests proposed in the document
SP800-22b [20]) is that they can be applied for binary
sequences of different size, also very short ones. In our
investigations we used sequences of 100, 200, 500, 1000,
2000 bits for the generators constructed on EC over the
very small finite field and additionally the sequences of
5000, 10000, 20000 bits for generators on EC over a
larger finite field.
The statistical tests made in this paper were on the
significance levelα equal to 0.01, so the tests are passing
if P-value≥ 0.01,. Moreover, the larger theP-value is,
the better the pseudorandom property the generator is.

To investigate the effect of chaotic modulation of the
additive ECPRNG we considered three examples of
chaotic dynamical systems and two elliptic curves over
different-size finite fields. First, we tested random
properties of the binary sequences generated by three
discrete dynamical systems governed by the following
maps:
the Tent Map [32]:

si+1 = Φ (si) =

{

2si if si <
1
2

2(1− si) if si ≥ 1
2
, (19)

the Logistic Map [33]:

si+1 = Φ (si) = 4 · si (1− si) , (20)

both for the state spaceS = [0,1] andS0 = [0,0.5], S1 =
(0.5,1], and the Chebyshev Map [34]:

si+1 = Φ (si) = cos
(

4cos−1(si)
)

, (21)

for the state spaceS = [−1,1] andS0 = [−1,0], S1 = (0,1].
For the tent map (19) we had problems with finding a

right initial condition which leads to the pseudorandom
sequence with good statistical properties. For the Logistic
Map (20) and the Chebyshev Map (21) the statistical tests
confirmed good randomness of the binary sequences
generated. Therefore we decided to use only the chaotic
maps (20) and (21) for our PRNG, testing the sequences
generated for certain initial conditions before engaging
them into ECPRNG.

In the experiments we used two elliptic curves:

E1 : y2 = x3+ x+4 (22)

over F29 and the elliptic curve described by formally the
same equation

E2 : y2 = x3+ x+4 (23)

but now over F5501. Results of testing the sequences
generated are presented in Tables3 - 8.

In Table 3 are presented results for the additive
ECPRNG on the curveE1 without chaotic modulation. As
it is expected, the generator works correctly for very short
binary sequences (200 bits) due to its periodicity, what is
indicated by the DFT Test. Including the CPRNG enables
generating correctly longer sequences: 2000 bits for the
Logistic Map (Table4) or 1000 for the Chebyshev Map
(Table5). Analogously, for the larger elliptic curveE2 the
non-disturbed ECPRNG gave a correct result till 5000
bits generated, as it is seen from Table6. The generators
driven by the two chaotic maps (20) and (21) give twice
as much correct pseudo-random bits, see Tables7 and8.
For 20000 and more bits the DFT test indicates the
generators’ periodicity.

6 Conclusions

In this paper we proposed a new construction of a
pseudorandom number generator which uses both elliptic
curves and discrete dynamical systems for bitstreams
generation. As our experiments presented in Section5
shown such a combination gave us the construction with
positive properties being resultant properties of the two
components. Comparing purely EC-based pseudorandom
number generator, our construction has longer period for
a fixed size of the finite fieldFp where the EC lives. Thus,
we can use smaller fields (with less computational
complexity of arithmetic calculations) to obtain a
bitstream of a fixed length. Relating the generator
proposed to a purely chaotic pseudorandom number
generator, now we can obtain more bits in one iteration:
instead 1 bit, as it is in the chaotic case, we can have the
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Table 3: ECPRNG without chaotic modulation.P-values for the caseEC2x2, p = 29
Case 1 Case 2 Case 3 Case 4 Case 5

Test name 100 bits 200 bits 500 bits 1000 bits 2000 bits
Frequency 1.000000 0.671373 0.371093 0.100097 0.066717

C. Sum (forward) 0.722386 0.939470 0.727622 0.163980 0.133434
C. Sum (reverse) 0.722386 0.574764 0.389118 0.107464 0.083738

Runs 0.317311 0.877383 0.399727 0.397138 0.232001
Longest Runs 1.000000 1.000000 1.000000 1.000000 1.000000

DFT 0.745603 0.168669 0.000089 0.000221 0.005837

Table 4: ECPRNG modulated with the Logistic map.P-values for the caseEC2x2, p = 29
Case 1 Case 2 Case 3 Case 4 Case 5

Test name 100 bits 200 bits 500 bits 1000 bits 2000 bits
Frequency 0.841481 0.887537 0.591505 0.113846 0.152406

C. Sum (forward) 0.958638 0.973049 0.917914 0.227688 0.245709
C. Sum (reverse) 0.999430 0.998656 0.727622 0.133272 0.214807

Runs 0.315185 0.202545 0.277117 0.055114 0.010298
Longest Runs 1.000000 1.000000 1.000000 1.000000 1.000000

DFT 0.745603 0.358795 0.110478 0.411770 0.110478

Table 5: ECPRNG modulated with the Chebyshev map.P-values for the caseEC2x2, p = 29
Case 1 Case 2 Case 3 Case 4 Case 5

Test name 100 bits 200 bits 500 bits 1000 bits 2000 bits
Frequency 0.548506 0.322199 0.210498 0.036879 0.089242

C. Sum (forward) 0.540731 0.638440 0.279973 0.049508 0.103459
C. Sum (reverse) 0.897326 0.574764 0.389118 0.068227 0.170221

Runs 0.333303 0.521555 0.802748 0.158895 0.001870
Longest Runs 1.000000 1.000000 1.000000 1.000000 1.000000

DFT 0.104757 0.646355 0.110478 0.150897 0.110478

Table 6: ECPRNG without chaotic modulation.P-values for the caseEC3x3, p = 5501
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Test name 100 bits 200 bits 500 bits 1000 bits 2000 bits 5000 bits 10000 bits 20000 bits
Frequency 1.000000 0.479500 0.371093 0.026857 0.591505 0.977435 0.289145 0.276178

C. Sum (forward) 0.814758 0.704309 0.359311 0.029787 0.075135 0.376714 0.189838 0.176714
C. Sum (reverse) 0.814758 0.405915 0.420651 0.027282 0.245709 0.358107 0.436946 0.452636

Runs 0.045500 0.095740 0.027537 0.134454 0.055256 0.497257 0.008072 0.006788
Longest Runs 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.031775 0.000110

DFT 0.330390 1.000000 0.663355 1.000000 0.468160 0.713570 0.363646 0.000000

Table 7: ECPRNG modulated with the Logistic map.P-values for the caseEC3x3, p = 5501
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Test name 100 bits 200 bits 500 bits 1000 bits 2000 bits 5000 bits 10000 bits 20000 bits
Frequency 0.689157 0.571608 0.474274 0.849515 0.152406 0.350623 0.952156 0.630635

C. Sum (forward) 0.814758 0.892023 0.256747 0.458362 0.292175 0.491372 0.602017 0.697670
C. Sum (reverse) 0.722386 0.704309 0.685633 0.328147 0.045122 0.282680 0.549275 0.452636

Runs 0.987214 0.150110 0.171959 0.612070 0.999143 0.765048 0.262729 0.010401
Longest Runs 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.653236 0.213793

DFT 0.104757 0.646355 0.884636 0.837419 0.081659 0.358795 0.398920 0.000000
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Table 8: ECPRNG modulated with the Chebyshev map.P-values for the caseEC3x3, p = 5501
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Test name 100 bits 200 bits 500 bits 1000 bits 2000 bits 5000 bits 10000 bits 20000 bits
Frequency 0.161513 0.571608 0.591505 0.751830 0.395489 0.671373 0.968093 0.954889

C. Sum (forward) 0.322973 0.458043 0.563698 0.850473 0.685633 0.612629 0.796727 0.828133
C. Sum (reverse) 0.032790 0.405915 0.644038 0.562079 0.374000 0.881166 0.832407 0.875593

Runs 0.065759 0.981919 0.778427 0.901837 0.741919 0.911937 0.327094 0.336229
Longest Runs 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.653236 0.213793

DFT 0.745603 1.000000 0.884636 0.837419 0.663355 0.462869 0.037854 0.000000

number of bits that is of the range twice as much a the
binary size of the modulusp of the finite fieldFp, what
slightly increases the speed of generation.

The experiments presented in this paper confirm that
our theoretical assumptions concerning the new
construction of the PRNG are satisfied. However, to
optimize the procedures of generation further extensive
studies must be performed. One possible extension is
generating bits using elliptic curves over binary finite
fields, to omit the operation of decoding points of the
elliptic curve into binary sequences. Next, we should find
better method of establishing parameters of chaotic
generators to avoid prior testing of their random
properties, what would allow us to make all operations
on-line. Such research will be the subject of our further
studies.
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