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We discuss practical schemes for triggering evolution of entanglement between qubits.
The schemes are especially appealing as they require no experimentally difficult dy-
namical control and addressing of individual atoms. It is shown that the evolution
of a stable or “frozen” entanglement can be triggered by varying the parameters of a
given system such as coupling constants between atoms and the field modes or detun-
ings between the atomic and field frequencies. We also address the issue of a controlled
(steered) evolution of entanglement between desired pairs of qubits that can be achieved
by varying the parameters of a given system. It is of practical importance to know if an
initial localized entanglement can be transferred on demand with the perfect fidelity to
a particular pair of qubits. In addition, we illustrate how one can achieve a controlled
creation of entanglement by spontaneous emission. We use two atoms that directly in-
teract through the dipole-dipole interaction and a collective spontaneous exchange of
photons. It is found that time at which an entanglement can be created depends on the
initial state of the atoms.
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1 Introduction

The studies of quantum entanglement engineering between trapped atoms, its encod-
ing into atomic states, and transfer from one group of atoms to another are vital to the
development of quantum communication and quantum computation [1]. It has been es-
tablished that trapped and cooled atoms are promising candidates for the realization of all
these specific operations that require devices for the control and transmission in the form
of long-lived atomic states that are immune to dissipation and decoherence. In order to pre-
vent an encoded logical information from decoherence, the state should belong to a group
of states contained inside the so-called decoherence-free subspace that is decoupled from
the external environment [2, 3]. Therefore, one of the increasing interests in this context is
to find ways to access the internal states of the subspace to trigger a controlled evolution
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of the encoded information. It has been proposed to implement a dynamical technique of
addressing individual atoms by well stabilized laser fields to achieve controlled manipula-
tion of the internal states of the atoms and evolution of entanglement [4]. However, under
realistic conditions the problem of addressing individual atoms poses a substantial exper-
imental challenge. Thus, it is important to investigate alternative methods not involving
control over individual atoms.

In this paper, we tackle the problem of triggered evolution of entanglement between
two separate two-level atoms serving as qubits. Our focus is on how one could trigger
an evolution of a stabile or “frozen” entangled state without the presence of any external
fields. We consider three practical schemes where the atoms are coupled to a single mode
cavity field or are subject of the interaction with an environment whose the internal modes
are in their vacuum states. Microwave and optical cavities have already been proved as
useful systems for entanglement creation and a controlled interaction between atoms and
field [5]. Although the schemes involving cavities successfully demonstrated the situation
for entanglement creation between the atoms, the requirements for controlled evolution of
entanglement are not known. We demonstrate that the evolution of an initially “frozen”
entanglement can be triggered by a change of a parameter of a given system. The pa-
rameters that can be changed are the coupling constants between the atoms and the field
modes. Alternatively, one could change frequencies of the cavity modes to detune them
from the atomic resonance frequencies. We then apply that ideas to a controlled steering
of the evolution of an initial entanglement to a desired pair of qubits including a situation
where qubits are completely isolated, such as completely separated cavities each containing
a single atom [6–9].

We also address the issue of a controlled creation of entanglement by spontaneous emis-
sion. We use motionless qubits (atoms) which are trapped and kept at small distances from
each other, so that they directly interact through the dipole-dipole interaction and through
a collective spontaneous exchange of photons. We shall see that a crucial parameter in
the case of the atoms coupled to the same external environment is the collective damp-
ing [10–12]. This parameter has the effect to slow down the spontaneous emission from
a collective (antisymmetric) state of the system. As a result, an unbalanced population
distribution between the states will occur leading to an entanglement between the atoms.

The paper is organized as follows. We start in Sec. 2 by introducing three different
schemes for a controlled evolution of entanglement. We then illustrate in Sec. 3 how a
controlled evolution can be triggered in systems which may not be identical in that the
cavity frequencies and the coupling constants of the atoms to the cavity modes could be
different. The issue of steering the entanglement evolution between remote atoms is dis-
cussed in Sec. 4. In Sec. 5, we investigate properties of spontaneously triggered evolution
of the atoms that can create a transient entanglement from initially unentangled states. We
summarize our results in Sec. 6.
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2 Two-Atom Systems

The systems considered here involve two two-level atoms fixed at positions ~ri (i = 1, 2)
with ground states |gi〉, excited states |ei〉 and transition frequencies ω0. Both atoms are
assumed to be damped with the same rates γ arising from the coupling of the atoms to the
external environment and equal to the Einstein A coefficient for spontaneous emission. We
discuss in details two particular schemes where the atoms are coupled to a single-mode
cavity field of frequency ωc or are allocated in two separate cavities of frequencies ω1

and ω2. In the third scheme considered here, we assume that the atoms are in free space
and are coupled to their external environment whose the modes are in the vacuum state.
The atoms can be prepared initially in an arbitrary state that can be a separable (product)
state or in a superposition (entangled) state. The initial state may evolve in time under the
action of the Hamiltonian of the system, or its evolution may be “frozen” for all times.

The dynamics of the atoms can be studied in any complete set of basis states of a
given system. It is our purpose to choose the basis that provide equations of motions for
populations and coherences of a simple mathematical structure and allow for a particularly
transparent physical interpretation.

For the first scheme of the two atoms located inside a single-mode cavity field, it will
prove convenient to study the dynamics of the atoms in the basis of four product (separable)
states

|e〉 = |e1〉 ⊗ |e2〉, |2〉 = |g1〉 ⊗ |e2〉,
|3〉 = |e1〉 ⊗ |g2〉, |g〉 = |g1〉 ⊗ |g2〉. (2.1)

For the second scheme of the atoms located in two separate cavities, the dynamics
will involve both the atoms and the cavity modes. Similar to the first scheme, it will be
convenient to study the dynamics in the basis of product (separable) states of the form

|1〉 = |e1〉 ⊗ |g2〉 ⊗ |0〉1 ⊗ |0〉2, |2〉 = |g1〉 ⊗ |g2〉 ⊗ |1〉1 ⊗ |0〉2,
|3〉 = |g1〉 ⊗ |e2〉 ⊗ |0〉1 ⊗ |0〉2, |4〉 = |g1〉 ⊗ |g2〉 ⊗ |0〉1 ⊗ |1〉2. (2.2)

Here, for example, the state |e1〉 ⊗ |g2〉 ⊗ |1〉1 ⊗ |0〉2 represents the atom 1 in the excited
state, the atom 2 in the ground, one photon in the cavity 1, and zero photons in the cavity 2.

The third scheme involves two atoms interacting with their external environment. In
this case, it will prove convenient to study the dynamics of the atoms in the basis of four
collective states, so-called Dicke states, defined as [10, 11]

|e〉 = |e1〉 ⊗ |e2〉,
|s〉 = (|e1〉 ⊗ |g2〉+ |g1〉 ⊗ |e2〉) /

√
2,

|a〉 = (|e1〉 ⊗ |g2〉 − |g1〉 ⊗ |e2〉) /
√

2,
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|g〉 = |g1〉 ⊗ |g2〉. (2.3)

In this basis, the two-atom system behaves as a single four-level system with the ground
energy state |g〉, two intermediate states |s〉 and |a〉, and the upper state |e〉. For independent
atoms, the intermediate states are degenerated and the degeneracy is lifted when the atoms
directly interact through the dipole-dipole potential. The magnitude of the shift depends on
the distance between the atoms and the orientation of the atomic dipole moments in respect
to the interatomic axis.

2.1 Two distant atoms located inside a single-mode cavity

In the first scheme, we assume that the atoms are coupled to a standing-wave cavity
mode with the position dependent coupling constants gj ≡ g(~rj), and damped at the rate γ

by spontaneous emission to modes other than the preferred cavity mode. We assume that
the solid angle subtended by the cavity field is small compared to 4π, that the cavity field
can be treated as a one-dimensional field. In addition, we assume that the atoms are sep-
arated by the distance r12 which is large compare to the resonant wavelength λ0 of the
atomic transitions. Therefore, we may ignore the direct interactions between the atoms.
The cavity mode is damped with the rate κ and its frequency ωc is significantly detuned
from the atomic transition frequency ω0, so there is no direct exchange of photons between
the atoms and the cavity mode. The behavior of the total system, the atoms plus the cavity
mode, is described by the density operator ρ, which in the interaction picture satisfies the
master equation

∂ρ

∂t
= − i

~
[H0, ρ]− 1

2
γ

2∑

j=1

(
S+

j S−j ρ + ρS+
j S−j − 2S−j ρS+

j

)

− 1
2
κ

(
a†aρ + ρa†a− 2aρa†

)
, (2.4)

where

H0 = ~
2∑

j=1

(
gjaS+

j e−i∆t + H.c.
)

(2.5)

is the Hamiltonian describing the interaction between the cavity field and the atoms. The
operators S+

j = |ej〉〈gj | and S−j = |gj〉〈ej | are the raising and lowering operators of
the jth atom, and Sz

j = (|ej〉〈ej | − |gj〉〈gj |)/2 describes its energy. The boson operators a

and a† are the cavity-mode annihilation and creation operators, ∆ = ωc−ω0 is the detuning
of the cavity-mode frequency from the atomic transition frequency, and gj is the position
dependent coupling constant of the jth atom with the cavity mode.

To extract the atomic dynamics from the evolution of the total atoms plus the cavity
field system, we introduce the photon number representation for the density operator with
respect to the cavity mode, and write the density matrix elements in the basis of the photon
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number states of the cavity mode, ρmn. Since this scheme we will refer explicitly only
to single-photon processes, we assume that the cavity mode is strongly detuned from the
atomic transition frequency to avoid population of higher energy levels. In this case, we
may apply the adiabatic approximation which states that for a large detuning the one-photon
coherences ρ01 and ρ10 vary slowly in time, so we can assume that ρ̇01 ≈ 0 and ρ̇10 ≈ 0.
With this approximation, we find a simplified model of the system in the form of the master
equation for the reduced (atomic) density operator ρA of the form [13]

dρA

dt
= i

2∑

i=1

δi [Sz
i , ρA] + i

2∑

i 6=j=1

Ωij

[
S+

i S−j , ρA

]

− 1
2
γ

2∑

j=1

(
S+

j S−j ρA + ρAS+
j S−j − 2S−j ρAS+

j

)
, (2.6)

where

δi =
|gi|2
∆

, and Ωij = Ωji =
gig

∗
j

∆
. (2.7)

The first two terms of the master equation (2.6) describe coherent evolution of the atoms,
with the parameter δi appearing as the frequency shift of the energy levels of the ith atom.
It is an analog of a dynamic Stark shift [13]. The other parameter, Ωij represents the
shift in energy separation of the levels of atom i due to its interaction with the atom j

through the cavity mode. It is an analog of the familiar dipole-dipole interaction between
the atoms [10–12, 14–16]. In the formulation used here this interaction is due to an ex-
change of virtual photons between the atoms. This shows that one can engineer the inter-
action between distant atoms simply by the adiabatic elimination of the cavity mode.

Note from Eq. (2.7) that the shift of the atomic levels is determined by the coupling
constant gj and can vary with the position of an atom inside the cavity mode. As a result,
the atoms located at different positions inside the cavity mode may experience different
shifts. We will analyse this case in details assuming that g1 6= g2 such that

g1 = g0, and g2 = g0 cos (kr12) , (2.8)

where r12 = |~r2−~r1| is the distance between the atoms. This choice of the reference frame
corresponds to a situation where atom 1 is kept exactly at an antinode of the standing wave
and the atom 2 is moved through successive nodes and antinodes of the standing wave.
This choice, of course, involves no loss of generality.

In order to study the dynamics of the system and evolution of an initial entanglement,
we use the master equation (2.6) and find the following equations of motion for the density
matrix elements

ρ̇23 = − (γ − iδ12) ρ23 + iΩ12 (ρ22 − ρ33) ,
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ρ̇32 = − (γ + iδ12) ρ32 − iΩ12 (ρ22 − ρ33) ,

ρ̇22 = −γρ22 + iΩ12 (ρ23 − ρ32) ,

ρ̇33 = −γρ33 − iΩ12 (ρ23 − ρ32) ,

ρ̇ee = −2γρee. (2.9)

In Eq. (2.9) the parameter δ12 = δ1 − δ2 is a difference between the single-atom Stark
shifts. This parameter is of central importance here as it determines the relative variation
of atomic transition frequencies with position of the atoms inside the cavity mode. The
parameter δ12 is different from zero only when g1 6= g2. Otherwise, δ12 = 0.

In order to solve the set of the differential equations (2.9), we introduce new variables

u = ρ23 + ρ32, v = i(ρ23 − ρ32), w = ρ22 − ρ33, ρdd = ρ22 + ρ33, (2.10)

and find that it splits into two independent sets of equations

ρ̇ee = −2γρee,

ρ̇dd = −γρdd + 2γρee, (2.11)

and

u̇ = −γu + δ12v,

v̇ = −γv − δ12u− 2Ω12w,

ẇ = −γw + 2Ω12v. (2.12)

It is interesting that the equations of motion (2.12) are the exact equivalent of the optical
Bloch equations of a two-level system driven by a detuned coherent field, where the dipole-
dipole interaction Ω12 plays the same role as a driving coherent field, and δ12 appears as a
detuning of the field from the driven transition [17].

Since we are interested only in one-photon dynamics, it is enough to solve the set of
equations (2.12). It is easy to show that the solution, valid for arbitrary initial conditions,
is of the form

u(t) =
e−γt

α2
[2Ω12A+ δ12 (v0α sin αt + B cos αt)] ,

v(t) =
e−γt

α
(v0α cos αt + B sin αt) ,

w(t) =
e−γt

α2
{−δ12A+ 2Ω12 (v0α sin αt + B cos αt)} , (2.13)

where α =
√

4Ω2
12 + δ2

12 is the detuned Rabi frequency, and

A = 2Ω12u0 − δ12w0, B = δ12u0 + 2Ω12w0, (2.14)
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are given in terms of the initial values w0 ≡ w(0), u0 ≡ u(0) and v0 ≡ v(0) of the
population inversion and coherences in the system.

The density matrix elements oscillate in time with the Rabi frequency α, and all are
equally damped with the rate γ due to the decay of the population to the ground state |g〉.
In the subsequent sections, we will use the solution (2.13) to study the time evolution of
entanglement between the atoms.

2.2 Two separated single mode cavities

Our second model considered in this paper consists of two separated single mode cav-
ities each containing a single two-level atom. The atoms are coupled to the cavity modes
with coupling constants g1 and g2 that, in general, may not be identical. In addition, the
cavity frequencies ω1 and ω2 may differ from the atomic transition frequency ω0.

The Hamiltonian for the system in the electric-dipole and rotating-wave approximations
is of the form

Ĥ = ĤF + ĤA + Ĥint, (2.15)

where

ĤF = ~ω1

(
a†1a1 +

1
2

)
+ ~ω2

(
a†2a2 +

1
2

)
(2.16)

is the Hamiltonian of the cavity fields,

ĤA = ~ω0S
z
1 + ~ω0S

z
2 (2.17)

is the Hamiltonian of the atoms, and

Ĥint = ~g1

(
a†1S

−
1 + a1S

†
1

)
+ ~g2

(
a†2S

−
2 + a2S

†
2

)
(2.18)

is the interaction Hamiltonian between the atoms and the cavity modes. Here, as before
in the first scheme, the S+

i and S−i operators are respectively the raising and lowering
operators of the ith atom, and a†j (aj) are the creation (annihilation) operators for the mode
of the jth cavity.

We assume that the system is completely isolated from the environment. In this case,
the evolution is purely coherent and the state of the system is a pure state whose the time
evolution is found by solving the Schrödinger equation

i~
d

dt
|Φ(t)〉 = Ĥ|Φ(t)〉, (2.19)

where

|Φ(t)〉 = d1(t)|1〉+ d2(t)|2〉+ d3(t)|3〉+ d4(t)|4〉, (2.20)
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which is a linear combination of the product states (2.2) of the atoms and the cavity modes
at time t. The coefficient di(t) determines the probability amplitude of the ith state at
time t. It is easy to show that the coefficients satisfy the differential equations

d

dt
d1 = −ig1d2,

d

dt
d2 = 2i∆1d2 − ig1d1,

d

dt
d3 = −ig2d4,

d

dt
d4 = 2i∆2d4 − ig2d3, (2.21)

where 2∆j = (ω0 − ωj) is the detuning of the jth cavity frequency from the atomic
transition frequency.

Equations (2.21) form decoupled pairs of simple differential equations that can be
solved by using e.g. the Laplace transform technique. A solution of the equations, valid
for an arbitrary initial state is easily written in the form

d1(t) = ei∆1t {d1(0) cos(Ω1t)− i [δ1d1(0) + β1d2(0)] sin(Ω1t)} ,

d2(t) = ei∆1t {d2(0) cos(Ω1t) + i [δ1d2(0)− β1d1(0)] sin(Ω1t)} ,

d3(t) = ei∆2t {d3(0) cos(Ω2t)− i [δ2d3(0) + β2d4(0)] sin(Ω2t)} ,

d4(t) = ei∆2t {d4(0) cos(Ω2t) + i [δ2d4(0)− β2d3(0)] sin(Ω2t)} , (2.22)

where Ωi =
√

g2
i + ∆2

i (i = 1, 2) is a detuned Rabi frequency, dj(0) (j = 1, 2, 3, 4) are
the initial values of the probability amplitudes, δi = ∆i/Ωi, and βi = gi/Ωi are scaled
(dimensionless) detunings and coupling constants, respectively.

The probability amplitudes oscillate sinusoidally with the Rabi frequency Ωi, and their
dynamics is strongly affected by the modulation term that depends on the detuning δi and
the coupling constant βj between the atom and the corresponding cavity mode. In general,
the time evolution is quite complicated and not easy to interpret. However, one can see
from Eqs. (2.22) that the detuning enters the solutions in an antisymmetric way, whereas
the coupling strength enters the solutions in a symmetric way. This difference will be
evident in the features of the time evolution of entanglement in the system.

By contrast, we will show that asymmetric cavities and cavity-atom detunings can prove
advantageous in enabling a control of entanglement. Our objective then is to include ω1 6=
ω2 6= ω0 and g1 6= g2, which also has the purpose of better modelling a real experimental
situation, where it may be difficult to produce identical cavities. The unequal coupling
constants for example may arise when atoms are not in equivalent positions inside the
cavities.

2.3 Two atoms in free space coupled to the same external environment

We now turn to the third scheme that differs from the previous schemes in not involving
a cavity. In this scheme we consider two atoms located at distances comparable or even
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smaller than the resonant wavelength and simultaneously coupled to a multimode vacuum
field. The atoms can now directly interact with each other so that we fully incorporate the
collective interactions and study in detail the time evolution of the concurrence starting
from an initially separable state. The atoms radiate spontaneously and their radiation field
exerts a strong dynamical influence on one another through the vacuum field modes. The
time evolution of the system is studied using the Lehmberg–Agarwal [11,12,15,16] master
equation, which reads as

∂ρA

∂t
= −iω0

2∑

i=1

[Sz
i , ρA]− i

2∑

i 6=j=1

Ωij

[
S+

i S−j , ρA

]

−1
2

2∑

i,j=1

γij

([
ρAS+

i , S−j
]
+

[
S+

i , S−j ρA

])
, (2.23)

where γii ≡ γ are the spontaneous decay rates of the atoms caused by their direct coupling
to the vacuum field. The master equation (2.23) already contains the interatomic interaction
between the atoms that is determined by the parameters γij and Ωij (i 6= j). The interaction
parameters depend on the distance between the atoms and describe the collective damping
and the dipole-dipole interaction defined, respectively, by

γij =
3
2
γ

{[
1− (µ̂ · r̂ij)

2
] sin (k0rij)

k0rij

+
[
1− 3 (µ̂ · r̂ij)

2
] [

cos (k0rij)
(k0rij)

2 − sin (k0rij)
(k0rij)

3

]}
, (2.24)

and

Ωij =
3
4
γ

{
−

[
1− (µ̂ · r̂ij)

2
] cos (k0rij)

k0rij

+
[
1− 3 (µ̂ · r̂ij)

2
] [

sin (k0rij)
(k0rij)

2 +
cos (k0rij)
(k0rij)

3

]}
, (2.25)

where k0 = ω0/c, and rij = |~rj − ~ri| is the distance between the atoms.
The master equation (2.23) allows us to study the dynamics of the atoms interacting

with each other through the coupling to the common vacuum field. Equation (2.23) leads
to a closed set of four equations of motion for the populations of the collective states of the
system and one-photon coherences between them. The set of the equations is easily solved
by direct integration and the solution, valid for an arbitrary initial condition, is of the form

ρee(t) = ρee(0) e−2γt,

ρss(t) = ρss(0) e−(γ+γ12)t + ρee(0)
γ + γ12

γ − γ12

(
e(γ−γ12)t − 1

)
e−2γt,

ρaa(t) = ρaa(0) e−(γ−γ12)t + ρee(0)
γ − γ12

γ + γ12

(
e(γ+γ12)t − 1

)
e−2γt,
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ρsa(t) = ρsa(0) e−(γ+2iΩ12)t, (2.26)

and ρgg(t) = 1 − ρee(t) − ρss(t) − ρaa(t). Note that the full solution for the density
matrix elements exhibits the effect of the collective damping γ12 and the dipole-dipole
interaction Ω12.

2.4 Measure of entanglement between two atoms

In order to determine the amount of entanglement between the atoms and the entangle-
ment dynamics, we use concurrence that is the widely accepted measure of entanglement.
The concurrence introduced by Wootters [18] is defined as

C = max
(
0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
, (2.27)

where {λi} are the the eigenvalues of the matrix

R = ρAρ̃A, (2.28)

with ρ̃A given by
ρ̃A = σy ⊗ σy ρ∗A σy ⊗ σy, (2.29)

and σy is the usual Pauli matrix given by

σy =

(
0 −i

i 0

)
. (2.30)

The systems are entangled for C > 0 with the maximum possible entanglement given
by C = 1, while C = 0 implies separability.

The concurrence depends on the density matrix of a given system. In the first scheme,
we consider time evolution of an initial entanglement between the atoms without presence
of an external fields. In this case, the density matrix of the atoms written in the basis of the
states (2.1) is in a simple block diagonal form

ρ(t) =




ρee(t) 0 0 0
0 ρ33(t) ρ32(t) 0
0 ρ23(t) ρ22(t) 0
0 0 0 ρgg(t)


 , (2.31)

in which we put all the coherences, except the atom-atom coherences ρ23(t) and ρ32(t),
equal to zero. Knowledge of the density matrix of the system allows to find the concurrence,
which with the density matrix of the form (2.31) has a simple analytical form

C(t) = 2 max
{

0, |ρ23(t)| −
√

ρgg(t)ρee(t)
}

, (2.32)
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or alternatively, we may study the concurrence (2.32) in terms of the components u(t)
and v(t) of the Bloch vector as

C(t) = max
{

0, |u(t)− iv(t)| − 2
√

ρgg(t)ρee(t)
}

. (2.33)

It is evident that a non-zero coherence between the |2〉 and |3〉 states is the necessary condi-
tion for entanglement, but not in general sufficient one since there is also a threshold term
in the concurrence, as seen from Eqs. (2.32) and (2.33), involving the populations ρee(t)
and ρgg(t).

For the second scheme, we will calculate the concurrence between the atoms by taking
trace over the cavity modes to obtain the reduced density matrix, from which the eigenval-
ues can be obtained. Thus, in the basis of the states (2.2), the reduced density matrix of the
atoms, after tracing over the cavity modes, is of the form

ρ(t) =

(
|d1(t)|2 d1(t)d∗3(t)

d∗1(t)d3(t) |d33(t)|2
)

, (2.34)

for which the concurrence is

Cαβ(t) = max {0, 2|d1(t)||d3(t)|} , (2.35)

where the subscript αβ indicates the concurrence between the atoms labeled as α and β.
In the same fashion, we may define the concurrence measures of another possible pairs

of qubits of the system, such as Cab(t), cavity 1 mode − cavity 2 mode; Cαa(t), atom α −
cavity mode 1; Cαb(t), atom α − cavity mode 2; Cβa(t), atom β − cavity mode 1; Cβb(t),
atom β − cavity mode 2. These concurrences are found to be evaluated as

Cab(t) = max {0, 2|d2(t)||d4(t)|} , Cαa(t) = max {0, 2|d1(t)||d2(t)|} ,

Cαb(t) = max {0, 2|d1(t)||d4(t)|} , Cβa(t) = max {0, 2|d3(t)||d2(t)|} ,

Cβb(t) = max {0, 2|d3(t)||d4(t)|} . (2.36)

Note that there is no the threshold term when only one-photon states are involved in the
dynamics of the system [19].

The third scheme involves dynamics of two interacting atoms coupled to an external
environment that is a vacuum field. In this case the dynamics of the atoms are determined
by the density operator which written in the basis of the collective states (2.3) has the
following form

ρ(t) =




ρee(t) 0 0 0
0 ρss(t) ρsa(t) 0
0 ρas(t) ρaa(t) 0
0 0 0 ρgg(t)


 . (2.37)
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With the density matrix (2.36), the concurrence has a simple analytical form

C(t) = max
{

0, C̃(t)
}

, (2.38)

with

C̃(t) =
√

[ρss(t)− ρaa(t)]2 − [ρsa(t)− ρas(t)]
2 − 2

√
ρgg(t)ρee(t). (2.39)

We see that the problem of entanglement creation and evolution in the two qubit system
can be determined in terms of populations and coherences between the collective levels. In
addition, the concurrence shows the threshold behavior that depends on the distribution of
the population between the entangled and separable states. Notice that the threshold de-
pends on the population of the upper state |e〉. Thus, no threshold features can be observed
in entanglement creation by spontaneous emission for qubits initially prepared in a single
photon state. As we shall see in Sec. 5, there are distinguished differences in the way how
entanglement is created from initial separable one-photon and two-photon states.

3 Triggered Entanglement Evolution

We now proceed to analyze the problem how one could trigger an evolution of of sta-
ble or “frozen” entangled state. We consider the problem for two of the three schemes
introduced above that involve the cavity field.

For the first scheme, suppose that the system is initially prepared in a pure superposi-
tion state

|Ψ0〉 =
1√
2

(|g1〉|e2〉+ |e1〉|g2〉) , (3.1)

which corresponds to the atoms initially maximally entangled.
For this state, the initial conditions for the Bloch vector components are u0 = 1, v0 =

w0 = 0. Then we can easily find from Eqs. (2.13) and (2.33) that the concurrence C(t) = 1
at t = 0, and its time evolution is of the form

C(t) = e−γt

∣∣∣∣1−
2δ2

12

α2
sin2

(
1
2
αt

)
− i

δ12

α
sin αt

∣∣∣∣ . (3.2)

We see from Eq. (3.2) that the concurrence varies periodically in time only if δ12 6= 0.
In the absence of δ12, i.e. when the atoms are in equivalent positions inside the cavity mode,
the entanglement remains stabile that its oscillation in time is completely suppressed.

Figure 3.1 display the concurrence C as a function of time and the position of the
atom “2” inside the mode of the cavity field. One see that the initial entanglement does not
evolve in time when the atom is located at the antinode of the cavity field. This situation
corresponds to the case of both atoms located in equivalent positions inside the standing
wave of the cavity field that results in equal coupling constants g1 = g2. In other words, it
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Figure 3.1: Concurrence as a function of the normalized time αt and the position of the second
atoms inside the standing-wave cavity mode. The overall slow decay of the concurrence is due to
spontaneous emission with the rate γ/α = 0.1.

corresponds to the atoms located precisely at antinodes of the standing wave. By breaking
the symmetry between the coupling constants, i.e. by a dislocation of the atom “2” from
the antinode of the standing wave, it is possible to trigger an evolution of the “frozen”
entanglement.

Let us now consider the second scheme and illustrate the effect of the detuning ∆1 =
∆2 = ∆ on the evolution of an initial entanglement. Assume that initially the system was
in a superposition state with a uniform population distribution over the available energy
states (2.2). The state can be written as

|Ψ0〉 =
1
2

(|1〉+ eiθ|2〉 ± (|3〉 − eiφ|4〉)) , (3.3)

where θ and φ are arbitrary phase factors.

Figure 3.2: Concurrence as a function of the normalized time gt and the detuning of the cavity modes
from the atomic resonances for gβ/gα = 1.
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It is easy to see from Eq. (2.22) that with the initial state (3.3) and zero detunings, all
of the two-qubit entanglement between pairs remains constant with time. In this case, the
entanglement is maximally shared between the six qubit pairs, so Cαβ(0) = Cab(0) =
Cαa(0) = Cαb(0) = Cβa = Cβb(0) = 1/4. It is interesting to note that the entanglement
remains stabile independent of whether g1 = g2 or g1 6= g2.

A nonzero detuning ∆ triggers an evolution of the entanglement. This is illustrated
in Fig. 3.2, where we plot the concurrence Cαβ as a function of time and the detuning ∆ for
equal coupling constants g1 = g2 = g. We see that the atomic concurrence varies in time
only for nonzero detuning and the time evolution of the concurrence is not symmetric with
respect to the sign of the detunings. A large and even maximal entanglement between the
atoms can be created when the detuning is positive, whereas the initial atomic entanglement
is reduced and can even be suppressed when the detuning is negative. When the atom-atom
entanglement is maximum, Cαβ = 1, then the entanglement between the other qubit pairs is
zero and vice versa, when the atom-atom entanglement is zero then entanglement between
one of the qubit pairs is maximal. This result also implies a possibility of a controlled
evolution of the system towards the maximum entanglement between one of the qubit pairs.
It is also interesting that the maximum atomic entanglement Cαβ = 1 is created only for a
particular value of the detuning ∆ = g. Otherwise, the atomic entanglement is reduced.

4 Steered Entanglement Transfer

The possibility of triggering an asymmetric evolution of an initial entanglement by
changing the sign of the detuning ∆ implies that one can also engineer the direction of evo-
lution of entanglement by controlling the detuning. By this we mean that an initial entan-
glement can be transferred to a desired “localized” atom-atom entanglement by a suitable
choice of the detunings. As it is clear from Fig. 3.2, positive detuning can channel entan-
glement entirely into the atoms, at appropiate times. “Localized” in this context means
that the entanglement exists solely between the two atoms. Therefore, the entanglement
transfer can be controlled by varying the frequency of the cavity mode.

Let us now consider an another steering mechanism for entanglement transfer; an asym-
metry in the coupling constants g1 and g2. As before, in Sec. 3, we will discuss how to
achieve a steered evolution of an initial entanglement to a desired pair of qubits using the
second scheme involving two cavities each containing a single two-level atom. We assume
that initially the system is prepared in a superposition state such that

|Ψ0〉 =
1√
2

(|1〉+ |3〉) , (4.1)

with the states |1〉 and |3〉 being the atomic excitation states of the basis (2.2). It is easy to
check that with this initial state, the atoms are maximally entangled, Cαβ(0) = 1, at t = 0
and the other pairs of qubits are disentangled.
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Figure 4.1: Concurrence for qubit pairs plotted as a function of the normalized time gt = 1
2
(g1+g2)t

for ∆ = 0 and different ratios of the coupling constants g2/g1: (a) g2/g1 = 1, (b) g2/g1 = 2,
(c) g2/g1 = 3, (d) g2/g1 = 4. In all figures the solid line is for the atom-atom concurrence Cαβ .
The dashed line is for the concurrence measure (a) Cab, (b) Cβa, (c) Cab and (d) Cβa.

Consider the time evolution of the concurrence measures. Using Eqs. (2.22), we find
that the concurrence measures (2.35) for the case of exact resonances ∆1 = ∆2 = 0 and
unequal coupling constants, g1 6= g2 are given by

Cαβ(t) =
∣∣cos (g1t)

∣∣∣∣cos (g2t)
∣∣, Cab(t) =

∣∣sin (g1t)
∣∣∣∣sin (g2t)

∣∣,
Cαa(t) =

∣∣cos (g1t)
∣∣∣∣sin (g1t)

∣∣, Cαb(t) =
∣∣cos (g1t)

∣∣∣∣sin (g2t)
∣∣,

Cβa(t) =
∣∣cos (g2t)

∣∣∣∣sin (g1t)
∣∣, Cβb(t) =

∣∣sin (g2t)
∣∣∣∣cos (g2t)

∣∣. (4.2)

A simple analysis of the concurrence measures (4.2) shows that if the ratio g2/g1 is not
an integer number or a fraction of an integer number, no complete transfer of the initial
entanglement from the atoms is possible to any of the qubit pairs. The complete transfer is
possible only if the ratio is an integer number or a fraction of an integer number. However,
the destination to where the initial entanglement can be completely transfered depends on
whether the ratio is an even or an odd integer number.

If the ratio g2/g1 is an even number, the initial maximal entanglement between the
atoms can be completely transferred only to the atom-field qubit pair Cβa. On the other
hand, if the ratio is an odd integer number, the initial entanglement between the atoms can
be completely transferred only to the field-field qubit pair Cab. We illustrate this situation
in Fig. 4.1, where we plot the concurrence of the different qubit pairs as a function of
time for exact resonances but unequal coupling strengths. It is evident from the figure
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that at particular discrete times, the initial entanglement between the atoms is completely
transferred to the qubit pair Cab or Cβa.

The reason for this feature of the entanglement transfer can be understood intuitively by
noting that, for example, for g2/g1 = 2 the Rabi frequency g2 of the population oscillation
in the cavity system 2 is twice that of the Rabi frequency g1 for the population oscillation
in the system 1. This means that over a complete Rabi cycle g2t = π, the initial population
in the system 2 returns to the atom, but at the same time the population makes a half Rabi
cycle in the system 1, i.e. the excitation in system 1 will be in the cavity mode. Thus,
Cβa = 1 at that time, with the concurrence in the other qubit pairs equal to zero.

5 Spontaneously Triggered Evolution

An another issue is creation of entanglement by spontaneous emission where a system
prepared initially in an arbitrary state will start to evolve spontaneously due to the interac-
tion of the atoms with an external environment [20–23].

Figure 5.1: Concurrence as a function of the dimensionless time γt and the distance r12/λ between
the atoms for ~̂r12 ⊥ µ̂. The system was initially in the separable state |e1, g2〉.

We consider first the evolution of the concurrence from the initial separable one-photon
state |e1, g2〉. In this case, the initial values for the density matrix elements are

ρee(0) = 0, ρss(0) = ρaa(0) = ρas(0) = ρsa(0) =
1
2
. (5.1)

We find Eqs. (2.26) and (2.39) that with the initial values (5.1), the time evolution of the
concurrence is of the form

C̃(t) =
1
2

{[
e−(γ+γ12)t − e−(γ−γ12)t

]2

+ 4e−2γt sin2(2Ω12t)
}1/2

. (5.2)
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To visualize the behavior of the concurrence, we plot the time evolution of C(t) in Fig. 5.1
for different separations between the atoms. It is evident from the figure, that the atoms
become entangled immediately after t = 0 and remain entangled for all times. The degree
of the entanglement depends on the distance between the atoms and is large for short dis-
tances. It is not difficult to find from Eq.(2.26) that the long living entanglement created
by spontaneous emission is due to a slow decay of the population of the antisymmetric
state [23].

Figure 5.2: Concurrence as a function of the dimensionless time γt and the distance r12/λ between
the atoms for r̂12 ⊥ µ̂.

The entangled properties of the atoms are completely different when the system is ini-
tially prepared in the upper state |e〉. If, at t = 0, both atoms were excited, the initial values
of the density matrix elements are

ρee(0) = 1, ρss(0) = ρaa(0) = ρas(0) = ρsa(0) = 0. (5.3)

Then, the concurrence, evaluated from Eq. (2.26) and (2.39), shows completely different
time behavior [24]. This is illustrated in Fig. 5.2, where we plot the concurrence as a func-
tion of time and the distance between the atoms. We see that in contrast to the previous case
where entanglement was created immediately after t = 0, the creation of entanglement is
now delayed, that it occurs after a finite time. The reason for the delayed creation of en-
tanglement can be understood as follows. When the system is prepared in the state |e〉, the
resulting spontaneous transitions are cascades: The system decays first to the intermediate
states |s〉 and |a〉, from which then decays to the ground state |g〉. Since the transition rates
to and from the states |s〉 and |a〉 are different when γ12 6= 0, there appears unbalanced
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population distribution between these states. According to Eq. (2.39), this may result in a
transient entanglement between the atoms.

6 Conclusions

In this paper, we have investigated three schemes for triggered and controlled evolution
of an initial stabile entanglement between two two-level atoms. It has been shown that
the time evolution of an initially “frozen” entanglement can be triggered by varying one
of the parameters of a given system. We have shown that by changing the coupling con-
stants between the atoms and the field modes or detuning of the frequencies of the cavity
modes from the atomic resonance frequencies one can trigger an evolution of an initial en-
tanglement to a desired qubit pair. We have also shown that spontaneous emission which
is always regarded as a source of decoherence, can create entanglement between two inter-
acting atoms. The creation of entanglement depends on the initial state of the atoms and
can be delayed if initially both atoms are excited. The delay can be controlled by changing
the distance between the atoms.
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[19] A. Jamróz, J. Phys. A 39 (2006), 7727.
[20] D. Braun, Phys. Rev. Lett. 89 (2002), 277901.
[21] A. M. Basharov, JETP Lett. 75 (2002), 123.
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