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Abstract: For the two-sensor, multi-channel autoregressive moving average (ARMA) signals with measurement delays, the system
with measurement delays is converted into the system without measurement delays by the measurement transformation method. When
the filtering error cross-covariances are known, by the Kalman filtering method, based on the white noise Wiener filters and measure-
ment Wiener predictors, the optimal fusion Wiener signal filters weighted by matrices, diagonal matrices and scalars are presented.
When the filtering error cross-covariances are unknown, by the covariance intersection (CI) fusion method, the CI fusion Wiener signal
filter is presented. It is rigorously proven that the actual accuracy of the CI Wiener signal fuser is higher than that of each local Wiener
signal filter, and is lower than that of the optimal Wiener signal fuser with the matrix weights. The geometric interpretation of the above
accuracy relations are presented based on the covariance ellipses. A Monte-Carlo simulation example shows that the actual accuracy of
the CI fuser is close to that of the fuser with the matrix weights, so that it has higher accuracy and good performance.

Keywords: covariance intersection fusion, measurement delays, unknown cross-covariance, Wiener filter, covariance ellipse.

1. Introduction

In order to improve the state or signal estimation accu-
racy based on the single sensor, the multi-sensor informa-
tion fusion has received great attention in recent years,
which has been widely applied to many fields, such as
guidance, defence, robotics, GPS positioning and signal
processing [1]. For Kalman filter-based data fusion, there
exist two methodologies [2,3]: the state fusion and mea-
surement fusion method. The state fusion methods weight
the local state estimators based on various individual sen-
sors to obtain an improved fused state estimator. Whereas
measurement fusion methods directly fuse the sensor mea-
surements to obtain a weighted measurement, and then use
a single Kalman filter to obtain the final fused state estima-
tors.

The ARMA signal estimation problem is an important
topic in the signal processing field. The method to solve
ARMA signal estimation problem include the Kalman fil-

tering method [4,5], Wiener filtering method [6–8], and
modern time series analysis method [9,10]. For the ARMA
signals with a single sensor and white measurement noises,
the optimal estimation problem was solved by the Wiener
filtering method [6–8] and modern time series method [9,
10], the distributed optimal information fusion Wiener fil-
ters for the single channel or multichannel ARMA signals
were presented by the modern time series analysis method
[11] and by the Kalman filtering method [12].

However, the standard Kalman filter is only suitable for
the systems without measurement delays, and the above
results did not consider the time delays of the measure-
ments. But today, the systems with measurement delays
appear in many application fields [13]. There are two ba-
sic methods to solve the estimation problem of the systems
with measurement delays: the augmented state method [4,
5] and non-augmented state method [13–16].
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The limitation of the above results is that the cross-
covariances among the local estimation errors is required.
However in many theoretical and application problems, the
cross-covariances are unknown, or the algorithms of the
cross-covariances are very complex, or the computational
burden of the cross-covariances is very large [16–19], or
to find the formulae for computing the cross-covariances
is very difficult. In order to overcome this limitation, the
covariance intersection (CI) fusion method was presented
and developed in [20–23], which can solve the fusion es-
timation problems with unknown cross-covariances, avoid
the computation of the cross-covariances, and is widely
applied into many fields [24–27]. The CI fusion method
has the advantages: it gives an upper bound of the actual
estimation error variances with arbitrary cross-covariances
by the convex combination, so it has the robustness with
respect to unknown cross-covariances.

In this paper, for the two-sensor system with measure-
ment delays and unknown cross-covariances, a CI steady-
state Wiener signal fuser is presented and its actual filter-
ing error variance formula is presented. The theoretical ac-
curacy relations among the CI fusers and three weighting
signal fusers are presented and proved based on the un-
biased linear minimum variance (ULMV) estimation cri-
terion [28,29]. The geometric interpretation of these ac-
curacy relations are given based on the covariance ellipse
concept [20,22,30]. In order to verify the correctness of
the theoretical accuracy relations, a Monte-Carlo simula-
tion example for a two-sensor multi-channel ARMA signal
system is given, which gives the accuracy comparison of
the CI fuser , the local and three weighting fusers.

2. Problem formulation

Consider the two-sensor multi-channel ARMA signals with
measurement delays

A(q−1)s(t) = C(q−1)w(t) (1)

zi(t) = s(t− τi) + ξi(t), i = 1, 2 (2)

where t is the discrete time, zi(t) ∈ Rm are the mea-
surement, τi ≥ 0 are the time delays of the ith sensor,
s(t) ∈ Rm is the ARMA signals to be estimated. w(t) ∈
Rr and ξi(t) ∈ Rm are the white input and measurement
noises, respectively. q−1 is the backward shift operator
q−1s(t) = s(t − 1), and A(q−1) and C(q−1) are poly-
nomial matrices with the following form

A(q−1) = Im +A1q
−1 + · · ·+Anaq

−na , (3)
Ai = 0, i > na

C(q−1) = C1q
−1 + · · ·+ Cncq

−nc , (4)
C0 = 0, Ci = 0, i > nc

where Im is the m × m identity matrix, and we assume
that na ≥ nc.

Assumption 1 w(t) and ξi(t) are uncorrelated white
noises with zero means and variancesQw andQξi, respec-
tively, i.e.

E

{[
w(t)
ξi(t)

] [
wT(k) ξTj (k)

]}
=

[
Qw 0
0 Qξiδij

]
δtk (5)

where i = 1, 2, E and T denote the expectation and trans-
pose, respectively. δtk is the Kronecker delta function, δii =
1, δtk = 0(t ̸= k).

Assumption 2 (A(q−1), C(q−1)) are left-coprime.
The aim is to find the local steady-state optimal Wiener

signal filters ŝzi (t|t + N) of s(t), i = 1, 2, N > 0, N =
0, N < 0, which can be obtained by the local white noise
estimators and the measurement predictors, and then to
find the optimal weighting fusion Wiener signal filter ŝzm(t|
t+N), ŝzs(t|t+N),ŝzd(t|t+N), which means the fusers
weighted by matrices, scalars, diagonal matrices, respec-
tively. Based on the CI method, the CI fusion Wiener sig-
nal filter ŝzCI(t|t+N) can be obtained.

3. Local steady-state optimal Wiener signal
filters

The ARMA signal s(t) can be converted into the state
space model[4]

x(t+ 1) = Φx(t) + Γw(t) (6)

zi(t) = Hx(t− τi) + ξi(t), i = 1, 2 (7)

s(t) = Hx(t) (8)

where

Φ =

−A1

... Im(na−1)

−Ana 0 · · · 0

 , Γ =

C1

...
Cna

 , (9)

H =
[
Im 0 · · · 0

]
So the problem of signal estimation with measurement de-
lays is converted into that of the state estimation with mea-
surement delays.

In order to transform the systems with measurement
delays into that without measurement delays, introducing
the new measurements and noises

yi(t) = zi(t+ τi), vi(t) = ξi(t+ τi) (10)

So we have the measurement equation without measure-
ment delays

yi(t) = Hx(t) + vi(t), i = 1, 2 (11)

Let linear space spanned by the stochastic variables
(zi(t + N), zi(t + N − 1), · · ·) be denoted by L(zi(t +
N), zi(t+N−1), · · ·), and the linear space spanned by the
stochastic variables (yi(t+N−τi), yi(t+N−τi−1), · · ·)
be denoted by L(yi(t+N − τi), yi(t+N − τi − 1), · · ·).
Then we have the relation

L (zi(t+N), zi(t+N − 1), · · ·) (12)
= L(yi(t+N − τi), yi(t+N − τi − 1), · · ·)
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Let linear minimum variance estimators based on the
measurements (yi(t + N − τi), yi(t + N − τi − 1), · · ·)
be denoted by ŝi(t|t + N − τi), and the linear minimum
variance estimators based on the (zi(t + N), zi(t + N −
1), · · ·) be denoted by ŝzi (t|t+N). From (12) we have the
relation

ŝzi (t|t+N) = ŝi(t|t+N−τi), N ≥ 0, N < 0, i = 1, 2(13)

Therefore the relation between the estimation errors
s̃zi (t|t+N) = s(t)− ŝzi (t|t+N) and s̃i(t|t+N − τi) =
s(t)− ŝi(t|t+N − τi) is given by

s̃zi (t|t+N) = s̃i(t|t+N−τi), N ≥ 0, N < 0, i = 1, 2(14)

Define the steady-state cross-covariance matrices and
auto-covariance matrices among the estimation errors as

P zii(N) = E[s̃zi (t|t+N)s̃zTi (t|t+N)] (15)

P ij(N − τi, N − τj) (16)

= E[s̃i(t|t+N − τi)s̃
T
j (t|t+N − τj)]

Pii(N − τi) = Pii(N − τi, N − τi) (17)

P zij(N) = Pij(N − τi, N − τj) (18)

Hence the problem is converted into that of finding the
multi-step local optimal Wiener estimatorsŝi(t|t + N −
τi),N ≥ 0, N < 0, τi > 0, i = 1, 2 of the signal s(t) using
the measurements (yi(t+N−τi), yi(t+N−τi−1), · · ·) for
the system (6), (8) and (11) without measurement delays.
From (13), we can obtain the local filters ŝzi (t|t+N) using
the measurements (zi(t+N), zi(t+N−1), · · ·), i = 1, 2.

From (8) and (11), we have

yi(t) = s(t) + vi(t), i = 1, 2 (19)

According to the projection theory[5] yields the relation

ŝi(t|t+N − τi) (20)
= ŷi(t|t+N − τi)− v̂i(t|t+N − τi), i = 1, 2

Thus the problem is converted into that of finding the
white noise estimators v̂i(t|t +N − τi) and the measure-
ment estimators ŷi(t|t+N − τi). They can be obtained by
the following Kalman filtering method.

For the two-sensor system (6) and (11) with assump-
tions 1 and 2, the local steady-state Kalman predictor x̂i(t+
1|t) is given by[5]

x̂i(t+ 1|t) = Ψpix̂i(t|t− 1) +Kpiyi(t), i = 1, 2 (21)

Ψpi = Φ−KpiH, Kpi = ΦΣiiH
TQ−1

εi (22)

εi(t) = yi(t)−Hx̂i(t|t− 1) (23)

Qεi = HΣiiH
T +Qvi, Qvi = Qξi (24)

where the prediction error variance matricesΣii satisfy the
Riccati equations

Σii = Φ[Σii −ΣiiH
T(HΣiiH

T +Qvi)
−1HΣii]Φ

T +

ΓQwΓ
T (25)

and the cross-covariances between local prediction errors
Σij = E[x̃i(t + 1|t)x̃Tj (t + 1|t)], satisfy the Lyapunov
equations

Σij = ΨpiΣijΨ
T
pj + ΓQwΓ

T, i, j = 1, 2, i ̸= j (26)

where x̃i(t+ 1|t) = x(t+ 1)− x̂i(t+ 1|t).
Theorem 1 The two-sensor system (6) and (11) with

assumptions 1 and 2 has the local steady-state optimal white
noise estimators

v̂i(t|t+N − τi) = Lvi,N−τi(q
−1)εi(t+N − τi) (27)

where
Lvi,N−τi(q

−1) =
N−τi∑
j=0

M
(i)
j qj−(N−τi), N ≥ τi

Lvi,N−τi(q
−1) = 0, N < τi

M
(i)
j = −QviKT

piΨ
(j−1)T
pi HTQ−1

εi , j ≥ 1

M
(i)
0 = QviQ

−1
εi

(28)

which can be rewritten in the Wiener filter form as

v̂i(t|t+N−τi) =
Lvi,N−τi(q

−1)Λi(q
−1)

ψi(q−1)
yi(t+N−τi)(29)

with the definitions

ψi(q
−1) = det(In − q−1Ψpi) (30)

Λi(q
−1) = ψi(q

−1)Im−Hadj(In− q−1Ψpi)Kpiq
−1(31)

where the notation “adj” denotes the adjoint matrix.
The steady-state white noise error variance matrices

Pvi(N − τi) = E[ṽi(t|t+N − τi)ṽ
T
i (t|t+N − τi)] with

ṽi(t|t+N − τi) = vi(t)− v̂i(t|t+N − τi) are given as
Pvi(N − τi)

= Qvi −
N−τi∑
j=0

M
(i)
j QεiM

(i)T
j , N ≥ τi

Pvi(N − τi) = Qvi, N < τi

(32)

Proof. Applying the standard Kalman filer[5] yields

x̃i(t+ 1|t) = Ψpix̃i(t|t− 1) + Γw(t)−Kpivi(t) (33)

Applying the projection formula[5] , we have v̂i(t|t+N − τi) =
N−τi∑
j=0

M
(i)
j εi(t+ j), N ≥ τi

v̂i(t|t+N − τi) = 0, N < τi

(34)

M
(i)
j = E[vi(t)ε

T
i (t+ j)]Q−1

εi (35)

Iterating (33) yields the relation

x̃i (t+ j|t+ j − 1) = Ψ jpix̃i(t|t− 1) + (36)
j∑
r=1

Ψ j−rpi [Γw(t+ r − 1)−Kpivi(t+ r − 1)]

From (23), we have

εi(t+ j) = Hx̃i(t+ j|t+ j − 1) + vi(t+ j) (37)
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Substituting (36) into (37), substituting (37) into (34),
and applying the assumption 1 yield (27) and (28), and
using (27) and (28) we can obtain (32).

From (21), we can have the transfer function represen-
tation

x̂i(t|t− 1) = (In − q−1Ψpi)
−1Kpiq

−1yi(t) (38)

Applying the formula for the inverse on matrix

( In − q−1Ψpi)
−1 (39)

= adj(In − q−1Ψpi)/det(In − q−1Ψpi)

and substituting (39) and (38) into (23) yields the local
ARMA innovation models

Λi(q
−1)yi(t) = ψi(q

−1)εi(t) (40)

where ψi(q−1) and Λi(q−1) are defined in (30) and (31).
From (40) we have

εi(t) =
Λi(q

−1)

ψi(q−1)
yi(t) (41)

Substituting (41) into (27) yields (29). The proof is
completed.

Theorem 2 The two-sensor system (6) and (11) with
assumptions 1 and 2 has the local measurement predictors

ŷi (t|t+N − τi) (42)

= ψ−1
i (q−1)G

(i)
−(N−τi)(q

−1)y(t+N − τi),

N ≥ 0, N < 0, τi > 0

where the polynomial matrices F (i)
τi (q−1) and G(i)

τi (q
−1)

are determined by the Diophantine equation

ψi(q
−1)Im = F

(i)
−(N−τi)(q

−1)Λi(q
−1)+

qN−τiG
(i)
−(N−τi)(q

−1), N < τi

F
(i)
−(N−τi)(q

−1) = F
(i)
−(N−τi),0 + F

(i)
−(N−τi),1q

−1+

· · ·+ F
(i)
−(N−τi),−(N−τi)−1q

N−τi+1

F
(i)
−(N−τi),0 = Im

(43)


G

(i)
−(N−τi)(q

−1) = G
(i)
−(N−τi),0 +G

(i)
−(N−τi),1q

−1

+ · · ·+G
(i)
−(N−τi),ngi

q−ngi , N < τi

G
(i)
−(N−τi)(q

−1) = ψi(q
−1)q−(N−τi), N ≥ τi

(44)

where the order ngi = max(nλi − 1, nψi − τi), and nλi is
the order of Λi(q−1).

The prediction error ỹi(t|t+N−τi) = yi(t)− ŷi(t|t+
N − τi) is given by

ỹi(t|t+N − τi) = F
(i)
−(N−τi)(q

−1)εi(t) (45)

Introducing F̄ (i)
−(N−τi)(q) = F

(i)
−(N−τi)(q

−1)q−(N−τi)−1

with the coefficient matrices F̄ (i)
−(N−τi),r yields another form

of ỹi(t|t+N − τi) as

ỹi(t|t+N − τi) = (46)
−(N−τi)−1∑

r=0

F̄
(i)
−(N−τi),rεi(t+N − τi + r + 1)

The steady-state error variance matrices Pyi(N−τi) =
E[ỹi(t|t+N−τi)ỹTi (t|t+N−τi)] with ỹi(t|t+N−τi) =
yi(t)− ŷi(t|t+N − τi) are given by
Pyi(N − τi) =

−(N−τi)−1∑
r=0

−(N−τi)−1∑
r=0

F
(i)
−(N−τi),r×

QεiF
(i)T
−(N−τi),s, N < τi

Pyi(N − τi) = 0, N ≥ τi

(47)

or
Pyi(N − τi) =

−(N−τi)−1∑
r=0

−(N−τi)−1∑
r=0

F̄
(i)
−(N−τi),r×

QεiF̄
(i)T
−(N−τi),s, N < τi

Pyi(N − τi) = 0, N ≥ τi

(48)

Proof. From (40) and (43) we have

yi(t) = Λ−1
i (q−1)(ψi(q

−1)Im)εi(t)
= (ψi(q

−1)Im)Λ−1
i (q−1)εi(t)

= F
(i)
−(N−τi)(q

−1)εi(t)+

G
(i)
−(N−τi)(q

−1)Λ−1
i (q−1)εi(t+N − τi)

= F
(i)
−(N−τi)(q

−1)εi(t)+

(ψ−1
i (q−1)Im)G

(i)
−(N−τi)(q

−1)yi(t+N − τi)

(49)

where for N < τi, F
(i)
−(N−τi)(q

−1)εi(t) is the linear com-
bination of εi(t), εi(t−1), · · · , εi(t+N−τi+1), which is
uncorrelated with ψ−1

i (q−1)G
(i)
−(N−τi)(q

−1)yi(t+N−τi).
This yields the steady-state optimal filter (42) and the fil-
tering error (45), and further from (46) we obtain (48).
When N ≥ τi, we have ŷi(t|t + N − τi) = yi(t), which
yields (44) and (48). The proof is completed.

Theorem 3 For the two-sensor multichannel ARMA
signal (1) and (2) with measurement delays, under the as-
sumptions 1 and 2, the local Wiener signal filters ŝzi (t|t+
N) are given by

ψi(q
−1)ŝzi (t|t+N) = Ki,N−τi(q

−1)zi(t+N), (50)
N ≥ 0, N < 0, , i = 1, 2

where N < τi or N ≥ τi, and we define

Ki,N−τi(q
−1) = G

(i)
−(N−τi)(q

−1)− (51)

Lvi,N−τi(q
−1)Λi(q

−1)

where G(i)
−(N−τi)(q

−1) and Lvi,N−τi(q
−1) are determined

in (28) and (44).
The filtering error variance matrices are given by
P zii(N) = Qvi −

N−τi∑
j=0

M
(i)
j QεiM

(i)T
j , N ≥ τi

P zii(N) =
τi−N−1∑
j=0

F
(i)
τi−N,jQεiF

(i)T
τi−N,j , N < τi

(52)

Proof. Substituting (29) and (42) into (20) yields

ψi(q
−1)ŝi(t|t+N−τi) = Ki,N−τi(q

−1)y(t+N−τi)(53)
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with Ki,N−τi(q
−1) defined in (51).

Substituting (10) and (13) into (53) yields (50).
When N ≥ τi, from (19) and (20), and ŷi(t|t + N −

τi) = yi(t), we have

s̃i(t|t+N − τi) = −ṽi(t|t+N − τi) (54)

Applying (17) and (18) yields P zii(N) = Pii(N − τi),
so from (32) we obtain the first equation of (52).

When N < τi, we have v̂i(t|t + N − τi) = 0. Hence
from (19) and (20), we have

ỹi(t|t+N − τi) = s̃i(t|t+N − τi) + vi(t) (55)

Notice that vi(t) is uncorrelated with s̃i(t|t + N −
τi). Hence applying (15)∼(18) and (55) yields P zii(N) =
Pii(N − τi, N − τi) = Pyi(N − τi) − Qvi, and then ap-
plying (47) yields the second equation of (52).

Theorem 4 For the two-sensor multichannel ARMA
signal (1) and (2) with measurement delays, under the as-
sumptions 1 and 2, when N ≥ τi and N ≥ τj , the cross-
covariances between the local filtering errors are given by

P zij(N) =

N−τi∑
r=0

N−τj∑
s=0

M (i)
r Eij(r, s)M

(i)T
s , i ̸= j (56)

where Eij(r, s) is given by

Eij(r, s) = HΨrpiΣijΨ
sT
pj H

T + (57)
min(r,s)∑
k=1

HΨr−kpi ΓQwΓ
TΨ

(s−k)T
pj HT,min(r, s) ̸= 0

when min(r, s) = 0, we define that the second term of
(57) is equal to zeros.

Proof. WhenN ≥ τi,N ≥ τj , then ŷi(t|t+N−τi) =
yi(t), ŷj(t|t+N − τj) = yj(t), which yields ỹi(t|t+N −
τi) = 0, ỹj(t|t+N − τj) = 0, hence from (19) and (20),
we have

s̃i(t|t+N − τi) = −ṽi(t|t+N − τi) (58)

= −[vi(t)−
N−τi∑
r=0

M (i)
r εi(t+ r)]

s̃j(t|t+N − τj) = −ṽj(t|t+N − τj) (59)

= −[vj(t)−
N−τi∑
s=0

M (j)
s εj(t+ s)]

From (36), we know that vj(t) and εi(t+k) are uncor-
related, and vi(t) and εj(t+ k) are uncorrelated.

Applying (17), (18), (58) and (59) yields (56), with the
definitions

Eij(r, s) = E[εi(t+ r)εTj (t+ s)] (60)

From (11) and (23) it follows that

εi(t+ j) = Hx̃i(t+ j|t+ j − 1) + vi(t+ j) (61)

Substituting (36) into (60), and then substituting (61)
into (60), and applying assumption 1, we obtain (57). The
proof is completed.

Theorem 5 For the two-sensor multichannel ARMA
signal (1) and (2) with measurement delays, under the as-
sumptions 1 and 2, when N < τi and N < τj , the cross-
covariances between the local filtering errors are given by

P zij(N) =

τi−N−1∑
r=0

τj−N−1∑
s=0

F̄
(i)
−(N−τi),r × (62)

Σij(r, s)F̄
(j)T
−(N−τi),s, i ̸= j

where F̄ (i)
−(N−τi),i is determined in (46). Σij(r, s) is given

by

Σij(r, s) = HΨrpiΣijΨ
(τi−τj+s)T
pj HT + (63)

min(r,τi−τj+s)∑
k=1

HΨr−kpi ΓQwΓ
TΨ

(s+τi−τj−k)T
pj HT,

τi ≥ τj

Σij(r, s) = HΨ
τj−τi+r
pi ΣijΨ

sT
pj H

T + (64)
min(τj−τi+r,s)∑

k=1

HΨ
r+τj−τi−k
pi ΓQwΓ

TΨ
(s−k)T
pj HT,

τi < τj

where Σij is defined by (26).
Proof. When N < τi and N < τj , from (27) and (28),

we have v̂i(t|t + N − τi) = 0, v̂j(t|t + N − τj) = 0, so
from (20), we have

ŝi(t|t+N − τi) (65)
= ŷi(t|t+N − τi), ŝj(t|t+N − τj)

= ŷj(t|t+N − τj)

Hence from (19) yields

s̃i(t|t+N − τi) (66)
= ỹi(t|t+N − τi)− vi(t), s̃j(t|t+N − τj)

= ỹj(t|t+N − τj)− vj(t)

Since vi(t) and vj(t) (i ̸= j) are uncorrelated, then

P zij(N) = Pij(N − τi, N − τj) (67)

= E[ỹi(t|t+N − τi)ỹ
T
j (t|t+N − τj)]

Substituting (46) into (67) yields (62) with the defini-
tion

Σij(r, s) = E[εi(t+N − τi + 1 + r)× (68)

εTj (t+N − τj + 1 + r)]

When τi ≥ τj , we have

Σij(r, s) = E[εi(t+N − τi + 1 + r)× (69)

εTj (t+N − τi + 1 + r + (τi − τj))]

Setting r = t+N − τi +1+ r, s = t+N − τi +1+
r+(τi−τj), applying (57) into (69) yields (63). Similarly,
we can obtained (64). The proof is completed.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



502 Peng Zhang et al.: Multichannel ARMA signal covariance intersection fusion Wiener filter...

Theorem 6 For the two-sensor multichannel ARMA
signal (1) and (2) with measurement delays, under the as-
sumptions 1 and 2, when N ≥ τi and N < τj , the cross-
covariances between the local filtering errors are given by

P zij(N) =

N−τi∑
r=0

τj−N−1∑
s=0

M (i)
r ∆

(2,1)
ij (r, s)F̄

(j)T
−(N−τj),s(70)

i ̸= j

where ∆(2,1)
ij (r, s) is given by

∆
(2,1)
ij (r, s) = HΨ

τj−N−1+r
pi ΣijΨ

sT
pj H

T + (71)
min(τj−N−1+r,s)∑

k=1

HΨ
τj−N−1+r−k
pi ΓQwΓ

TΨ
(s−k)T
pj HT

when N < τi and N ≥ τj , the cross-covariances be-
tween the local smoothing errors are given by

P zij(N) =

τi−N−1∑
r=0

N−τj∑
s=0

F̄
(i)T
−(N−τi),r × (72)

∆
(2,2)
ij (r, s)M (j)T

s , i ̸= j

where ∆(2,2)
ij (r, s) is given by

∆
(2,2)
ij (r, s) = HΨrpiΣijΨ

(τi−N−1+s)T
pj HT + (73)

min(r,τi−N−1+s)∑
k=1

HΨr−kpi ΓQwΓ
TΨ

(τi−N−1+s−k)T
pj HT

Proof. Applying (18), (27) and (46), and noting that

s̃i(t|t+N − τi) = ṽi(t|t+N − τi), N > τi (74)

s̃j(t|t+N − τj) = ỹj(t|t+N − τj)− vj(t), N < τj(75)

which yields (70), with the definition

∆
(1)
ij (r, s) = E[εi(t+ r)εTj (t+N − τj + 1 + s)] (76)

From the definition (57), we have the relation

∆
(1)
ij (r, s) = E[εi(t+N − τj + 1−N + τj (77)

−1 + r)εTj (t+N − τj + 1 + s)]

= Eij(τj −N − 1 + r, s)

Hence setting r = τj −N − 1 + r in (57) yields (71).
Similarly, we can obtain (72) and (73). The proof is com-
pleted.

4. Three Weighting Wiener signal fusers and
CI Wiener signal fuser

The steady-state optimal Wiener signal fuser ŝzm(t|t+N)
weighted by matrices is given by [28,29]

ŝzm(t|t+N) = Ω1ŝ
z
1(t|t+N) +Ω2ŝ

z
2(t|t+N) (78)

with the optimal weighting matrices[28]

Ω1 = (P z22(N)− P z21(N))× (79)
(P z11(N) + P z22(N)− P z12(N)− P z21(N))−1

Ω2 = (P z11(N)− P z12(N))× (80)
(P z11(N) + P z22(N)− P z12(N)− P z21(N))−1

The fused error variance matrix P zm(N) is given by

P zm(N) = P z11(N)− (P z11(N)− P z12(N))× (81)
(P z11(N) + P z22(N)− P z12(N)− P z21(N))−1 ×
(P z11(N)− P z12(N))T

The steady-state optimal Wiener signal fuser with the
scalar weights is given by [28,29]

ŝzs(t|t+N) = ω1ŝ
z
1(t|t+N) + ω2ŝ

z
2(t|t+N) (82)

where the optimal weights is given by

[ω1, ω2] = (eTP−1
tr (N)e)−1eTP−1

tr (N) (83)

where Ptr(N) = (trP zij(N))2×2, the notation tr denotes
the trace of matrix, eT = [1, 1].

The fused error variance is given by

P zs (N) =
2∑
i=1

2∑
j=1

ωiωjP
z
ij(N) (84)

The steady-state optimal Wiener signal fuser with the
diagonal matrices is given by[28,29]

ŝzd(t|t+N) = Ωd1 ŝ
z
1(t|t+N) +Ωd2 ŝ

z
2(t|t+N) (85)

Ωdi = diag(ai1, · · · , ain), i = 1, 2 (86)

The optimal diagonal weighting vectors are given by

[a1l, a2l] = [eT(P ll(N))−1e]−1eT(P ll(N))−1, (87)
l = 1, · · · , n

where eT = [1, 1], P ll(N) = (P
(ll)
ks (N))2×2, P (ll)

ks (N)
is the (l, l) diagonal element of P zks(N). The fused error
variance weighted by diagonal matrix is given by

P zd (N) =
2∑
i=1

2∑
j=1

Ωdi P
z
ij(N)ΩdTj (88)

Based on covariance intersection (CI) method, the CI
fusion Wiener signal filter is given as

ŝzCI(t|t+N) = P zCI(N)[ω(P z11(N))−1ŝz1(t|t+N)(89)
+(1− ω)(P z22(N))−1ŝz2(t|t+N)]

(P zCI(N))−1 = ω(P z11(N))−1 + (1− ω)(P z22(N))−1(90)

where ω ∈ [0, 1], and minimizes the performance index

min
ω
trP zCI(N) = min

ω∈[0,1]
tr{[ω(P z11(N))−1 + (91)

(1− ω)(P z22(N))−1]−1}
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Remark 1. From (89) we see that the CI Kalman fuser
(89) is also a weighting fuser with the matrix weights

Ω1 = ωP zCI(N)(P z11(N))−1, (92)
Ω2 = (1− ω)P zCI(N)(P z22(N))−1

Remark 2. Based on (91), to find the optimal weight-
ing coefficient ω is an optimization problem for nonlinear
function

min
ω
J(ω) = tr{[ω(P z11(N))−1 + (93)

(1− ω)(P z22(N))−1]−1}
with constraint condition ω ∈ [0, 1], the optimal ω can
fast be obtained by the gold section method or Fibonacci
method [31].

5. Accuracy comparison of CI Wiener signal
fuser with three weighting Wiener signal
fusers

Theorem 7. When P zii(N) and P zij(N) are exactly known,
the CI fuser has the actual filtering error variance matrix

P̄ zCI(N) = P zCI(N)[ω2(P z11(N))−1 + (94)
ω(1− ω)(P z11(N))−1P z12(N)(P z22(N))−1 +

ω(1− ω)(P z22(N))−1P z21(N)(P z11(N))−1 +

(1− ω)2(P z22(N))−1]P zCI(N)

where the actual CI fusion filtering error variance P̄ zCI(N)
= E[s̃zCI(t|t+N)s̃zTCI(t|t+N)], s̃zCI(t|t+N) = s(t)−
ŝzCI(t|t+N), and E denotes the mathematical expectation,
from[20] the CI fuser is consistent, i.e.

P̄ zCI(N) ≤ P zCI(N) (95)

where P zCI(N) is an upper bound of P̄ zCI(N), which is
determined by (94). The matrix inequality (95) means that
P zCI(N)− P̄ zCI(N) ≥ 0 is positive semidefinite.

Proof. From (90) we have

(P zCI(N))−1s(t) = ω(P z11(N))−1s(t) + (96)
(1− ω)(P z22(N))−1s(t)

Subtracting (89) from (96) yields

(P zCI(N))−1s̃zCI(t|t+N) (97)
= ω(P z11(N))−1s̃z1(t|t+N) +

(1− ω)(P z22(N))−1s̃z2(t|t+N)

with s̃zi (t|t+N) = s(t)− s̃zi (t|t+N), i = 1, 2.
Hence we have

s̃zCI(t|t+N) (98)
= P zCI(N)[ω(P z11(N))−1s̃z1(t|t+N) +

(1− ω)(P z22(N))−1s̃z2(t|t+N)]

Applying the definitionsP z12(N) = E[s̃z1(t|t+N)s̃zT2 (t
|t + N)], P z21(N) = E[s̃z2(t|t + N)s̃zT1 (t|t + N)], and
P zii(N) = E[s̃zi (t|t + N)s̃zTi (t|t + N)], substituting (98)

into P̄ zCI(N) = E[s̃zCI(t|t+N)s̃zTCI(t|t+N)], we obtain
(94). The consistency of CI fuser has been proven in [20,
22]. The proof is completed.

Theorem 8. For the local Wiener signal filters, the three
weighting and CI Wiener signal fusers, the following ac-
curacy relations hold

P zm(N) ≤ P zd (N), P zm(N) ≤ P zs (N), (99)
P zm(N) ≤ P̄ zCI(N), P zm(N) ≤ P zii(N), i = 1, 2

Proof. from (78), ŝzm(t|t + N) is the ULMV estimate of
s(t) based on the linear spaceLm = Lm(ŝz1(t|t+N), ŝz2(t|t
+N)) spanned by (ŝz1(t|t+N), ŝz2(t|t+N)). From (82),
(85), (89), we have ŝzθ(t|t + N) ∈ Lm, θ = s, d, CI, i,
which yields (99). The proof is completed.

Theorem 9. The accuracy relation among the CI Wiener
signal fuser, the three weighting Wiener signal fuser and
the local Wiener signal filters is given by

trP zm(N) ≤ trP̄ zCI(N) ≤ trP zCI(N) ≤ trP zii(N),(100)
i = 1, 2

trP zm(N) ≤ trP zd (N) ≤ trP zs (N) ≤ trP zii(N), (101)
i = 1, 2

Proof. Taking the trace operation for (95) and (99) yields
trP zm(N) ≤ trP̄ zCI(N) ≤ trP zCI(N), noting that trP zCI
minimizes (93) for ω ∈ [0, 1]. Taking ω = 0, we have
trP zCI(N) = trP z22(N), taking ω = 1 yields trP zCI(N) =
trP z11(N). Hence we have trP zCI(N) ≤ trP zii(N), i =
1, 2, so the (100) holds. Because the fusers with matrix
weights contain the fusers with diagonal matrix weights,
and the fuser with diagonal matrix weights contain the
fusers with scalar weights and the fusers with scalar weights
contain the local filters, then the accuracy relation (101)
holds. The proof is completed.

6. Simulation example

Consider the two-sensor, multichannel ARMA signal sys-
tem

A(q−1)s(t) = C(q−1)w(t) (102)

zi(t) = s(t− τi) + ξi(t)i = 1, 2 (103)

where τi = 1, τj = 2 are the time delays, A(q−1) =
Im + A1q

−1 + A2q
−2C(q−1) = C1q

−1. The aim is to
compare the accuracy among the local optimal steady-state
Wiener signal filters ŝzi (t|t + N), N ≥ 0, N < 0 and the
CI fuser ŝzCI(t|t+N) and three weighting fusers ŝzm(t|t+
N),ŝzs(t|t+N),ŝzd(t|t+N).

In order to give a powerful geometric interpretation
with respect to accuracy relations among local and fused
Wiener signal filters, the concept on the covariance el-
lipse was introduced in [23]. The covariance ellipse for
a variance matrix P is defined as the locus of points {x :
xTP−1x = c} where c is a constant. In the sequel, c = 1
will be assumed without loss of generality. The following
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properties were proven in [23,33] for the two-sensor sys-
tem: P1 ≤ P2 is equivalent to that the covariance ellipse
of P1 is enclosed in the covariance ellipse of P2. Hence
from (99), (100) and (101), the ellipse of the fused vari-
ance P zm(N) should lie within the intersection of covari-
ance ellipses for P z11(N) and P z22(N), and be enclosed in
the ellipses of P zd (N), P zs (N) and P̄ zCI(N). The covari-
ance ellipse for the upper bound P zCI(N) of the CI fused
variance encloses the intersection region of covariance el-
lipses P z11(N) and P z22(N), and passes through the four
points of intersection of covariance ellipses for P z11(N)
and P z22(N).

In order to verify the above theoretical results for accu-
racy relations, the mean square error (MSE) value at time t
for local and fused Wiener signal filters is defined as sam-
pled average for trP zii = trE[(ŝzi (t|t) − s(t))(ŝzi (t|t) −
s(t))T], i.e.,

MSEi(t) =
1

M

M∑
j=1

((ŝ
z(j)
i (t|t)− s(j)(t))T × (104)

(ŝ
z(j)
i (t|t)− s(j)(t)), i = 1, 2,m, d, s, CI

where t = 1, · · · , 200, ŝz(j)i (t|t) or s(j)(t) denotes the jth
realization of ŝzi (t|t) or s(t), respectively. M is the number
of Monte-Carlo runs. According to the ergodicity[34], we
have

MSEi(t) → trP zii, as t→ ∞,M → ∞, (105)
i = 1, 2,m, d, s, CI

6.1. Example 1

For the system (100) and (101), in simulation, we take

N = 0, A1 =

[
0.6 −0.1
0.1 −1.5

]
, A2 =

[
−0.16 −0.08
−0.02 0.55

]
,C1 =[

−0.7 0.2
0.5 −0.3

]
, Qw =

[
4 0
0 2

]
, Qξ1 =

[
4 0
0 16

]
, Qξ2 =[

0.25 0
0 0.16

]
.

The simulation results and the MSEi(t) curves are
shown in Figure 1 and Figure 2.

6.2. Example 2

For the system (100) and (101), in simulation, we take

N = 2, A1 =

[
0.6 −0.1
0.1 −1.5

]
, A2 =

[
−0.16 −0.08
−0.02 0.55

]
,

C1 =

[
−0.7 0.2
0.5 −0.3

]
, Qw =

[
4 0
0 1

]
, Qξ1 =

[
1 0
0 0.49

]
,

Qξ2 =

[
0.25 0
0 2

]
.

The simulation results and the MSEi(t) curves are
shown in Figure 3 and Figure 4.

11

z
P

22

z
P

z

CI
P

z

s
P

z

CI
P

z

m
P

z

d
P
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Figure 2 Comparison of MSE curves for local and fused Wiener
filters

6.3. Example 3

For the system (100) and (101), in simulation, we take

N = −1, A1 =

[
0.7 0.2
0.4 −1.5

]
, A2 =

[
−0.08 0.16
−0.04 −0.46

]
,

C1 =

[
−0.7 0.2
0.5 −0.3

]
, Qw =

[
8 0
0 1

]
, Qξ1 =

[
4 0
0 25

]
,

Qξ2 =

[
0.25 0
0 0.36

]
.

The simulation results and the MSEi(t) curves are
shown in Figure 5 and Figure 6.

Synthesizing the examples 1-3, the error variances of
local and fused Kalman estimators for N = 0, N = 2,
N = −1 are

trP z11(N) = 18.018, trP z22(N) = 17.79, (106)
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trP zm(N) = 13.678, trP zd (N) = 13.859,
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trP zs (N) = 15.18, trP zCI(N) = 17.046,

trP̄ z11(N) = 14.485,

N = 0

trP z11(N) = 0.99263, trP z22(N) = 1.4362, (107)
trP zm(N) = 0.4424, trP zd (N) = 0.4428,

trP zs (N) = 0.63423, trP zCI(N) = 0.81086,

trP̄ z11(N) = 0.45359,

N = 2

trP z11(N) = 45.319, trP z22(N) = 44.342, (108)
trP zm(N) = 39.902, trP zd (N) = 36.884,

trP zs (N) = 39.783, trP zCI(N) = 42.28,

trP̄ z11(N) = 38.467,

N = 2

From the ellipses relations of figures 1,3 and 5, we can
obtain that the accuracy relations (99) hold. According to
the MSE curves of figures 2,4 and 6, the accuracy relations
among the trace of CI fuser, the three weighting fuser and
the local filters, i.e., (100) and (101) hold. The values of
(106),(107) and (108) show that the accuracy of CI fuser
is higher than that of each local Wiener signal filter, and is
close to that of the optimal matrix weighted fusion Wiener
signal filter.

7. Conclusions

For the two-sensor multichannel ARMA signal systems
with measurement delays and unknown cross-covariance,
using CI fusion method, based on Riccati equation, the
CI fusion Wiener signal filter is presented. It is rigorously
proved that the accuracy of the presented CI fuser is higher
than that of each local Wiener signal filter, and a little less
than that of the optimal matrix weighted fusion Wiener
signal filter. So it has good performance.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



506 Peng Zhang et al.: Multichannel ARMA signal covariance intersection fusion Wiener filter...

Acknowledgement

The authors acknowledge the financial support National
Natural Science Foundation of China, project No. 60874063,
Support Program for Young Professional in Regular Higher
Education Institutions of Heilongjiang Province, project
No.1251G012. The author is grateful to the anonymous
referee for a careful checking of the details and for helpful
comments that improved this paper.

References

[1] Y. Bar-shalom and, X. R. Li and T.Kirubarajan, Estimation
With Applications to Tracking and Navigation ( John Wiley
& Son,Inc. 1999)

[2] X. R. Li, Y. M. Zhu, J. Wang and C. J. Han, IEEE Trans.
Information Theory. 49. 2192,2208 (2003).

[3] Q. Gan and C. J. Harris, IEEE Trans. Aerospace and Elec-
tronic Systems. 37. 273,280 (2001).

[4] T. Kailath, A. H. Sayed and B. Hassibi, Linear Estimation
(Upper Saddle River, Prentice-Hall, New Jersey, 2000).

[5] B. D. O. Anderson and J. B. Moore, Optimal Filtering, En-
glewood Cliffs (Prentice-Hall, New Jersey, 1979).

[6] A. Ahlen and M. Sternad, IEEE Trans. Acoustics, Speech,
Signal Processing. 37. 217,226 (1989).

[7] A. Ahlen and M. Sternad, IEEE Trans. Signal Processing.
39. 2387,2399 (1991).

[8] M. J. Gramble, International Journal of Control. 41.
1545,1564 (1985).

[9] Z. L. Deng, H. S. Zhang, S.J . Liu and L. Zhou, Automatica.
32. 199,216 (1996).

[10] Z. L. Deng, Proc. Sixth IFAC Symposium on Identifica-
tion and System Parameter Estimation, Washington, DC.
377(1982).

[11] Z. L. Deng and L. Mao, Systems Engineering and Electron-
ics. 27.1971,1974 (2005).

[12] Z. L. Deng and Y. Gao, Control Theory & Applications. 22.
641,644 (2005).

[13] H. S. Zhang and L .H. Xie, Control and Estimation of Sys-
tems with Input/Output Delays (Springer, Berlin, 2007).

[14] X. Lu, H. S. Zhang, W. Wang and K. L. Teo, Automatica.
41. 1455,1461 (2005).

[15] S. L. Sun and N, Lv, Acta Automatic Sinica. 35. 46,53
(2009).

[16] X. J. Sun and Z. L. Deng, IET Signal Processing. 3. 403,415
(2009).

[17] Z. L. Deng, Y. Gao, C. B. Li and G. Hao, Automatica.44.
685,695 (2008).

[18] C. J. Ran and Z. L. Deng, Proc. 8th IEEE International Con-
ference on Control and Automation,645 (2010).

[19] X. J. Sun, Y. Gao, Z. L. Deng, C. Li and J. W. Wang, Infor-
mation Fusion. 11. 163,173 (2009).

[20] S. J. Julier and J. K. Uhlmann, Proc. 1999 IEEE American
Control Conference, Albuquerque, NM, USA. 2369 (1997).

[21] J. K. Uhlmann, Proc. the SPIE Aerosence Conference, SPIE.
536 (1996).

[22] S. J. Julier and J. K. Uhlmann, In: Handbook of Multisensor
Data Fusion, M.E. Liggins, D.L. Hall and J. Llinas (Eds.),
319 (CRC Press, 2009).

[23] L. Chen, P. O. Arambel and R. K. Mehra, IEEE Trans, Au-
tomatic Control. 47. 1879,1882 (2002).

[24] P. O. Arambel, C. Rago and R. K. Mehra, Proc. the Ameri-
can Control Conference, Arington, 4398 (2001).

[25] S. J. Julier and J. K. Uhlmann, Robotics and Autonomous
Systems. 55. 3, 20 (2007).

[26] Q. Guo, S. Y. Chen, H. R. Leung and S. T. Liu, Information
Sciences. 180. 3434,3443 (2010).

[27] J. C. Bolzani, C. Ferreira and J. Waldmann, Control Engi-
neering Practice. 15. 389,409 (2007).

[28] Z. L. Deng, Y. Gao, L. Mao, Y. Li and G. Hao, Automatica.
41. 1695,1707 (2005).

[29] S. L. Sun and Z. L. Deng, Automatica. 40. 1017,1023
(2004).

[30] C. Z. Han, H. Y. Zhu and Z. S. Duan, Multi-source informa-
tion fusion (Tsinghua University Press, Beijing, 2006).

[31] Y. X. Yuan and W. Y. Sun, Optimization Theory and Meth-
ods (Science Press, Beijing, 2003).

[32] Y. Bar, Shalom and L. Campo, IEEE Trans. Aerospace and
Electronic Systems. 22. 803,805 (1986).

[33] Z. L. Deng, Peng Zhang, W. J. Qi, J. F. Liu and Y. Gao,
Information Sciences. 189. 293,309 (2012).

[34] L. Ljung, System Identification, Theory for the User
(Prentice-Hall PTR, New Jersey, 1999).

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2, 497-507 (2013) / www.naturalspublishing.com/Journals.asp 507

Peng Zhang received her
B.Sc. degree and M.Sc. degree
in department of Automation,
Heilongjiang University in 2004
and in 2007, respectively. Cur-
rently she is a Ph.D. Candidate
in Department of Automation,
Heilongjiang University. And
she is a university lecturer in
Harbin Deqiang College of Com-
merce. Her research interests

include multisensor information fusion and self-tuning fil-
tering.

Zili Deng is a Professor
at the Department of Automa-
tion, Heilongjiang University.
He has published more than 400
papers and 8 books in the fields
of optimal filtering, self-tuning
filtering, time series analysis,
and multisensor information fu-
sion. He is the author the books
”Kalman Filtering and Wiener
Filtering-Modern Time Series

Analysis Method”(2001), ”Self-tuning Filtering Theory with
Applications-Modern Time Series Analysis Method”(2003),
”Optimal Estimation Theory with Applications-Modeling,
Filtering, Information Fusion Estimation”(2005), and ”In-
formation Fusion Filtering Theory and Applications”(2007).
His research interests include optimal and self-tuning fil-
tering, deconvolution, state estimation, signal processing,
estimation theory, identification, time-series analysis, and
multisensor information fusion.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


