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Abstract: This paper shows a link between the dispersion and the nonlinearity degree of QPP (quadratic permutation polynomial)
interleavers. An upper bound for the dispersion of QPP interleavers is derived. This upper bound is computed very simple, only
depending on the coefficient ofx2 of the polynomial and of the length of interleaver. The comparison with the real dispersion of QPP
interleavers given by Takeshita in [1] leads to insignificant difference. Searching of QPP interleavers based on a metric including upper
bound of dispersion andD parameter is equivalent with that based onΩ metric.
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1. Introduction

QPP interleavers are characterized by [1]: completely al-
gebraic structure, efficient implementation (high speed and
low memory requirements) and very good performances.
A QPP interleaver of lengthL is defined in [1], [2], [3],
[4] as:

π(x) = (q0+q1x+q2x
2) mod L, x = 0, 1, . . . , L−1 (1)

whereq1 andq2 are chosen so that the quadratic polyno-
mial in 1 is a permutation polynomial andq0 only deter-
mines a shift of the permutation elements.

The randomness analysis of these interleavers consid-
ering the nonlinearity degree was performed in [1] and
associates each interleaver defined by permutationπ(·),
with a geometrical representation called interleaver-code
by the transformationΦ : π(i) → F (i), whereF (i) ={
(i, π(i))|i ∈ I

}
, andI = {0, 1, . . . , L − 1} is the set

of indices corresponding to the bits to be interleaved. The
pair (i, π(i)) is called point and a set of points in the in-
terleaver/code, which are equivalent under the action of
a isometry group, is called orbit. The isometries of inter-
est for turbo code distances are translations of a point in
the interleaver-code, i.e. the transformation that circularly
shifts a point withk0 units to the right along dimensioni
and withk1 units up along dimension:

A(k0, k1) : (i, π(i)) → (i+k0, π(i)+k1), k0, k1 ∈ I (2)

In order for the translation to lead to a point in the interleaver-
code, we have

π(i + k0) = π(i) + k1 (3)

Takeshita definesthe degree of nonlinearityζ as the num-
ber of distinct orbits. Thereby, the degree of nonlinearity
is the number of distinct solutions of Equation (3). It is
shown in [1] that the degree of nonlinearityζ of a QPP
interleaver is given by

ζ = L/gcd(2q2, L) (4)

wheregcd means the greatest common divisor.
Usually, the dispersion is used as a measure of the in-

terleaver randomness. It is defined as the number of dis-
tinct displacement vectors(∆x,∆y) [5]:

Γ =
∣∣∣
{
(∆x,∆y) ∈ Z2|∆x = j− i,∆y = π(j)−π(i),

0 ≤ i < j ≤ L− 1
}∣∣∣ (5)

The normalized dispersion is the value ofΓ normalized to
its maximum value, i.e.:

γ =
2Γ

L(L− 1)
(6)
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The dispersion of an interleaver influences the multiplici-
ties of the low weight code words, therefore a high disper-
sion is desirable [5]. However, QPP interleavers have small
dispersion and still lead to good performances, if they are
properly chosen.

In this paper we show that a very close upper bound
of a QPP interleaver exists. As the nonlinearity degree, it
only depends on the coefficientq2 and on the interleaver
length (formulas (13)-(14)). The paper aims to perform a
theoretical analysis of QPP interleaver randomization, es-
tablishing a relationship between the two quantities known
and used for this: dispersion (more exactly, a very tight up-
per bound of it) and the degree of nonlinearity.

In Section II an upper bound for the dispersion of QPP
interleavers is established and it is compared with the real
dispersion for QPP interleavers from [1]. Section III con-
cludes the paper.

2. An Upper Bound for a QPP Interleaver
Dispersion

In order to establish an upper bound for the dispersion of a
QPP interleaver we have to compute the number of distinct
values∆y = π(x + ∆x) − π(x) for each value∆x =
1, . . . , L − 1, andx = 0, . . . , L − 1 − ∆x. For a QPP
interleaver, it follows:

∆y = (q1∆x + q2∆
2
x + 2q2∆xx) mod L (7)

For negative values,∆y is computed as

∆y = (q1∆x + q2∆
2
x + 2q2∆xx) mod L− L (8)

Since
∆y0 = (q1∆x + q2∆

2
x) mod L (9)

is constant for a fixed∆x, we should only find the num-
ber of distinct values in the set

{
(2q2∆xx) mod L|x =

0, . . . , L− 1−∆x

}
. We denote

∆y1 = (2q2∆x)%L (10)

where

p%L =
{

p mod L, whenp 6= kL,
L, whenp = kL.

(11)

So, the number of different values of (7) or (8) depends on
the number of solutions of the congruence

∆y1 · x = β mod L, with β constant (12)

The solutions of this congruence are presented in theorem
2.8 given in [4]. The equation hasd = gcd(∆y1 , L) solu-
tions, if d | β (i.e.d dividesβ).

If x0 is a solution of equation 12, thenx0 + L/d, x0 +
2L/d,. . . , x0 +(d−1)L/d are also solutions of this equa-
tion. Thus, the elements in the set

{
(2q2∆xx) mod L|x =

0, . . . , L− 1−∆x

}
repeat with periodL/d.

Since∆y is given by both (7) and (8), it means that an
upper bound for the number of distinct values of∆y for
constant∆x is equal tomin(2L/gcd(∆y1 , L), L − ∆x)
and an upper bound on the dispersion is:

UB(Γ ) =
L−1∑

∆x=1

min(2L/gcd(∆y1 , L), L−∆x) (13)

The upper bound on the normalized dispersion, UB(γ), is
calculated using Equation (6):

UB(γ) =
2

L(L− 1)
· UB(Γ ) (14)

For∆x = 1, we have

∆y1 = (2q2)%L =





2q2, when2q2 < L,
2q2 − L, when2q2 > L,

L, when2q2 = L.
(15)

Thus, in this case,

gcd(∆y1 , L) = gcd(2q2, L) (16)

It follows that the connection between the upper bound of
dispersion (13) and the nonlinearity degree in (4) is given
by

UB(Γ ) = min(2 · ζ, L− 1)+

+
L−1∑

∆x=2

min(2L/gcd(∆y1 , L), L−∆x) (17)

The upper bound on normalized dispersion for the QPP
interleaver given in Equation (14) for large lengths is cal-
culated much easier than the normalized dispersion value,
and is very close to it.

To highlight this aspect, Table 1 gives the real disper-
sion and its upper bound for interleavers with the largest
spread (Largest Spread QPP) [1].

Table 2 also gives the real dispersion and its upper
bound for QPP interleavers with the largest value of met-
ric Ω′ (Ω′-QPP) [1]. Only constant free polynomials were
kept. Among polynomials repeated in both tables, only
those in the second table were held.

From Tables 1 and 2 we notice the efficient approxi-
mation of the dispersion of a QPP interleaver with the pro-
posed upper bound.

From Table 2 we notice that the dispersion ofΩ′-QPP
interleavers is very small, but higher than that of the largest
spread interleavers. This happens because the metricΩ′
takes into account the nonlinearity degree, which is also a
measure of randomness.

However, the performance ofΩ′-QPP interleavers for
medium and large lengths is very good, as shown in [1]
by simulations. This fact shows that the randomness of the
interleaver is important.
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Table 1 QPP Interleavers with the largest spread.

L π(x) γ UB(γ)

128 15x + 32x2 0.04540 0.04651
160 19x + 40x2 0.03640 0.03726
400 17x + 100x2 0.01474 0.01496
512 31x + 64x2 0.02100 0.02137
640 39x + 80x2 0.01683 0.01712
752 31x + 188x2 0.00790 0.00797
1024 123x + 256x2 0.00583 0.00586
1504 183x + 376x2 0.00397 0.00399
1600 49x + 100x2 0.01319 0.01339
2048 63x + 128x2 0.01033 0.01047
2560 79x + 160x2 0.00828 0.00838
3200 79x + 800x2 0.00187 0.00187
4096 173x + 1024x2 0.00146 0.00147
8192 127x + 256x2 0.00515 0.00521

It should be noted that if we want to search QPP inter-
leavers with good error-rate performance, we should max-
imize the UB(Γ ) · ln(D) product, with the parameterD
under the same conditions as in [1]. Considering relations
(17), (4) and (10), which indicate that UB(Γ ) andζ de-
pend only on the lengthL and the coefficientq2, maximiz-
ing this product for a certain length will lead to the same
interleavers as those with the bestΩ = ζ · ln(D). There-
fore, relation (17) shows the equivalence from this point of
view of the upper bound of the dispersion and the degree
of nonlinearity.

3. Conclusion

This paper addresses the algebraic QPP interleavers from
the viewpoint of dispersion and nonlinearity degree.

An upper bound for the dispersion of QPP interleavers
has been computed and its relationship with the nonlin-
earity degree was established. This upper bound is very
close to the real dispersion for proposed interleavers and,
as the nonlinearity degree, only depends on theq2 coef-
ficient and on the interleaver length. In this way the link
between the dispersion and the nonlinearity degree for a
QPP interleaver is shown.

The search of QPP interleavers by maximizing the
UB(Γ )· ln(D) metric is equivalent to maximizing theΩ =
ζ · ln(D) metric from [1], showing the equivalence from
this point view of the upper bound of the dispersion and
the degree of nonlinearity.

Acknowledgement

The authors would like to thank the anonymous reviewers
for their helpful comments and suggestions.

Table 2 QPP Interleavers with the bestΩ′.

L π(x) γ UB(γ)

40 x + 10x2 0.12308 0.14615
80 9x + 20x2 0.07152 0.07405
128 7x + 16x2 0.07948 0.08415
160 9x + 20x2 0.06462 0.06761
256 15x + 32x2 0.04133 0.04253
320 19x + 40x2 0.03325 0.03409
400 7x + 40x2 0.04051 0.04158
408 25x + 102x2 0.01450 0.01467
512 15x + 32x2 0.04022 0.04151
640 19x + 40x2 0.03243 0.03328
752 23x + 94x2 0.01437 0.01458
800 17x + 80x2 0.02052 0.02090
1024 31x + 64x2 0.02050 0.02088
1280 39x + 80x2 0.01645 0.01672
1504 23x + 94x2 0.01401 0.01424
1600 17x + 80x2 0.01542 0.01568
2048 31x + 64x2 0.02035 0.02074
2560 39x + 80x2 0.01633 0.01662
3200 17x + 80x2 0.01412 0.01437
4096 31x + 64x2 0.02029 0.02071
5472 77x + 114x2 0.00896 0.00914
8192 31x + 64x2 0.02028 0.02070
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