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Abstract: In this paper we consider a parametric Weibull mixture curedeh for modeling time to default on a personal loan
portfolio in presence of disproportionate hazard rate. Mlaen contribution of this paper is to evidence that mixtuneecmodels are
appropriate for non proportional sceneries, which has eenkclaimed in recent articles that brings survival analggiproach for
credit scoring modeling. A straight comparison with welblumn proportional hazard mixture cure model presentedleéng and Dear
(2000, provides evidence that risk measurements derived fraenftamework can be greatly affected if required proporiion
conditions are not satisfied. In fact, taking into accoumspnce of covariates, if covariates levels do not have ptiopal hazards
rate over time, adjustment with models that assume prap@ti hazard rates will not be appropriate, and then, erumeo
measurements may be derived, i.e., under or overestimpee®d losses of a portfolio can be observed. Our approacheaeen as
a complement to modeling framework presentedang et al.(2012 for credit scoring purposes, which require a proportidredard
structure. A credit data from a Brazilian commercial bahksirates the procedure.

Keywords: Survival Analysis, Disproportionate Hazard Rate, Cox Brtpnal Hazards Models, Mixture Cure Model

1 Introduction

Statistical models from survival analysis are being prepds financial risk management as alternative tools to model
internal risk parameters, according to development imgmmants demanded by the Basel 1l Accord. Due, mainly, by
reason that survival techniques can do continuous mongaf risk over time in a financial institutior¢uzada-Netp
2006 Malik and Thomas2009 Thomas201Q Bonini and Caivano2013.

Indeed, these models have been considered as an evolutigraced to traditional methods of credit risk analysis,
which are based on a dichotomous response variable (goaidrdhavior). In this novel setting, survival models predic
not only whether the customer will be in default, but alsotthe when the default is more likely.

While borrowers might not honor obligations and become kdetikors, losses associated with such bad consumers
may be estimated over time from results of such survivalymmaltechniques. These tools can represent an important
improvement in formulation of interest rates that will beaaled by banks in their financial activities, and it can beeom
a competitive strategic to earn market share in the actumpetitive scenario.

Survival analysis has shown be very useful for modeling bapkata, as well as, clinical trial, relapse of diseases,
client churning, among others, once they handle charatitsily from long term survivors, which are present in ay&r
proportion in loan portfolio data. The most considered ni®dee standard mixture cure modBktkson and Gagd 952
Farewel] 1982, Cox PH regression modaC6x, 1972 Breslow 1975, and finally, Cox proportional hazard (PH) mixture
cure model Peng and Dea200Q Sy and Taylor 2000. Although, in theory, standard PH regression methodsnassu
survival function reaching zero, we showed Cox PH regressiay have well performance modeling time to default with
long term survivors. For standard mixture cure models ateaguested to satisfy PH assumption, which is indispersabl
to the Cox PH one.

According to our purpose, the aim of this paper is about ndéddke correctly assumptions on modeling financial
data in order to obtain most appropriate risk parameters thedeafter, effective losses measures associated with ba
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borrowers over time. From calculations based on real daaeached amounts that revealed Weibull mixture cure model
has better measurements, in general, because financidlalegaot always taken PH assumption satisfied.
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Fig. 2. Kaplan-Meier estimates of surviving, cumulative hazard gy cumulative hazard functions for second sample dadsifitid
by “civil status”.

The Figuresl and 2 show Kaplan-Meier estimate of survival and log cumulatiazdrd functions from two
representative samples of a loan personal portfolio forbned0.115 customers from a Brazilian commercial bank. In
order to preserve confidentiality of costumer characiessive refer to them as Type 1 and Type 2 levels.

The data analyzed in this work comes from a real data of a Baazbank. To address the proposed theme, we
consider two representative samples of clients. In thedasiple, it is stratified by age range levels and does nofysatis
a PH assumption; on other hand, the second data is stratifietvibstatus and there is satisfied hazard proportionality
condition. The curves of logarithm of cumulative hazardrayeparallel for first data sample, which same does not happen
with second date. Thus, we have two examples of samples wireeshall show measurement errors when assumptions
required by model are not noticed.

In this case, a traditional Cox PH regression model or evehl anixture cure model, as consideredTiong et al.
(2012, are not appropriate. In this case, an option is to use anp&trc mixture cure model. Here, for simplicity of
calculation, we followed a Weibull based structure, what see is more efficient to fit a data set in presence of
proportionate or disproportionate hazard rates.

In summary, our results show that Weibull mixture cure madedensitive to changes in the behavior of risk of
customers over time, fact that may be common in charadterist applications of bank loans. Therefore, the model can
be applied to model both cases displayed by Figuaed Figure2. In addition, we show PH models are not sensitive to
these sudden changes in risk behavior, and that models aselmly in conditions as showed in Fige

The organization of remainder of this paper is as followSéation2, we outlined statistical models used in this study.
Statistical inference to estimate model parameters areites in SectiorB. The illustrations of compared approaches,
using a Brazilian banking data, are presented in the Sedti@ection5 concludes the paper summarizing the results
reached.
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2 Survival Analysisin Credit Risk Modeling

Since the Basel Accord was revised in 2004 by Basel ComnfitteBanking SupervisionRCBS, 2004, and replaced
by Basel Accord I, it has been used by bank regulatory agsreriound world to improve their ability as supervisor of
banking environment. The document received several upaaiee then; it went through financial crisis that began with
subprime in 2006 and recently was extended and effectiegliaced by Basel 11l AccordBCBS, 2010).

The major recommendations contained in the rules issueddsglBl, and maintained in the new Basel Ill, have
demanded that central banks improve their ability to measystemic risk and incite more prudence and conservatism
in risk management setting. It has required banks best resksorement tools in order to make them keep saving enough
capital to safeguard its solvency, eventually to coverde$som risks arising from their banking activities.

In order to calculate how much capital banks need put asideidod against risks of financial activities, in the first
pillar of Basel Il, is required capital from different comments of risk that a bank faces, ie, credit risk, operatiois|
liquidity risk and market risk. For credit risk, which is amern of this paper, three different ways were proposed to be
chosen according various degrees of sophistication, namehcreasing order, Standardized Approach, Found&R@n
Approach and Advanced IRB Approach. The acronym IRB staod4riternal Rating-Based”.

As has already happened, banking groups have agreed to Basegitll to improve their measures of capital at risk
adopting advanced IRB approachhpmas 201Q Bonini and Caivanp2013. With this method, banks are allowed to
develop internal models to determine parameters that axssary to calculate the minimum capital required in theeBas
Il first pillar. These parameters are labelled PD (probgbdif default), LGD (loss given default), EAD (exposure at
default) and, finally, M (maturity).

To model credit risk parameters, methods of survival amalyave been introduced into credit risk area since late 80
(Lane et al. 1986. Survival analysis has showed be complete than stand@rdaghes to predict probability of default.

In fact, survival methods may find out more information alrsk¢, showing not only if the borrower will default, but also
when the default can occutduzada-Netp2006 Tong et al, 2012. Therefore, banks can calculate how much of their
portfolio is at risk of lost over time. Otherwise, usual madk for modeling a dichotomous variable, usually logistjmet
regressions, are tools for classification loan applicatiorording to the probability of customer become a bad or @ goo
payer (ee et al, 2002 Lim and Sohn2007. And based on this classification the bank can take decigimther the loan
will be granted, but will not have subsidies to know when thisal classification of risk would deteriorate over time.

The Cox proportional hazard (Cox PH) regression, which s particularly kind of method in survival analysis and
certainly the mostly chosen modeling in medical researds, fivstly applied in credit risk area thane et al(1986 and
by Whalen(1991), for modeling time to bankruptcy of institutions in the Uffiancial marketNarain (1992 applied
survival methods in a loan bank portfolio to predict the timelefault of borrowers. IWitzany et al.(2010 the authors
applied Cox PH regression models to modeling the LGD and sHawat this method had better performance than a
standard logistic regression.

Survival analysis methods such as the mixture cure modett@an@€ox PH regression have been their performance
discussed and compared against standard approachesiirristedetting in different works, for instance, ifong et al.
(2012, Thomasg(2010, Stepanova and Thom&2002), Abreu (2004 andBanasik et al(1999. But, our concern in this
paper is to show that we can fall into error if we do not takecptgions as to check the validity of assumptions required
by the PH models.

Survival analysis aims model time to occurring specific égveRor example, in the medical area it has been used
to model the survival times of patients in cancer clinicals: In credit risk area, the interesting event is when sban
borrower will not pay his obligations in some time after tharh be granted, in another instance, the event of intergst ma
be the time that a customer will abandon a financial producaaseling a credit card.

In standard survival analysis, the survival functi®yft) is the probability of observing a survival time greater than
some stated valug which is formulated by&(t) = P(T > t), where a random variable is defined as survival time
of an individual. Hence this formulation presumes t8#t) tends to zero as time extends and that all observations will
experience the event of interest. However, there are exesnptredit scoring, where a substantial proportion oficostrs
may not experience event of credit default during loanilifiet therefore they are good borrowers, i.e., costumers are
default-free. They have been called as long term survivorshose standard survival methods are not suitable to &e.us

Mixture cure models are an extension of standard survivaletsovhich have been used in the medical area to model
survival times in data set where there is a large proportfdorm term survivors, ie, patients that will not experiettice
event of interesting, referred to as the cured or®sand Tayloy 2000. The proposed models can be classified as
parametric and semi parametric methods. This modelingnassiwa binary distribution to model patients who have
susceptibility to occurs the interested event, namelydigeece model component, and it has also a parametric or semi
parametric time to event distribution namely latency modemponent. This theory was originally proposed by
Berkson and Gaggl952 and the method was further developed in the medical ardgabgwell(1982. Kuk and Chen
(1992 extended this model by using Cox PH regression for conficurvival function, that is, for latency model
component. This model is now known as the Cox PH mixture curéeh
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Long-term survivors are common in data set from commeraiakls.Tong et al(2012 have introduced a mixture cure
model to this area predicting time to default on a UK comnateank, where there was a large proportion of long term
survivors. In other words, the total borrowers were formgtido kinds of sub populations: those who are good borrowers
and will not be defaulters along with those who are susckptibstumers whose will not honor their obligations. In that
paper, the authors compared the Cox PH mixture cure modirpence to the Cox PH regression model and standard
logistic regression. They showed that, for both survivathods, there were good performances displayed by the nargin
survival function against Kaplan-Meier estimates strdifby the covariate levels available in the study.

In this paper, we also fit both survival methods, a Cox PH m&tture model and Cox PH regression model, on a
personal loans portfolio at a different account levels, twaling time to default in the data from a Brazilian commairci
bank. Nevertheless, we call attention to the fact that, inegal, we can not use the Cox PH method because it is
common, in that kind of financial data, account levels do rasehproportional failure rates and therefore the method is
not applicable. In this case, the Weibull mixture cure maihews to better predict the time to default. The Cox PH and
the mixture cure models are outlined as following.

2.1 Cox Proportional Hazards Regression Model

A classic model for analysis of survival data is the PH mod&biduced byCox (1979. This is a semi-parametric model
which is composed by the product of one nonparametric compicand other parametric one. The PH model is given by

h(t[x) = ho(t) exp{X'B} = ho(t) exp{BiXs + -+~ + BiXc}, 1)

wherex = (Xg,--- ,Xk) is a vector ok covariateshg is a baseline hazard function, it is not specified, which diesdhow
hazard changes over time at baseline levels of covariated)(§x) is the hazard function at time t given the vector of
covariate.

In this model, we can measure differentimpacts for eachréatesin eventrisk. To illustrate, consider two observasio
i andi’ that differ in theirx-values, with the corresponding linear predictays:= Bixi1 + BoXi2 + - -+ + BuXik andnj =
BiXir1 + BoXira + -+ + BuXir.

The hazard ratio for these two observations is given by

hi(t)  ho(t)exp{ni} e
hi(t)  ho(t)exp{ni} exp{ni — .

is independent of time Consequently, this mean that the Cox PH modeling has ther&pepy.
The Cox model can be estimated by the method of partial likeld Cox, 1972. The PH model is implement in the
survival package developed in R Brerneay2013 andTerry M. Therneau and Patricia M. Grambg@000.

2.2 Mixture Cure Model

To build a mixture cure model we considere two sub populatiohaccounts based on the susceptibility to default: a
segment that will not experience the event default durieddhn term and another segment for those that will everytuall
default. Then it is considered a binary Bernoulli randomalale Y, whereY = 0 if the account is non-susceptible to
default whileY = 1 states that account is susceptible and will default at simmee pointT, though it may be censored
in dataset. Le® be a censoring indicator, with = 1 denoting non-censored accounts ane- O denoting censored
accounts. So it is easy to see tiat 1 if & = 1, andY is unknown ifd = 0. There are then three possible states for the
data: defaulted accounts at some time p@ifY = 1, d = 1); accounts that are right-censored at the end of perioidf/s
and would eventually default given sufficient exposure t{ivie= 1, d = 0); and accounts that do not default in exposure
period of study either will not default in futur& (= 0, 6 = 0).

LetT be arandom variable which is defined as the account suriivalandS,o, denotes a marginal survival function
of T for the entire population. The mixture cure model is govefodsws,

Shop(t|x,z) = P(T >t|X,2)
= P(Y =02)P(T >t]Y = 0,x) +P(Y = 1|2)P(T > t]Y = 1,x)
=1-n(z)+ n(z)S{t|Y = 1,x), (2)

wherer(z) = P(Y = 0|z) denotes the proportion of accounts which are susceptibleénl- 11(z) denote proportion of
accounts non susceptible (or the cured fraction), givervariate vector = (21,...,2p) andS(t|x) = P(T > t|Y = 1,x)
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is the latency or survival function conditional on accoustnly susceptible to default given a covariates vegter
(X1,...,Xq) which may or may not comprise the same covariatezs &om equation), we can note thaByop(t|x) —
1— m(z) ast — . The susceptible fractiori(z) can be modeled by a logistic regression as proposéthbywell(1982),

n(z) = exp{ZB} _  exp{Bo+z1fr+---+ZpBp} 3)
1+expZB} 1+exp{fo+ziBi+--+2Zpfp}’

wherep is the vector of regression parameters associated withotreriate vector.
There are a number of parametric model which can be used telrtfealsurvival functiors(t[Y = 1). In this paper,
the Weibull distribution proposed bBy/eibull et al.(195]) is considered once it is one of most important distribution

survival analysis area and indeed it can accommodate agagaty of forms for the hazard function, all with a single
property in common: a monotonous hazard rate (sedess(2011)).

2.2.1 Weibull Mixture Cure Model

Considering the mixture cure model given &),(the survival function of the Weibull mixture cure distifion (WMC) is
given by
t a
Swmc(t) = 1—n(z)+7r(z)exp{— (X) } (4)

where 1- 11(2) is the cure rate (ie, proportion of non-susceptible accggiven a covariate vectar A > 0 anda > 0 are
scale and shape parameters, respectively<ifl the hazard function is monotonously decreasing =1 it is constant
and ifa> 1itis monotonously increasing. Note that{ing Symc(t) = 11(z), thenSymc (1) is not proper survival function.

2.2.2 Cox PH Mixture Cure Model

We consider an extended model proposedKiok and Chen(1992 by using the Cox PH regression for the latency.
Considering the mixture cure model given B),(the semi-parametric model has conditional survival fiomcgiven by

SEY = 1,%) = Sy(t]Y = 1) B}
t
= exp{—exp(x/ﬁ)/O ho(ulY = 1)du}, )

whereS(t|Y = 1) andhg(ulY = 1) are the conditional baseline survival and hazard functigspectively.
Hence, the survival function of the Cox PH with mixture cuaiter(CPHMC) is given by

Servelt) = 1 1(2)+ n(z)expf ~expB) [ ho(ulY = 1} ©)

3 Inference

Let us consider the situation where the time-to-defduls not completely observed, and it is subject to right ceingor
Let C denote a censored time-to-default. We define time-to-diefandom variable given by = min{U,C}, such that,

in a sample of size, we then observg = min{u;,c;} and& = I (y; < ¢) is an censor indicator, ie, wheh = 1 if t;

is a time-to-default and = 0 if it is right censored, for = 1,---,n. In this paper, we propose to relate the parameters
p (non-default fraction)a (shape parameter) and (scale parameter) of the distribution Weibull with cureeréa the
covariates vectar, x; andxy, respectively. The following link functions were chosen,

og( ;7o) =B . ok =xy . logia) =6, )
- M
i=1,---,n,whereB, yand® are vectors of coefficients associated with covariate vezfa; andx,, respectively. These
covariate vectors may be the samezie; x1 = X5 .

From (7), the likelihood function under non-informative censagyia given by

L(9:2) O fome(4:8) S (1:9)1- 4, @)
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whered = (B,y,0)" is the parameter vectof7 = (t,8,z,x1,X2) are observed data, with vector of times-to-default
t=(t1,...,ta) ", the censoring vectdd = (&y,...,,) ", the covariate vectos= (z1,...,2,) ", X; = (Xj1,-* ,Xjn) ', and
fwmc (+;9) andSymc(+; 9) are the Weibull density and improper survival function give (4). The maximum likelihood
estimates (MLEs) of the parameter vecfoare obtained by direct maximizationbfd; 2) or ¢(9; 2) = log{L(3; 2)}.
In this paper, the software R (see, R Development Core Te@@9)2vas used to determine the MLEs numerically. The
computational code is available from the authors upon retg@®x PH model estimates are easily obtained by consiglerin
the procedure presentediong et al(2012 and will not be discussed further here.

Under suitable regularity conditions, the asymptoticribistion of the MLE,#, is a multivariate normal with the
mean vectod and the covariance matrix, which can be estimated-b§2/(9)/3999 "} evaluated a8 = &, where
the required second derivatives are computed numerically.

4 Application

In this application section, we consider two samples of peasonal loan portfolio, originally composed by 40.115i9a
from a Brazilian bank. These loans were granted betweeradpand February 2009 with a short loan term of 12 months.
A costumer was considered defaulter if his had a period ofe8@ avithout loan repayment. We fitted data with the three
survival methods: Weibull mixture cure model, Cox PH migtgeure model and Cox PH regression.

The first sample data considered is a representative séfistranto ages range equals to Type 1 or Type 2. The
second sample was stratified into civil status equals to Tyged Type 2. As stated before, it is common in data set from
commercial banks covariates levels do not have propoltlamards rate and erroneous measurements may be derived.
We showed in this section an example of them.

4.1 Application with Presence of Disproportionate Hazard

In the introduction of this paper, we saw the Figdrevhich showed Kaplan-Meier estimates of the surviving argl lo
cumulative hazard functions levels of the covariates agege for the first data set. We can note that the curves of the
survival function of the Type | and Type Il intersect eachestand their curves on the logarithm of cumulative hazard are
not parallel, so the proportion hazard rate condition atesatisfied in this situation.

The survival function estimates of the Cox PH mixture curedeipCox PH regression and Weibull mixture cure
model, are shown in the FiguBand it shows that the curves of survival function estimaftah® Cox PH mixture cure
model and Cox PH regression are not intersect each othezhwhiises the survival function estimates from the Cox PH
modeling become far from the Kaplan-Meier estimates affteriitersection points. On the other hand, Weibull mixture
cure model can capture when the curves of the survival fandf the covariates intersect.

Table?2, in the Appendix A, presents the MLE, standard error (SBEyeloand upper limit of the confidence interval
(LI and UIl) and the p-value of the parameters of the Weibultomie cure survival model and estimate, standard error
(SE) and the p-value of the parameters for both Cox PH models.

4.2 Application with Presence of PH

Here we showed results for model fitting in a second data sawipich was stratified into two proportional hazard levels:
costumers that have Type 1 civil status and costumers thvat Tigoe 2 civil status. The Figur2shows Kaplan-Meier
estimates of the surviving according to different levelgtod civil status. We can note that the curves of the survival
function and the cumulative hazard function of Type | andél{lpdo not intersect, and their curves on the logarithm of
the cumulative hazard are almost parallel, so in this casepitoportion hazard rate condition is satisfied.

Figure4 shows the survival function estimates of the Cox PH mixtuneenodel, Cox PH regression and Weibull
mixture cure model. A good fit is observed for both Cox PH midghs well as Weibull mixture cure model.

Table3, in the Appendix A, presents the MLE, SE, LI and Ul and the fueaf the parameters of Weibull mixture
cure survival model and estimate, SE and the p-value of trenpater of both Cox PH models.

4.3 Expected Loss Function Over Time

To illustrate erroneous measurements that can be derigedtfre results of the estimated models when we do not take
into account the presence of disproportional hazard rateppeared in the first sample data set, we defined the expected
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Fig. 3: Survival functions estimated by (a): Cox PH mixture cure) @ox PH regression and (c): Weibull mixture cure model
superimposed on Kaplan-Meier estimates for the first ddta se

loss function below, ing). We show how losses estimated by these models in Sedtiosre underestimated when the
Cox PH models are considered.

Firstly, to define an expected loss (EL) function over time, wade some assumptions to simplify: here, a loan at
default was not recovered, ie, the Loss Given Default equaW/e considered that Exposition at Default (EAD) is a
sample of a normal distribution with mean 10.000 and stahdaviation equal to 1.500. Thus, the EL function is set to
result from one minus the estimated survival function (fittie considered models) times the value of the EAD, that is,

ELexpec(t) = (1 — Sestimatedt)) * EAD. 9)

This approach was applied in the first sample data, whereiad@devels do not have proportional hazard rate over
time. The results are shown in TaldleWe can see that observed loss is better approximated byLtbetained from the
Weibull mixture cure (WMC) model rather than from the Cox Pihés, showed to be the most appropriate to model the
time to default on a personal loan portfolio on the preseficisproportionate hazard rates.

5 Conclusion

Survival analysis techniques have been considered in fimansk management as alternative tools for financial
institutions calculate risk measurements over time. Hegegonsidered time to default modeling found in use today for
financial data set, ie, the Cox proportional hazard mixture enodel, Cox proportional hazard regression and Weibull
mixture cure model. We evidenced that measurement errorswaif the modeling do not satisfy the PH conditions
expected in the Cox PH modeling. These situation are commdatia set from commercial banks, and in this case, the
Weibull mixture cure model showed to be a feasible optiong@ged without requiring proportional condition.

To carry out this work, we showed an application of these rwidea data base from a Brazilian commercial bank,
in order to modeling time up to default of a personal loanfotid. In that data set was evidenced that stratified samples
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Fig. 4: Survival functions estimated by (a): Cox PH mixture cure) @ox PH regression and (c): Weibull mixture cure model
superimposed on Kaplan-Meier estimates for the secondsdata

Table 1: Expected loss function for the first sample (disproportierteazard rates case).

Ages range = Type 1

Time Observed Loss Expected Loss
(months) WMC  Cox PHregression Cox PH misture cure
6 129.937 158.443 86.153 85.975
7 190.134 198.864 135.869 136.978
8 225.139 241.022 179.303 181.442
9 270.344 284.345 210.085 212.748
10 300.401 328.325 224.556 227.255
11 370.324 372,512 260.088 263.689
12 370.324 416.513 260.088 263.689
Relative difference (%) - 8.68% 12.39% 13.55%
Ages range = Type 2
Time Observed Loss Expected Loss
(months) WMC  Cox PHregression Cox PH misture cure
6 69.911 63.160 73.378 76.286
7 120.418 119.058 116.426 121.809
8 180.232 177.075 154.506 161.688
9 200.288 213.332 181.784 189.892
10 200.288 224.696 194.696 203.002
11 200.288 226.101 226.654 236.053
12 200.288 226.152 226.654 236.053
Relative difference (%) - 8.15% 8.64% 8.93%

have proportional hazard rates over time, as well as, othaysdo not have, and thus, risk measures could be affected if
requirements of models are not verified.
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The survival functions, estimated considering all modelsample data where they do not have proportional hazard
rates between covariate levels, showed that curves of\@lifuinction estimates from the Cox PH mixture cure model
and from the Cox PH regression do not intersect each othéchvelauses the survival function estimates of the Cox PH
modeling become far from the Kaplan-Meier estimates afteriitersect points. On the other hand, the Weibull mixture
cure model can reproduce all the Kaplan-Meier curve intgises in a natural way, not requiring the present of a PH
structure.

In this sense, with what we claimed previously, banks shoalttinually check the validity of requirements for use
of the available models in order to avoid underestimatimgribk, enabling have a more appropriated measures of future
losses.

Finally, in the context of survival analysis applied to dtaisk setting, our approach can be seen as an adequate
complement to modeling financial bank data to the modeliaméwork presented byong et al(2012).
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Appendix A

The appendix presents the tables of the MLE, standard ey, (ower and upper limit of the confidence interval (LI
and Ul) and the p-value of the parameters of Weibull mixtuneurvival model and estimate, standard error (SE) and
the p-value of the parameter of both Cox PH models for bota gets.

Table 2: Summaries of the WMC, Cox PH regression model and Cox PH ex@iure models fitted to the first data set.

Weibull mixture cure

Parameter MLE SE LI ul |[Est|/SE  p-value
Bintercept 10.8108 0.0956 10.6235 10.9981 113.139%0.0001
Beivil -11.5917 0.0956 -11.7790 -11.4044 121.3126:0.0001
Yintercept 2.9534 0.0962 2.7649 3.1419 30.7120<0.0001
Yeivil -0.9531 0.1010 -1.1511 -0.7551 9.4355 <0.0001
Bntercept 0.4767 0.1076 0.2657 0.6876 4.4285 <0.0001
Oeivil 1.2011 0.1704 0.8672  1.5350 7.0497 <0.0001

Cox PH regression
Covariate  Estimate eXfstimatg SE |[Egt|/SE  p-value

Beivil -0.1703 0.8434 0.1963 0.8680 0.3860
Cox PH mixturecure

Covariate  Estimate eXfstimate SE |[Est|/SE  p-value

B -0.0322 0.9682 0.1582 0.2038 0.8385
Dintercept 0.4902 - 0.1383 3.5454 0.0004
Beivil -0.2228 - 0.2177 1.0236 0.3060

wheref is a parameter of the Cox PH regression modellaigla parameter
vector of Logistic regression of the Cox PH Mixture Cox Madel
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Table 3: Summaries of the WMC, Cox PH regression model and Cox PH éx@iure models fitted to the second data set

Weibull mixture cure

Parameter MLE SE LI ul |[Est|/SE  p-value

Bintercept 0.3390 0.5238 -0.6876  1.3656 0.6471  0.5177
Bage -1.8814 0.5360 -2.9319  -0.8309 3.5104  0.0005
Vintercept 2.0637 0.3549 1.3682  2.7592  5.8156  0.0000
Yage -0.1415 0.3702 -0.8670  0.5840 0.3823  0.7023
Bntercept ~ 0.1780 0.1716 -0.1583 05143  1.0374  0.2998
Bage 0.2555 0.1962 -0.1290  0.6400 1.3025  0.1930

Cox PH regression
Covariate  Estimate eXfstimate SE |[Est|/SE  p-value
Bevil -1.2700 0.2808 0.1657 -7.6620 <0.0001

Cox PH mixturecure
Covariate  Estimate eXfstimate SE |[Egt|/SE  p-value

B -0.9862 0.3729 0.0839  11.7514 <0.0001
bintercept ~ 1.1453 - 0.2263  5.0599 <0.0001
bage -0.9749 - 0.2359  4.1320 <0.0001
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