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Abstract: In this paper we consider a parametric Weibull mixture cure model for modeling time to default on a personal loan
portfolio in presence of disproportionate hazard rate. Themain contribution of this paper is to evidence that mixture cure models are
appropriate for non proportional sceneries, which has not been claimed in recent articles that brings survival analysis approach for
credit scoring modeling. A straight comparison with well known proportional hazard mixture cure model presented inPeng and Dear
(2000), provides evidence that risk measurements derived from this framework can be greatly affected if required proportional
conditions are not satisfied. In fact, taking into account presence of covariates, if covariates levels do not have proportional hazards
rate over time, adjustment with models that assume proportional hazard rates will not be appropriate, and then, erroneous
measurements may be derived, i.e., under or overestimate expected losses of a portfolio can be observed. Our approach can be seen as
a complement to modeling framework presented inTong et al.(2012) for credit scoring purposes, which require a proportionalhazard
structure. A credit data from a Brazilian commercial bank illustrates the procedure.
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1 Introduction

Statistical models from survival analysis are being proposed in financial risk management as alternative tools to model
internal risk parameters, according to development improvements demanded by the Basel II Accord. Due, mainly, by
reason that survival techniques can do continuous monitoring of risk over time in a financial institution (Louzada-Neto,
2006; Malik and Thomas, 2009; Thomas, 2010; Bonini and Caivano, 2013).

Indeed, these models have been considered as an evolution compared to traditional methods of credit risk analysis,
which are based on a dichotomous response variable (good or bad behavior). In this novel setting, survival models predict
not only whether the customer will be in default, but also thetime when the default is more likely.

While borrowers might not honor obligations and become bankdebtors, losses associated with such bad consumers
may be estimated over time from results of such survival analysis techniques. These tools can represent an important
improvement in formulation of interest rates that will be charged by banks in their financial activities, and it can become
a competitive strategic to earn market share in the actual competitive scenario.

Survival analysis has shown be very useful for modeling banking data, as well as, clinical trial, relapse of diseases,
client churning, among others, once they handle characteristically from long term survivors, which are present in a large
proportion in loan portfolio data. The most considered models are standard mixture cure model (Berkson and Gage, 1952;
Farewell, 1982), Cox PH regression model (Cox, 1972; Breslow, 1975), and finally, Cox proportional hazard (PH) mixture
cure model (Peng and Dear, 2000; Sy and Taylor, 2000). Although, in theory, standard PH regression methods assume
survival function reaching zero, we showed Cox PH regression may have well performance modeling time to default with
long term survivors. For standard mixture cure models are not requested to satisfy PH assumption, which is indispensable
to the Cox PH one.

According to our purpose, the aim of this paper is about need of take correctly assumptions on modeling financial
data in order to obtain most appropriate risk parameters and, thereafter, effective losses measures associated with bad
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borrowers over time. From calculations based on real data, we reached amounts that revealed Weibull mixture cure model
has better measurements, in general, because financial datahave not always taken PH assumption satisfied.

Fig. 1: Kaplan-Meier estimates of surviving, cumulative hazard and log cumulative hazard functions for first sample data stratified by
“age range”.

Fig. 2: Kaplan-Meier estimates of surviving, cumulative hazard and log cumulative hazard functions for second sample data stratified
by “civil status”.

The Figures1 and 2 show Kaplan-Meier estimate of survival and log cumulative hazard functions from two
representative samples of a loan personal portfolio formedby 40.115 customers from a Brazilian commercial bank. In
order to preserve confidentiality of costumer characteristics, we refer to them as Type 1 and Type 2 levels.

The data analyzed in this work comes from a real data of a Brazilian bank. To address the proposed theme, we
consider two representative samples of clients. In the firstsample, it is stratified by age range levels and does not satisfy
a PH assumption; on other hand, the second data is stratified by civil status and there is satisfied hazard proportionality
condition. The curves of logarithm of cumulative hazard arenot parallel for first data sample, which same does not happen
with second date. Thus, we have two examples of samples wherewe shall show measurement errors when assumptions
required by model are not noticed.

In this case, a traditional Cox PH regression model or even a PH mixture cure model, as considered inTong et al.
(2012), are not appropriate. In this case, an option is to use a parametric mixture cure model. Here, for simplicity of
calculation, we followed a Weibull based structure, what wesee is more efficient to fit a data set in presence of
proportionate or disproportionate hazard rates.

In summary, our results show that Weibull mixture cure modelis sensitive to changes in the behavior of risk of
customers over time, fact that may be common in characteristics of applications of bank loans. Therefore, the model can
be applied to model both cases displayed by Figure1 and Figure2. In addition, we show PH models are not sensitive to
these sudden changes in risk behavior, and that models can beuse only in conditions as showed in Figure2.

The organization of remainder of this paper is as follows. InSection2, we outlined statistical models used in this study.
Statistical inference to estimate model parameters are described in Section3. The illustrations of compared approaches,
using a Brazilian banking data, are presented in the Section4. Section5 concludes the paper summarizing the results
reached.
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2 Survival Analysis in Credit Risk Modeling

Since the Basel Accord was revised in 2004 by Basel Committeefor Banking Supervision (BCBS, 2004), and replaced
by Basel Accord II, it has been used by bank regulatory agencies around world to improve their ability as supervisor of
banking environment. The document received several updates since then; it went through financial crisis that began with
subprime in 2006 and recently was extended and effectively replaced by Basel III Accord (BCBS, 2010).

The major recommendations contained in the rules issued by Basel II, and maintained in the new Basel III, have
demanded that central banks improve their ability to measure systemic risk and incite more prudence and conservatism
in risk management setting. It has required banks best risk measurement tools in order to make them keep saving enough
capital to safeguard its solvency, eventually to cover losses from risks arising from their banking activities.

In order to calculate how much capital banks need put aside toguard against risks of financial activities, in the first
pillar of Basel II, is required capital from different components of risk that a bank faces, ie, credit risk, operationalrisk,
liquidity risk and market risk. For credit risk, which is concern of this paper, three different ways were proposed to be
chosen according various degrees of sophistication, namely, in increasing order, Standardized Approach, FoundationIRB
Approach and Advanced IRB Approach. The acronym IRB stands for “Internal Rating-Based”.

As has already happened, banking groups have agreed to adoptBasel II to improve their measures of capital at risk
adopting advanced IRB approach (Thomas, 2010; Bonini and Caivano, 2013). With this method, banks are allowed to
develop internal models to determine parameters that are necessary to calculate the minimum capital required in the Basel
II first pillar. These parameters are labelled PD (probability of default), LGD (loss given default), EAD (exposure at
default) and, finally, M (maturity).

To model credit risk parameters, methods of survival analysis have been introduced into credit risk area since late 80
(Lane et al., 1986). Survival analysis has showed be complete than standard approaches to predict probability of default.
In fact, survival methods may find out more information aboutrisk, showing not only if the borrower will default, but also
when the default can occur (Louzada-Neto, 2006; Tong et al., 2012). Therefore, banks can calculate how much of their
portfolio is at risk of lost over time. Otherwise, usual methods for modeling a dichotomous variable, usually logistic type
regressions, are tools for classification loan applicationaccording to the probability of customer become a bad or a good
payer (Lee et al., 2002; Lim and Sohn, 2007). And based on this classification the bank can take decisionwhether the loan
will be granted, but will not have subsidies to know when thisinitial classification of risk would deteriorate over time.

The Cox proportional hazard (Cox PH) regression, which is one particularly kind of method in survival analysis and
certainly the mostly chosen modeling in medical research, was firstly applied in credit risk area byLane et al.(1986) and
by Whalen(1991), for modeling time to bankruptcy of institutions in the U.S. financial market.Narain(1992) applied
survival methods in a loan bank portfolio to predict the timeto default of borrowers. InWitzany et al.(2010) the authors
applied Cox PH regression models to modeling the LGD and showed that this method had better performance than a
standard logistic regression.

Survival analysis methods such as the mixture cure model andthe Cox PH regression have been their performance
discussed and compared against standard approaches in credit risk setting in different works, for instance, inTong et al.
(2012), Thomas(2010), Stepanova and Thomas(2002), Abreu(2004) andBanasik et al.(1999). But, our concern in this
paper is to show that we can fall into error if we do not take precautions as to check the validity of assumptions required
by the PH models.

Survival analysis aims model time to occurring specific events. For example, in the medical area it has been used
to model the survival times of patients in cancer clinical trials. In credit risk area, the interesting event is when a bank
borrower will not pay his obligations in some time after the loan be granted, in another instance, the event of interest may
be the time that a customer will abandon a financial product ascanceling a credit card.

In standard survival analysis, the survival functionS0(t) is the probability of observing a survival time greater than
some stated valuet, which is formulated byS0(t) = P(T > t), where a random variableT is defined as survival time
of an individual. Hence this formulation presumes thatS0(t) tends to zero as time extends and that all observations will
experience the event of interest. However, there are examples in credit scoring, where a substantial proportion of costumers
may not experience event of credit default during loan lifetime; therefore they are good borrowers, i.e., costumers are
default-free. They have been called as long term survivors,for those standard survival methods are not suitable to be used.

Mixture cure models are an extension of standard survival models which have been used in the medical area to model
survival times in data set where there is a large proportion of long term survivors, ie, patients that will not experiencethe
event of interesting, referred to as the cured ones (Sy and Taylor, 2000). The proposed models can be classified as
parametric and semi parametric methods. This modeling assumes a binary distribution to model patients who have
susceptibility to occurs the interested event, namely incidence model component, and it has also a parametric or semi
parametric time to event distribution namely latency modelcomponent. This theory was originally proposed by
Berkson and Gage(1952) and the method was further developed in the medical area byFarewell(1982). Kuk and Chen
(1992) extended this model by using Cox PH regression for conditional survival function, that is, for latency model
component. This model is now known as the Cox PH mixture cure model.
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Long-term survivors are common in data set from commercial banks.Tong et al.(2012) have introduced a mixture cure
model to this area predicting time to default on a UK commercial bank, where there was a large proportion of long term
survivors. In other words, the total borrowers were formed by two kinds of sub populations: those who are good borrowers
and will not be defaulters along with those who are susceptible costumers whose will not honor their obligations. In that
paper, the authors compared the Cox PH mixture cure model performance to the Cox PH regression model and standard
logistic regression. They showed that, for both survival methods, there were good performances displayed by the marginal
survival function against Kaplan-Meier estimates stratified by the covariate levels available in the study.

In this paper, we also fit both survival methods, a Cox PH mixture cure model and Cox PH regression model, on a
personal loans portfolio at a different account levels, to modeling time to default in the data from a Brazilian commercial
bank. Nevertheless, we call attention to the fact that, in general, we can not use the Cox PH method because it is
common, in that kind of financial data, account levels do not have proportional failure rates and therefore the method is
not applicable. In this case, the Weibull mixture cure modelshows to better predict the time to default. The Cox PH and
the mixture cure models are outlined as following.

2.1 Cox Proportional Hazards Regression Model

A classic model for analysis of survival data is the PH model introduced byCox (1972). This is a semi-parametric model
which is composed by the product of one nonparametric component and other parametric one. The PH model is given by

h(t|x) = h0(t)exp{x′βββ}= h0(t)exp{β1xxx1+ · · ·+βkxxxk}, (1)

wherex = (xxx1, · · · ,xxxk) is a vector ofk covariates,h0 is a baseline hazard function, it is not specified, which describe how
hazard changes over time at baseline levels of covariates, and h(t|x) is the hazard function at time t given the vector of
covariatesx.

In this model, we can measure different impacts for each covariate in event risk. To illustrate, consider two observations
i and i′ that differ in theirx-values, with the corresponding linear predictors:ηi = β1xi1 + β2xi2 + · · ·+βkxik andη ′

i =
β1xi′1+β2xi′2+ · · ·+βkxi′k.

The hazard ratio for these two observations is given by

hi(t)
hi′(t)

=
h0(t)exp{ηi}

h0(t)exp{ηi′}
= exp{ηi −ηi′},

is independent of timet. Consequently, this mean that the Cox PH modeling has the PH property.
The Cox model can be estimated by the method of partial likelihood (Cox, 1972). The PH model is implement in the

survival package developed in R byTherneau(2013) andTerry M. Therneau and Patricia M. Grambsch(2000).

2.2 Mixture Cure Model

To build a mixture cure model we considere two sub populations of accounts based on the susceptibility to default: a
segment that will not experience the event default during the loan term and another segment for those that will eventually
default. Then it is considered a binary Bernoulli random variableY , whereY = 0 if the account is non-susceptible to
default whileY = 1 states that account is susceptible and will default at sometime pointT , though it may be censored
in dataset. Letδ be a censoring indicator, withδ = 1 denoting non-censored accounts andδ = 0 denoting censored
accounts. So it is easy to see thatY = 1 if δ = 1, andY is unknown ifδ = 0. There are then three possible states for the
data: defaulted accounts at some time pointT (Y = 1, δ = 1); accounts that are right-censored at the end of period of study
and would eventually default given sufficient exposure time(Y = 1, δ = 0); and accounts that do not default in exposure
period of study either will not default in future (Y = 0, δ = 0).

Let T be a random variable which is defined as the account survival time andSpop denotes a marginal survival function
of T for the entire population. The mixture cure model is goven asfollows,

Spop(t|x,z) = P(T > t|x,z)
= P(Y = 0|z)P(T > t|Y = 0,x)+P(Y = 1|z)P(T > t|Y = 1,x)
= 1−π(z)+π(z)S(t|Y = 1,x), (2)

whereπ(z) = P(Y = 0|z) denotes the proportion of accounts which are susceptible, hence 1−π(z) denote proportion of
accounts non susceptible (or the cured fraction), given a covariate vectorz = (zzz1, . . . ,zzzp) andS(t|x) = P(T > t|Y = 1,x)
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is the latency or survival function conditional on account being susceptible to default given a covariates vectorx =
(xxx1, . . . ,xxxq) which may or may not comprise the same covariates asz. From equation (2), we can note thatSpop(t|x) →
1−π(z) ast → ∞. The susceptible fractionπ(z) can be modeled by a logistic regression as proposed byFarewell(1982),

π(z) =
exp{z′βββ}

1+exp{z′βββ}
=

exp{β0+ zzz1β1+ · · ·+ zzzpβp}

1+exp{β0+ zzz1β1+ · · ·+ zzzpβp}
, (3)

whereβββ is the vector of regression parameters associated with the covariate vectorz.
There are a number of parametric model which can be used to model the survival functionS(t|Y = 1). In this paper,

the Weibull distribution proposed byWeibull et al.(1951) is considered once it is one of most important distributionin
survival analysis area and indeed it can accommodate a greatvariety of forms for the hazard function, all with a single
property in common: a monotonous hazard rate (seeLawless(2011)).

2.2.1 Weibull Mixture Cure Model

Considering the mixture cure model given in (2), the survival function of the Weibull mixture cure distribution (WMC) is
given by

SWMC(t) = 1−π(z)+π(z)exp

{

−
( t

λ

)a
}

, (4)

where 1−π(z) is the cure rate (ie, proportion of non-susceptible accounts) given a covariate vectorz, λ > 0 anda > 0 are
scale and shape parameters, respectively. Ifa < 1 the hazard function is monotonously decreasing, ifa = 1 it is constant
and ifa> 1 it is monotonously increasing. Note that limt→0 SWMC(t) = π(z), thenSWMC(t) is not proper survival function.

2.2.2 Cox PH Mixture Cure Model

We consider an extended model proposed byKuk and Chen(1992) by using the Cox PH regression for the latency.
Considering the mixture cure model given in (2), the semi-parametric model has conditional survival function given by

S(t|Y = 1,x) = S0(t|Y = 1)exp{x′βββ}

= exp

{

−exp(x′βββ )
∫ t

0
h0(u|Y = 1)du

}

, (5)

whereS0(t|Y = 1) andh0(u|Y = 1) are the conditional baseline survival and hazard functions, respectively.
Hence, the survival function of the Cox PH with mixture cure rate (CPHMC) is given by

SCPHMC(t) = 1−π(z)+π(z)exp

{

−exp(x′βββ )
∫ t

0
h0(u|Y = 1)du

}

. (6)

3 Inference

Let us consider the situation where the time-to-defaultU is not completely observed, and it is subject to right censoring.
Let C denote a censored time-to-default. We define time-to-default random variable given byT = min{U,C}, such that,
in a sample of sizen, we then observeti = min{ui,ci} andδi = I(yi ≤ ci) is an censor indicator, ie, whenδi = 1 if ti
is a time-to-default andδi = 0 if it is right censored, fori = 1, · · · ,n. In this paper, we propose to relate the parameters
p (non-default fraction),a (shape parameter) andλ (scale parameter) of the distribution Weibull with cure rate to the
covariates vectorz, x1 andx2, respectively. The following link functions were chosen,

log

(

pi

1− pi

)

= z⊤i βββ , log(λi) = x⊤1iγγγ , log(ai) = x⊤2iθθθ , (7)

i = 1, · · · ,n, whereβββ , γγγ andθθθ are vectors of coefficients associated with covariate vectorsz, x1 andx2, respectively. These
covariate vectors may be the same, ie,z = x1 = x2 .

From (7), the likelihood function under non-informative censoring is given by

L(ϑϑϑ ;D) ∝
n

∏
i=1

fWMC(ti;ϑϑϑ)δiSWMC(ti;ϑϑϑ)1−δi , (8)
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whereϑ = (βββ ,γγγ,θθθ )⊤ is the parameter vector,D = (ttt,δδδ ,z,x1,x2) are observed data, with vector of times-to-default
ttt = (t1, . . . , tn)⊤, the censoring vectorδδδ = (δ1, . . . ,δn)

⊤, the covariate vectorsz = (zzz1, . . . ,zzzn)
⊤, x j = (xxx j1, · · · ,x jn)

⊤, and
fWMC(·;ϑϑϑ) andSWMC(·;ϑϑϑ) are the Weibull density and improper survival function given in (4). The maximum likelihood
estimates (MLEs) of the parameter vectorϑϑϑ are obtained by direct maximization ofL(ϑϑϑ ;D) or ℓ(ϑϑϑ ;D) = log{L(ϑϑϑ ;D)}.
In this paper, the software R (see, R Development Core Team, 2009) was used to determine the MLEs numerically. The
computational code is available from the authors upon request. Cox PH model estimates are easily obtained by considering
the procedure presented inTong et al.(2012) and will not be discussed further here.

Under suitable regularity conditions, the asymptotic distribution of the MLE,ϑ̂ϑϑ , is a multivariate normal with the
mean vectorϑϑϑ and the covariance matrix, which can be estimated by{−∂ 2ℓ(ϑϑϑ)/∂ϑϑϑ∂ϑϑϑ T}−1 evaluated atϑϑϑ = ϑ̂ϑϑ , where
the required second derivatives are computed numerically.

4 Application

In this application section, we consider two samples of realpersonal loan portfolio, originally composed by 40.115 loans
from a Brazilian bank. These loans were granted between January and February 2009 with a short loan term of 12 months.
A costumer was considered defaulter if his had a period of 90 days without loan repayment. We fitted data with the three
survival methods: Weibull mixture cure model, Cox PH mixture cure model and Cox PH regression.

The first sample data considered is a representative set stratified into ages range equals to Type 1 or Type 2. The
second sample was stratified into civil status equals to Type1 and Type 2. As stated before, it is common in data set from
commercial banks covariates levels do not have proportional hazards rate and erroneous measurements may be derived.
We showed in this section an example of them.

4.1 Application with Presence of Disproportionate Hazard

In the introduction of this paper, we saw the Figure1 which showed Kaplan-Meier estimates of the surviving and log
cumulative hazard functions levels of the covariates ages range for the first data set. We can note that the curves of the
survival function of the Type I and Type II intersect each other and their curves on the logarithm of cumulative hazard are
not parallel, so the proportion hazard rate condition are not satisfied in this situation.

The survival function estimates of the Cox PH mixture cure model, Cox PH regression and Weibull mixture cure
model, are shown in the Figure3 and it shows that the curves of survival function estimates of the Cox PH mixture cure
model and Cox PH regression are not intersect each other, which causes the survival function estimates from the Cox PH
modeling become far from the Kaplan-Meier estimates after the intersection points. On the other hand, Weibull mixture
cure model can capture when the curves of the survival function of the covariates intersect.

Table2, in the Appendix A, presents the MLE, standard error (SE), lower and upper limit of the confidence interval
(LI and UI) and the p-value of the parameters of the Weibull mixture cure survival model and estimate, standard error
(SE) and the p-value of the parameters for both Cox PH models.

4.2 Application with Presence of PH

Here we showed results for model fitting in a second data sample which was stratified into two proportional hazard levels:
costumers that have Type 1 civil status and costumers that have Type 2 civil status. The Figure2 shows Kaplan-Meier
estimates of the surviving according to different levels ofthe civil status. We can note that the curves of the survival
function and the cumulative hazard function of Type I and Type II do not intersect, and their curves on the logarithm of
the cumulative hazard are almost parallel, so in this case, the proportion hazard rate condition is satisfied.

Figure4 shows the survival function estimates of the Cox PH mixture cure model, Cox PH regression and Weibull
mixture cure model. A good fit is observed for both Cox PH modeling as well as Weibull mixture cure model.

Table3, in the Appendix A, presents the MLE, SE, LI and UI and the p-value of the parameters of Weibull mixture
cure survival model and estimate, SE and the p-value of the parameter of both Cox PH models.

4.3 Expected Loss Function Over Time

To illustrate erroneous measurements that can be derived from the results of the estimated models when we do not take
into account the presence of disproportional hazard rate, as appeared in the first sample data set, we defined the expected
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Fig. 3: Survival functions estimated by (a): Cox PH mixture cure, (b:) Cox PH regression and (c): Weibull mixture cure model
superimposed on Kaplan-Meier estimates for the first data set.

loss function below, in (9). We show how losses estimated by these models in Section4.1 are underestimated when the
Cox PH models are considered.

Firstly, to define an expected loss (EL) function over time, we made some assumptions to simplify: here, a loan at
default was not recovered, ie, the Loss Given Default equals1. We considered that Exposition at Default (EAD) is a
sample of a normal distribution with mean 10.000 and standard deviation equal to 1.500. Thus, the EL function is set to
result from one minus the estimated survival function (fromthe considered models) times the value of the EAD, that is,

ELexpect(t) = (1− Sestimated(t))∗EAD. (9)

This approach was applied in the first sample data, where covariate levels do not have proportional hazard rate over
time. The results are shown in Table1. We can see that observed loss is better approximated by the EL obtained from the
Weibull mixture cure (WMC) model rather than from the Cox PH ones, showed to be the most appropriate to model the
time to default on a personal loan portfolio on the presence of disproportionate hazard rates.

5 Conclusion

Survival analysis techniques have been considered in financial risk management as alternative tools for financial
institutions calculate risk measurements over time. Here,we considered time to default modeling found in use today for
financial data set, ie, the Cox proportional hazard mixture cure model, Cox proportional hazard regression and Weibull
mixture cure model. We evidenced that measurement errors can run if the modeling do not satisfy the PH conditions
expected in the Cox PH modeling. These situation are common in data set from commercial banks, and in this case, the
Weibull mixture cure model showed to be a feasible option to be used without requiring proportional condition.

To carry out this work, we showed an application of these models in a data base from a Brazilian commercial bank,
in order to modeling time up to default of a personal loan portfolio. In that data set was evidenced that stratified samples
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Fig. 4: Survival functions estimated by (a): Cox PH mixture cure, (b:) Cox PH regression and (c): Weibull mixture cure model
superimposed on Kaplan-Meier estimates for the second dataset.

Table 1: Expected loss function for the first sample (disproportionate hazard rates case).

Ages range = Type 1
Time Observed Loss Expected Loss

(months) WMC Cox PH regression Cox PH misture cure
6 129.937 158.443 86.153 85.975
7 190.134 198.864 135.869 136.978
8 225.139 241.022 179.303 181.442
9 270.344 284.345 210.085 212.748
10 300.401 328.325 224.556 227.255
11 370.324 372.512 260.088 263.689
12 370.324 416.513 260.088 263.689

Relative difference (%) - 8.68% 12.39% 13.55%

Ages range = Type 2
Time Observed Loss Expected Loss

(months) WMC Cox PH regression Cox PH misture cure
6 69.911 63.160 73.378 76.286
7 120.418 119.058 116.426 121.809
8 180.232 177.075 154.506 161.688
9 200.288 213.332 181.784 189.892
10 200.288 224.696 194.696 203.002
11 200.288 226.101 226.654 236.053
12 200.288 226.152 226.654 236.053

Relative difference (%) - 8.15% 8.64% 8.93%

have proportional hazard rates over time, as well as, othersmay do not have, and thus, risk measures could be affected if
requirements of models are not verified.
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The survival functions, estimated considering all models in sample data where they do not have proportional hazard
rates between covariate levels, showed that curves of survival function estimates from the Cox PH mixture cure model
and from the Cox PH regression do not intersect each other, which causes the survival function estimates of the Cox PH
modeling become far from the Kaplan-Meier estimates after the intersect points. On the other hand, the Weibull mixture
cure model can reproduce all the Kaplan-Meier curve intersections in a natural way, not requiring the present of a PH
structure.

In this sense, with what we claimed previously, banks shouldcontinually check the validity of requirements for use
of the available models in order to avoid underestimating the risk, enabling have a more appropriated measures of future
losses.

Finally, in the context of survival analysis applied to credit risk setting, our approach can be seen as an adequate
complement to modeling financial bank data to the modeling framework presented byTong et al.(2012).
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Appendix A

The appendix presents the tables of the MLE, standard error (SE), lower and upper limit of the confidence interval (LI
and UI) and the p-value of the parameters of Weibull mixture cure survival model and estimate, standard error (SE) and
the p-value of the parameter of both Cox PH models for both data sets.

Table 2: Summaries of the WMC, Cox PH regression model and Cox PH Mixture Cure models fitted to the first data set.

Weibull mixture cure
Parameter MLE SE LI UI |Est|/SE p-value
βintercept 10.8108 0.0956 10.6235 10.9981 113.1397<0.0001
βcivil -11.5917 0.0956 -11.7790 -11.4044 121.3120<0.0001
γintercept 2.9534 0.0962 2.7649 3.1419 30.7120<0.0001
γcivil -0.9531 0.1010 -1.1511 -0.7551 9.4355 <0.0001
θintercept 0.4767 0.1076 0.2657 0.6876 4.4285 <0.0001
θcivil 1.2011 0.1704 0.8672 1.5350 7.0497 <0.0001

Cox PH regression
Covariate Estimate exp(Estimate) SE |Est|/SE p-value
βcivil -0.1703 0.8434 0.1963 0.8680 0.3860

Cox PH mixture cure
Covariate Estimate exp(Estimate) SE |Est|/SE p-value
β -0.0322 0.9682 0.1582 0.2038 0.8385
bIntercept 0.4902 - 0.1383 3.5454 0.0004
bcivil -0.2228 - 0.2177 1.0236 0.3060

whereβ is a parameter of the Cox PH regression model andbbb is a parameter
vector of Logistic regression of the Cox PH Mixture Cox Model.
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Table 3: Summaries of the WMC, Cox PH regression model and Cox PH Mixture Cure models fitted to the second data set

Weibull mixture cure
Parameter MLE SE LI UI |Est|/SE p-value
βintercept 0.3390 0.5238 -0.6876 1.3656 0.6471 0.5177
βage -1.8814 0.5360 -2.9319 -0.8309 3.5104 0.0005
γintercept 2.0637 0.3549 1.3682 2.7592 5.8156 0.0000
γage -0.1415 0.3702 -0.8670 0.5840 0.3823 0.7023
θintercept 0.1780 0.1716 -0.1583 0.5143 1.0374 0.2998
θage 0.2555 0.1962 -0.1290 0.6400 1.3025 0.1930

Cox PH regression
Covariate Estimate exp(Estimate) SE |Est|/SE p-value
βcivil -1.2700 0.2808 0.1657 -7.6620 <0.0001

Cox PH mixture cure
Covariate Estimate exp(Estimate) SE |Est|/SE p-value
β -0.9862 0.3729 0.0839 11.7514 <0.0001
bIntercept 1.1453 - 0.2263 5.0599 <0.0001
bage -0.9749 - 0.2359 4.1320 <0.0001
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