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1 Introduction and definitions If f(z) andg(z) are analytic i\, we say thatf (2) is
subordinate tg(z), written symbolically as

Let <7, denote the class of functions normalized by f <ginAorf(z) <g(2 (ze D),

o0 o if there exists a Schwarz functiow(z), which (by
f(2)=2"+ % apinz” (PeN={1,23....}), (1)  definition) is analytic inA with w(0) = 0 and|w(z)| < 1
n=1 in A such thatf (z) = g(w(z)),ze€ A. Itis known that

which are analytic ang-valent in the open disks = {z: f(2) <9z (zer) = f0)=g0) and f(A)CgA)
ze Cand|Z < 1}.

A function f(z) € @7, is said to be in the clasg’; () In particular, if the functiom(z) is univalent inA, then we
of p-valently starlike functions of ordeor in A, if have the following equivalence (cf., e. Pk

m(sz{z(f)) > a(0 < a < p, ze A). Furthermore, a

function f(z) € .47, is said to be in the class¢p(a) of

p-valently convex functions of orderr in A, if Furthermore () is said to be subordinate g{z) in the

m(lJrzft//(z)) >a (0<a<p zeA). Indeed, it diskAr={zeC : |z <r}ifthe functionf; (z) = f(rz) is

follows @ - that subordinate to the functiog (z) = g(rz) in A. It follows
f (o 2/ (z A 0<a . A from the Schwarz lemmathatff< gin A, thenf < gin
(2) € Hp(a) = p(@)0=a<p zel) A foreveryr(0<r < 1).

We note that7(a) € 75 (0) = .y and #p(a) C The general theory of differential subordination
Jp(0) = #p(0= a < p), Wherey* and.#p denote the introduced by Miller and Mocanu is given i8]f Namely,
subclass of e, consisting of functions which are if ¥:Q — C (whereQ C C?) is an analytic functiorh is
p-valently starlike inA and p-valently convex inA, analytic and univalent in\, and if ¢ is analytic inA with
respectively (see, for details3][ see also15] and [1]). (0(2),z¢/(z)) € Q when z € A, then we say thatp

f(z) <9(2) (ze ) <  f(0)=9(0) and f(A) Cg(D).
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satisfies a first-order differential subordination prodde

that

2).2¢/(2)) <h h(0).

)
We say that a univalent functiag(z) is a dominant of the
differential subordination?) if ¢(0) =q(0) and
¢(z) < g(2) for all analytic functionsp(z) that satisfy the
differential subordinatiord). A dominantq(z) is called as
the best dominant o2}, if q(z) < q(z) for all dominans
q(z) of (2)[8,9].
For functionsfj(z) € <7, given by

(20 (zeA) and YW(¢(0),0)

i@ =2"+3 apn; ™" (€12, peN),
n=1

we define the Hadamard product (or convolutionf &)
andfz(z) by
(f2x f1)(2)

(fixf2)(2) = 2P+ z apin1dpin 22’ "= (peNze ).

In our present investigation, we shall also make use of the

Guassian hypergeometric function function§;, sk
defined by

2F1<a,b;c;z):n§0(>(g§:> 2 abceC cg¢Z; ={0-1,-2...}), (3
3F(ab,cd,ez) = §O @nbinen £ (ab,c.decC, de¢Zy ={0,-1-2...}(4)
2

where (k)n denote the Pochhammer symbol ( or the 5(52,6,5 f(2) =

shifted factorial ) given in terms of Gamma function

(K)n = ’—ﬁ"&)") by We note that the series defined 8 (
and @) converges absolutely fare A and henceF; and
3> represents analytic functions in the open unit disk

We recall here the following generalized fractional

integral and generalized fractional derivative operators

due to Srivastava et al()] ( see also%,6,14] ).
Definition 11[20] For real numbersA > O,u and n,
Saigo hypergeometric fractional integral operat(é\ﬂ”
is defined by

z
f(z AR (A +p,—n;As1—
0

o1 (2) = L) F(t)dt,

where the function (&) is analytic in a simply-connected
region of the complex-zplane containing the origin, with
the order

f(z) = 0O(|Z°)
and the multiplicity ofz—t)*~* is removed by requiring
log(z—t) to be real wher{(z—t) > 0.

Definition 12[20] Under the hypotheses of Definitidrd,
Saigo hypergeometric fractional derivative operator

&) 4 is defined by

(z— 0;e >max{O,u—n}—1),

where the multiplicity of(z—t)~* is removed as in
Definition11

It may be remarked that

Mz =D;2f(2)  (A>0) and &) f(z=D}f(z (0<A<1),

whereD,? denotes fractional integral operator abg
denotes fractional derivative operator considered by Owa
[11].

Recently Goyal and Prajapat4][ introduced
generalized fractional differintegral operator

SoAE: cty — i, by

FA+p—WrA+p+n—2) ,run
f
Fapr@eprn—p = ooz 120
rl+p-Wrl+p+n-A)
FA+prd+p+n—p)

0<A<n+p+lzel)
SFM@ =
g2 (2) (—0 <A <0,z A).

, , , )
It is easily seen from§) that for a functionf € .7, we
have

p, v (1+phn(d+p+n—pn
P Trp wn@ it M

=2’ 3R(L,1+pl+p+n — 1+ p—p,1+p+n —A;2) %
(ze ApeN;un ERU<p+1—0 <A <n+p+1).
We note that

0,0,0
‘SC?ZOb f( )

So7M(2) =

+n
apinz’

f(z)
(6)

f(@

100 v
020b 1(2) =

zf'(2) + 221" (2)
02

p211
Soz0b |

(2 =

and A
Sozop f(Z

p,A,u,0
z,0,b ‘50 f

zOb :Q)\’pf(z)v

(2) = 2
where Q2P is an extended fractional differintegral
operator studied very recently b¥J.

On the other hand, if we sat= —a, u=0andn =
B—1,in (5) and using

1

70()0/ {8~ 1(1—E>G_1f(t)dt,

5= 7,

we obtain followingp—valent generalization of multiplier
transformation operato]

"yt g fer )
F(p+B+mr(p+a+p)

=2+ Z F(pratBrnr(ptB)

On the other hand, if we s@t= -1, y =0, andn =
B — 1 in (6), we obtain the generalized Bernardi-Libera
integral operatotZg , : @/ — </p(3 > —p) defined by

z
_P+B [
- Z—B‘/t f(t)dt

25 ,f(2) = ( f(t)dt

+n
apinz’

(B>—p;a+B>—00)

5627 (@) = Zp,f()
r<11 - {ZA H]z 1) 2F1<u—)\,1—n;1—)\;1—t2)f(t)dt} S PR
&1 (2) = 0<A<1); Z p+B+n pin
n
(%Cé;”‘“”’f(z) (N<A<nt+1neN), =2° R(Lp+Bip+B+12) (B> —pize A). 8)
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For the choicep = 1, wheref3 € N, the operator defined
by (8) reduces to the well known Bernardi integral operator
[2].

It is easily seen fromg) that

S (@) = (p+n =), H (@) - (n- A)(So“"f(()g))

z
On differentiating 9), we get
(N+1-2)(57"1(2))"

ASAFE@)" = (p+n - NS (2) -

(10)
It follows from (6) and @) that
2(53,'1“'”%.;)(1‘)(2))’ =(p+n+B)RI (@)~ (n +B)(501“ .7, p(fé(2)>)
11
On differentiating 11), we get
A" Fp o()(@)" = (p+n+B)(S (@) — (n+1+B) (S Fp.p(1)(D)-
(12)

Making use of an extended fractional differintegral
operator various mapping properties and
relationships between certain subclasses of multivalentl
starlike functions are investigated by applying the
techniques of differential subordination by Patel and
Misra [13] also by Selvaraj et alls,16]. Using the

generalized Saigo fractional differintegral operator

S, we now introduce the following subclass.of, :

Definition 13For  fixed  parameters /MB  with
-1<B<A<10=Za<pf(z € aisin the class
€Yy (a3 A B) if

ﬁ(lJrz((ﬁM:((Z;) a) HRze ApeN;un e R < p+li—0 <A <n+p+l)
(13)
ForA=1B= -1 we have
1 <1+ 253"1(2)" a) 1+2
_ AU, - _
p—a (S0 () 1-z
For convenience, we write
Cr M (a;1,-1) =C¥H (ar)
_ . 255" 1(2))" -
_{f(z)e;/p.m< +7< .’Mf< 2) > >a,0sa<pzel;.
We further observe that
CV RN (oA B) =€V (0:A+4(B—A),B); V3% a) = Hp(a)

also note that forf0 < A < 1; 0< a < 1) we have

inclusion

2 A set of preliminary lemmas
We denote by (y) the class of functiong (z) given by
$(2) = 1+ bz+ b2 +--- (14)

which are analytic in/A and satisfy the following
inequality:
R(Pp(z2)) >y (0=Zy<lzed).
In order to prove our main results, we recall the
following lemmas.

Lemma 21[8,10] Let the function liz) be analytic and
convex (univalent) i\ with h(0) = 1. Suppose also that
the functiong(z) given by

0(2) = 14124 2 + -

is analytic inA. If

(p(z)+£y(z) =< h(2) (ze AR(y) 2 0;y#£0), (15)
then
0(2) < W(2) y/tV‘lh Jdt<h(z)  (zeA)

andy(z) is the best dominant dfL5).

Lemma 279 If —-1<B<AZ<1,3>0,andthe complex
numbery is constrained by

R(y) =2 -B(1-A)/(1-B),
then the following differential equation:

zd(z2  1+Az
q(z)+[3q(z)+y_ 1+ Bz (2¢

has a univalent solution i\ given by
AHY(1+B2)PA- B)/B
B tBv-111BrsA-BEg B
’ Y exp(BA2)
B ftﬁﬂ’*l exp(BAt)dt

N

|4

(B#0)

Y
B?

(B=0)

(16)
If the functiong(z) given by

0(2) =1+ Cz+ 2+ -

%“I/’l\’“’o(a) = ) (a) due to Srivastava and Owa§). is analytic inA and satisfies the following subordination:
In the present paper we obtain several sharp inclusion 14 A
relationships and other interesting properties of thesclas 2¢'( ) +AZ (ze M), (17)
Cry M (a;AB) for n € R,u < p+1 and for all Bq’( +y 1+Bz
admissible non-negative valuesdfand also for negative then LA
values of A by using the techniques of differential +AZ
subordination. Further we determine mapping properties 9(2) <a(z) < 1+Bz (2€A)
of a variety of operators involving the operalxé‘ri“’”. and q(2) is the best dominant qf17).
(@© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

42 %N S\ C. Selvaraj et. al. : Some Subclassepafalent Functions Defined by Generalized...

Lemma 23 21] For real or complex numbers & and
c(c#0,-1,-2,...),

1

gtbfl(l—t)cfbfl(l— z) -t ="OTED o (abicz)  (Relc) > Relb) > 0);

(18)

2Fi(ab;ciz) = oFi(b,ac;2); (19)

JF(abcz) = (lfz)’azFl(a,cfb;c;Zle); (20)

(a+1)2F(1l,aa+1;2) = (a+1)+azpFi(l.a+1a+2;2) (21)

and
at+b+1 1 T (2L

2F1(ab; +2+ §§)= \/;1(72“~
r(&==r)

(22)

3 Inclusion relationships for function class
¢ ¥y (a; A B)

ProofLet f(z) € C#y "*(a;A B), andg(2) be defined
by

($71@) P

(ze ). (27)

Writery = sup{r:g(z) #0,0< |z <r < 1}. Theng(2) is
single-valued and analytic ijz] < ry. Taking logarithmic
differentiation in @7), it follows that the function

_29(2 S z (56\,’2“’,7 f (Z)) '

g(z) p—a (Sé\éﬂﬂf(z))/

®(2)

(28)
is of the form (L4) and is analytic inz < ri. Using the
identity (10) in (28) and again carrying out logarithmic
differentiation in the resulting equation, we get

An "
2(S5; (2
92)+ arp R = o <1+W - 0’) < ta (Fd<rn).
0.z
(29)

Unless otherwise mentioned, we assume throughout thgjence by using Lemmal we find that

sequel that

“1<B<A<1 peN;0<a<puneRpu<ptli—o<A<n+p+l

Theorem 3iLet f(z) e C¥, "+H(a; A B),
(p—a)(1-A)+(a+n—-A)(1-B)>0 (23)

and the function Q) be defined o\ by

1
gtpﬂw\fl(lli_%tzz)(pfaﬂAfB)/Bdt (B#0),

Q(z) = L
[tPt1-A-Lexp(A(p—a)(t—1)z)dt (B=0).
i 24)
Then

2(712)" :
(25)
C,Vp)\ +1,u,n (a;A7 B) C qup/\ M (a, Aa B)7

and (z) is the best dominant g25).
If, in addition to (23) one has A< —‘”gf’é“ with
—1<B<0,then

CY T (a; A B) C CY H1 (a;1-2p,—1),  (26)
where
p=1ta [(p+n—)\){zF1(1_wB<BfA>;p+n—A +1;%)}71—a—n+)\] .

The bound i(26) is the best possible.

0@ < 2 (g —a-n+1)=a@) < B (z<r),
(30)

whereq(z) is the best dominant oR§) andQ(z) is given
by (24). The remaining part of the proof can now be
deduced on the same lines as i, Theorem 1]. This
evidently completes the proof.

TakingA=1B=—-1,n=0andp=1 in Theorem
31 we get the following result which both extends and
sharpens the work of Srivastava et al7Jf
Corollary 32If —0 < max{A,4} < a < 1,then

H1(a) S (y) € A (a),

wherey = (1-21) [2F1(1,2(1—a);2—A;3)] L4 A, The
value ofy is the best possible.

Theorem 33.et 3 be a real number satisfying
(p—a)1-A)+(n+B+a)(1-B)>0.
()If f (2) eC¥ (a;AB), then

o B
1 A% 75p(N@) " 1 (1 _p g q4)=g LiAz
o (H (4 75,5(1)2)) ) =pa (Q@ n-p D’) =02 < 1i5; (2€4),

(31)
where
1
gtp+n+ﬁ71(lli_',33tzz)(9*“>(AfB>/Bdt (B#0)
Q=9 |
JtPr 1P Lexp(A(p—a)(t - 1)2)dt (B=0)
0

and q(z) is the best dominant of31). Consequently,

the operator.7; , maps the class e} * " (a;A,B)
into itself.

(@© 2015 NSP
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(ifif —1<B<O0Oand

B zmax{wﬁfp,n,]_’i(p*gl(B]-*A)iain},

(32)
then the operator %g, maps the class
C#5* M (a;AB) into the class

a)(B-A)
B

p =5 |(n+B+p){2Fu(1, L B ptLig)) —n-p-al.
P

The bound is the best possible.

ProofUpon replacing

(97 75(N@)

9(z) by z (ze )

in (27) and carrying out logarithmic differentiation it

follows that the functiorp(z) given by

"
2(s6417p5(1(2)

CEREAGED)

—-a

(33)
is of the form (4) and is analytic inz < ri. Using the
identity (12) in (33) and the fact thasg;;-ﬂ f(z) #0 in
0< |7 < 1, we get

(04175502
($1m1)
(34)

Again, by taking logarithmic differentiation in3¢%) and
using @3) in the resulting equation, we deduce that

1
o

The remaining part of the proof is similar to that off],
Theorem 1] and we choose to omit the details.

_ n+p+p
— (p-a)e(2)+n+B+a

(I7 <rp).

1+Az

Aun "
z(S7 ' f(2) 9 (2)
H“’) = 92+ Gajgro rra < 168

(@271 (17 <r1).

PuttingA =1 andB = —1 in TheorenB3, we get

Corollary 341f (8 is a real number satisfying > max{ p—
20 —n—-1,—a—n},then
Fp p(CYIHN (@) Cc CryHN (o),

where o = m + B +
-1

p) [2Fi(1,2(p—a);n+B+p+1;4)] " —n —B. The

result is the best possible.

In particular, whem = 0, Corollary 3.4 gives [15],
corollary 3.4]. Further, fop = 0 andA = 0, corollary 34

Corollary 35If 3 is a real number satisfy8 > max{p —
2a —1,—a}, then

Fpp(Hp(a)) C Hp(0),
whereo = (B+p)[ 2F1(1,2(p— a); B+ p+1;3)] 1 - B.
The value ot is the best possible.

It is interest to note that, by settirgy= 0 in corollary
35, we have the further consequenc®q| Corollary 7].

4 Some properties of the operatorsé#”

Now we discuss some properties of the opetsfit".

Theorem 41 et
0>0neRu<p+l,—o<A<pp+#1andthe
function f(z) € <}, satisfies the following subordination:

Stz ST g)
(15)(°’pZpl L sle T ) < THE (ze D).
) (35)
Then
A N

(71(2) ,

T >X1m (me N; ze A), (36)
where

1_ (prn=MA
p+n—-A+o°

8+(1-8) A-B) R (L, LA 1+ 1,68) (B#0),
X1=
(B=0).
The result is the best possible.

ProofFor f(z) € «7,, consider the function given by

(£11)
o)

Then ¢(z) is of the form (4) and analytic inA. By
differentiating 87) and making use ofl(0), we obtain

o 1+Az
®(2) + mzﬁd(z) < 11 Bz

Now, by applying Lemm&1we get

m /
(So,zszzf 1<z>) .

0(2) = (ze D). (37)

(ze D).

_ . —A .
B+ (1-8) 4B AL 2GR +1,%,) (B0,

(p+n—-A)A

1+ orx+s

(B=0),

where we have also made a change of variable followed
by the use of identitiesl®) and @0). The remaining part

gives the following result which, in turn, the second half of the proof can be deduced on the same lines asli,[[

of Remark 2 [L2],p.330].

Theorem 4]. The proof of Theore#l is thus completed.

(@© 2015 NSP
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Upon settingA=1-2a,(0<a <1),B=-1m=
1,n =0,andA =0in Theoren#1, we state the following

Corollary 42For 6 > O, if

ALTAR

')
O ((1—5) R

then
f'(2) P 1
D(pzp_l>>a+(1—a) 2F1<1,1,3+1,§)—1:|.

Upon setting A = 1 — 20,0 < a < 1),
B=-1m=1n=0,andA = —1 in Theoren41, we
state the following

Corollary 43For 1e) > 0, if
z / ,
0 (;1752 %é‘f(s)ds] +5;Zgz>l) > a, then

(ol o] oo oot )

Theorem 44 et
0>0neRu<p+l,—-owo<A<p+lp#1and
f(z) € o7. If the function.Z p(f)(z) be defined by8)
satisfies

SNz (D) S5z
(1—6)(0" - ) +6(°’pzp,1 ) < HE2 (ze ),
o (38)
then
A N

CEREANOIC) f

O 71 >¢" (meN; ze A),
(39)

where

At (1-8)(1-B) LRy (L,1;2HHE 1 By (B£0),
Q=

- pasgs =0,

ProofFor f(z) € <7, consider the function given by

(97 75(N@)

o (40)

Y(2) = (ze D).

Then @(z) is of the form @4) and analytic inA. By
differentiating @0) and making use of the identity ),
we obtain

B o , 1+Az
N p+n+BZW(Z)< 1+ Bz

The remaining part of the proof of Theorefd is similar
to that of Theorend1 and we omit the details.

¥(2) (ze A).

Upon setting A = 1 — 2a,(0 < a < 1),
B=-1m=90=1,n=0andA =0 in Theorend4 we
state the following

Corollary 45If then

0 (;;;EL) > a,

O (ng,l [%ﬁgéﬂflf(é)df] ) >a+(1-a)[pR(LLp+B+1;3) -1].

UponsettindA=1—-2a,(0<a <1),B=-1,n=0
andm= 0 = A = 1in Theorem4 we state the following

O (M) > a then

Corollary 46If 21
i (# [z{%ﬁofzfﬁflf(f)dé}’] ) >a+(1-a) R (LLp+B+13)—1].

In particular, for3 = 0, Corollary46 gives

Corollary 471 0 (L2} > a, then

2F1 (1,1;p+ 1;%) — 1} .

O (;;;Eﬂ) >a+(1-a)

Concluding remark

Takingn = 0 in Theorem 3 .1, Theorem 3 .3, Theorem 4
.1 and Theorem 4 .4, we get corresponding theorems for

the operato; P (see [L5)).
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