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Abstract: In this paper, we examined the fine spectrum of upper triangular double-band matrices over the sequence spacesℓ1. Also,
we determined the point spectrum, the residual spectrum andthe continuous spectrum of the operatorA(r̃, s̃) on ℓ1. Further, we derived
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1 Introduction, notations and known results

In functional analysis, the spectrum of an operator
generalizes the notion of eigenvalues for matrices. The
spectrum of an operator over a Banach space is
partitioned into three parts, which are the point spectrum,
the continuous spectrum and the residual spectrum. The
calculation of these three parts of the spectrum of an
operator is called calculating the fine spectrum of the
operator.

Several authors studied the spectrum and fine
spectrum of linear operators defined by some triangle
matrices over some sequence spaces. We introduce
knowledge in the existing literature concerning the
spectrum and the fine spectrum. Cesàro operator of order
one on the sequence spaceℓp studied by Gonzàlez [16],
where 1< p < ∞. Also, weighted mean matrices of
operators onℓp have been investigated by Cartlidge [12].
The spectrum of the Cesàro operator of order one on the
sequence spacesbv0 andbv investigated by Okutoyi [21,
22]. The spectrum and fine spectrum of the Rhally
operators on the sequence spacesℓp, examined by
Yıldırım [24]. The fine spectrum of the difference
operator∆ over the sequence spacesc0 andc studied by
Altay and Başar [4]. The same authors also worked the
fine spectrum of the generalized difference operator
B(r,s) over c0 andc, in [5]. Recently, the fine spectra of
the difference operator∆ over the sequence spacesℓp and

bvp studied by Akhmedov and Başar [1,2], wherebvp is
the space consisting of the sequencesx = (xk) such that
x = (xk − xk−1) ∈ ℓp and introduced by Başar and Altay
[9] with 1 ≤ p ≤ ∞. In the recent paper, Furkan [13] has
studied fine spectrum ofB(r,s, t) over the sequence
spacesℓp and bvp with 1 < p < ∞, whereB(r,s, t) is a
lower triangular triple-band matrix. Later, Karakaya and
Altun have determined the fine spectra of upper triangular
double-band matrices over the sequence spacesc0 andc,
in [19]. Quite recently, Karaisa [6] have determined the
fine spectrum of the generalized difference operator
A(r̃, s̃), defined as a upper triangular double-band matrix
with the convergent sequences̃r = (rk) and s̃ = (sk)
having certain properties, over the sequence spaceℓp,
where 1< p < ∞. Finally, Karaisa and Başar [17,18]
have determined the fine spectrum of the upper triangular
triple-band matrixA(r,s, t) over the sequence spaceℓp,
where 0< p < ∞. Further informations on the spectrum
and fine spectra of different operators over some sequence
spaces can be found in the list of references [3,7,10,11,
14,23]

In this paper, we study the spectrum and fine spectrum
of the generalized difference operatorA(r̃, s̃) defined by a
double sequential band matrix acting on the sequence
spaceℓ1 with respect to the Goldberg’s classification.
Additionally, we give the approximate point spectrum,
defect spectrum.
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By ω , we denote the space of all complex valued
sequences. Any vector subspace ofω is called a sequence
space. We writeℓ∞, c0, c and bv for the spaces of all
bounded, convergent, null and bounded variation
sequences, respectively, which are the Banach spaces
with the sup-norm ‖x‖∞ = sup

k∈N
|xk| and

‖x‖bv =
∞
∑

k=0
|xk − xk+1|, respectively, where

N= {0,1,2, . . .}. Also byℓ1 andℓp, we denote the spaces
of all absolutely summable andp-absolutely summable
sequences, which are the Banach spaces with the norm

‖x‖p =

(
∞
∑

k=0
|xk|

p

)1/p

, respectively, where 1≤ p < ∞.

Let X andY is a Banach space andT : X → Y be a
bounded linear operator. ByR(T ), we denote range ofT ,
i.e.,

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

By B(X), we also denote the set of all bounded linear
operators onX into itself. If T ∈ B(X) then the adjointT ∗

of T is a bounded linear operator on the dualX∗ of X
defined by(T ∗ f ) (x) = f (Tx) for all f ∈ X∗ andx ∈ X .

Let X 6= {θ} be a complex normed space and
T : D(T ) → X be a linear operator with domain
D(T ) ⊆ X . With T we associate the operator
Tα = T −αI, whereα is a complex number andI is the
identity operator onD(T ). If Tα has an inverse that is
linear, we denote it byT−1

α , that is

T−1
α = (T −αI)−1

and call it the resolvent operator ofT .
Many properties ofTα and T−1

α depend onα, and
spectral theory is concerned with those properties. For
instance, we shall be interested in the set of allα in the
complex plane such thatT−1

α exists. The boundedness of
T−1

α is another property that will be essential. We shall
also ask for whatα the domain ofT−1

α is dense inX , to
name just a few aspects For our investigation ofT , Tα and
T−1

α , we need some basic concepts in spectral theory
which are given as follows (see [20, pp. 370-371]):

Let X 6= {θ} be a complex normed space and
T : D(T ) → X be a linear operator with domain
D(T ) ⊆ X . A regular valueα of T is a complex number
such that

(R1)T−1
α exists,

(R2)T−1
α is bounded,

(R3)T−1
α is defined on a set which is dense inX .

The resolvent set ρ(T ) of T is the set of all regular values
α of T . Its complementC\ρ(T ) in the complex planeC is
called the spectrum ofT . Furthermore, the spectrumσ(T )
is partitioned into three disjoint sets as follows.The point
spectrum σp(T ) is the set such thatT−1

α does not exist.
α ∈ σp(T ) is called an eigenvalue of T.The continuous
spectrum σc(T ) is the set such thatT−1

α exists and satisfies
(R3) but not(R2). The residual spectrum σr(T ) is the set
such thatT−1

α exists but not satisfy(R3).

Table 1: Subdivisions of spectrum of a linear operator.
1 2 3

T−1
α exists T−1

α exists T−1
α

and is bounded and is unbounded does not exist

α ∈ σp(T,X)
A R(αI −T ) = X α ∈ ρ(T,X) – α ∈ σap(T,X)

α ∈ σc(T,X) α ∈ σp(T,X)

B R(αI −T ) = X α ∈ ρ(T,X) α ∈ σap(T,X) α ∈ σap(T,X)
α ∈ σδ (T,X) α ∈ σδ (T,X)

α ∈ σr(T,X) α ∈ σr(T,X) α ∈ σp(T,X)

C R(αI −T ) 6= X α ∈ σδ (T,X) α ∈ σap(T,X) α ∈ σap(T,X)
α ∈ σδ (T,X) α ∈ σδ (T,X)

α ∈ σco(T,X) α ∈ σco(T,X) α ∈ σco(T,X)

In this section, following Appell et al. [8], we define
the three more subdivisions of the spectrum called as the
approximate point spectrum, defect spectrum and
compression spectrum.

Given a bounded linear operatorT in a Banach space
X , we call a sequence(xk) in X as aWeyl sequence for T
if ‖xk‖= 1 and‖T xk‖→ 0, ask → ∞.

In what follows, we call the set

σap(T,X)

:= {α ∈ C : there exists a Weyl sequence forαI −T} (1)

the approximate point spectrum of T . Moreover, the
subspectrum

σδ (T,X) := {α ∈ C : αI −T is not surjective} (2)

is calleddefect spectrum of T .
The two subspectra given by (1) and (2) form a (not

necessarily disjoint) subdivisions

σ(T,X) = σap(T,X)∪σδ (T,X)

of the spectrum. There is another subspectrum,

σco(T,X) = {α ∈ C : R(αI −T) 6= X}

which is often called compression spectrum in the
literature.

By the definitions given above, we can illustrate the
subdivisions spectrum in the following table:

From Goldberg [15] if T ∈ B(X), X a Banach space,
then there are three possibilities forR(T ) the range ofT :

(A) R(T ) = X .
(B) R(T ) 6= R(T ) = X .
(C) R(T ) 6= X .

and and three possibilities forT−1

(1) T−1 exists and is continuous.
(2) T−1 exists but is discontinuous.
(3) T−1 does not exist.

If these possibilities are combined in all possible
ways, nine different states are created. These are labelled
by: A1, A2, A3, B1, B2, B3, C1, C2, C3. If α is a complex
number such thatTα ∈ A1 or Tα ∈ B1 then α is in the
resolvent setρ(X ,T ) of T . The further classification gives
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rise to the fine spectrum ofT . If an operator is in stateB2

for example, thenR(T ) 6= R(T ) = X andT−1 exists but is
discontinuous and we writeα ∈ B2σ(X ,T ).

Let µ andγ be two sequence spaces andA = (ank) be
an infinite matrix of real or complex numbersank, where
n,k ∈ N = {0,1,2, . . .}. Then, we say that A defines a
matrix mapping fromµ into γ and we denote it by writing
A : µ → γ if for every sequencex = (xk) ∈ µ the sequence
Ax = {(Ax)n}, theA−transform ofx is in γ; where

(Ax)n =∑
k

ankxk for each n ∈N. (3)

By (µ : γ), we denote the class of all matrices A such that
A : µ → γ. Thus,A ∈ (µ : γ) if and only if the series on
the right side of (3) converges for eachn ∈ N and every
x ∈ µ , and we haveAx = {(Ax)n}n∈N ∈ γ for all x ∈ µ .
Proposition 1.1. [8, Proposition 1.3, p. 28] Spectra and

subspectra of an operatorT ∈ B(X) and its adjointT ∗ ∈
B(X∗) are related by the following relations:

(a)σ(T ∗,X∗) = σ(T,X).
(b)σc(T ∗,X∗)⊆ σap(T,X).
(c)σap(T ∗,X∗) = σδ (T,X).
(d)σδ (T

∗,X∗) = σap(T,X).
(e)σp(T ∗,X∗) = σco(T,X).
(f)σco(T ∗,X∗)⊇ σp(T,X).
(g)σ(T,X) = σap(T,X) ∪ σp(T ∗,X∗) =

σp(T,X)∪σap(T ∗,X∗).

The relations (c)–(f) show that the approximate point
spectrum is in a certain sense dual to defect spectrum, and
the point spectrum dual to the compression spectrum.

The equality (g) implies, in particular, that
σ(T,X) = σap(T,X) if X is a Hilbert space andT is
normal. Roughly speaking, this shows that normal (in
particular, self-adjoint) operators on Hilbert spaces are
most similar to matrices in finite dimensional spaces (see
[8]).

Lemma 1.1.[15, p. 60] The adjoint operatorT ∗ of T is
onto if and only ifT is a bounded operator.

Let r̃ = (rk) and s̃ = (sk) be sequences whose entries
either constants or distinct none-zero real numbers
satisfying the following conditions:

lim
k→∞

rk = r,

lim
k→∞

sk = s 6= 0,

|rk − r| 6= |s|.

Then, we define the sequential generalized difference
matrixA(r̃, s̃) by

A(r̃, s̃) =




r0 s0 0 0 . . .
0 r1 s1 0 . . .
0 0 r2 s2 . . .
0 0 0 r3 . . .
...

...
...

...
. . .



.

Therefore, we introduce the operatorA(r̃, s̃) from ℓ1 to
itself by

A(r̃, s̃)x = (rkxk + skxk+1)
∞
k=0 where x = (xk) ∈ ℓ1.

2 The fine spectrum of the operatorA(r̃, s̃)
over the sequence spaceℓ1

Theorem 2.1.The operatorA(r̃, s̃) : ℓ1 → ℓ1 is a bounded
linear operator and

‖A(r̃, s̃‖ℓ1 = sup
k∈N

|rk|+ sup
k∈N

|sk|.

Proof. The proof is simple. So we omit detail.
Throughout the paper, byC andS D we denote the set

of constant sequences and the set of sequences of distinct
none-zero real numbers, respectively.
Theorem 2.2.
(i) If r̃, s̃ ∈ C ,
σp(A(r̃, s̃), ℓ1) = {α ∈ C : |r−α|< |s|} .
(ii) If r̃, s̃ ∈ S D ,{

α ∈ C : supn∈N

∣∣α−rn
sn

∣∣< 1
}
⊆ σp(A(r̃, s̃), ℓ1).

(iii) If r̃, s̃ ∈ S D ,

σp(A(r̃, s̃), ℓ1)⊆
{

α ∈C : infn∈N

∣∣α−rn
sn

∣∣< 1
}
.

iv) If r̃, s̃ ∈ S D ,
{rk : k ∈ N} ⊆ σp(A(r̃, s̃), ℓ1).
(v)If r̃, s̃ ∈ S D ,
{α ∈ C : |r−α|< |s|} ⊆ σp(A(r̃, s̃), ℓ1).

Proof. Let A(r̃, s̃)x = αx for θ 6= x ∈ ℓ1. Then, by solving
linear equation

r0x0+ s0x1 = αx0
r1x1+ s1x2 = αx1
r2x2+ s2x3 = αx2

...
rk−1xk−1+ sk−1xk = αxk

...

xk =
(α−rk−1

sk−1

)
xk−1 for all k ≥ 1 and

xk =

[
(α − rk−1)(α − rk−2) · · · (α − r1)(α − r0)

sk−1sk−2 . . . s1s0

]
x0.

(i) Assume that̃r, s̃ ∈ C . Let rk = r andsk = s for all
k ∈ N. We observe thatxk =

(α−r
s

)k
x0. This shows that

x ∈ ℓ1 if and only if |α − r|< |s|, as asserted.
(ii) Let r̃, s̃ ∈ S D and forα ∈ C, supn∈N

∣∣α−rn
sn

∣∣< 1. So
we have

∞

∑
k=0

|xk|

= |x0|+
∞

∑
k=1

∣∣∣∣
(rk−1−α)(rk−2−α) · · · (r0−α)

sk−1sk−2 . . .s0

∣∣∣∣|x0|

≤ |x0|+
∞

∑
k=1

[
sup
n∈N

∣∣∣∣
α − rn

sn

∣∣∣∣
]k

|x0|.
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Hence,x = (xk) ∈ ℓ1 .
(iii) Let r̃, s̃ ∈ S D andx = (xk) ∈ ℓ1. Thus,

∞

∑
k=0

|xk|

= |x0|+
∞

∑
k=1

∣∣∣∣
(rk−1−α)(rk−2−α) · · ·(r0−α)

sk−1sk−2 . . .s0

∣∣∣∣|x0|

≥ |x0|+
∞

∑
k=1

[
inf
n∈N

∣∣∣∣
α − rn

sn

∣∣∣∣
]k

|x0|. (4)

If we use inequality of (4) and we considerx = (xk) ∈ ℓ1,
infn∈N

∣∣α−rn
sn

∣∣< 1.
(iv) Let r̃, s̃ ∈ S D . It is clear that, for allk ∈ N, the

vectorx = (x0,x1, . . . ,xk,0,0, . . .) is an eigenvector of the
operatorA(r̃, s̃) corresponding to the eigenvalueα = rk,

wherex0 6= 0 andxn =

(
α−rn
sn−1

)
xn−1, for 1≤ n ≤ k. Thus

{rk : k ∈ N} ⊆ σp(A(r̃, s̃), ℓ1).
(v) Let r̃, s̃∈S D and|α−r|< |s|. Since limk→∞

∣∣ xk
xk−1

∣∣=
limk→∞

∣∣ rk−1−α
sk−1

∣∣ =
∣∣ r−α

s

∣∣ < 1, x ∈ ℓ1. This completes the
proof.

Theorem 2.3.σp(A(r̃, s̃)∗, ℓ∗1) =

{
/0 , s̃, r̃ ∈ C ,
B , s̃, r̃ ∈ S D

where,

B = {rk : k ∈ N, |r− rk|> |s|}.
Proof. We prove the theorem by dividing into two parts.

Part 1. Assume that̃s, r̃ ∈ C . ConsiderA(r̃, s̃)∗ f = α f
for f 6= θ = (0,0,0, . . .) in ℓ∗1 = ℓ∞. Then, by solving the
system of linear equations

r0 f0 = α f0
s0 f0+ r1 f1 = α f1
s1 f1+ r2 f2 = α f2

...
sk−1 fk−1+ rk fk = α fk

...

we find that f0 = 0 if α 6= r = rk and f1 = f2 = · · · = 0
if f0 = 0 which contradictsf 6= θ . If fn0 is the first non
zero entry of the sequencef = ( fn) andα = r, then we
get s fn0 + r fn0+1 = α fn0+1 which implies fn0 = 0 which
contradicts the assumptionfn0 6= 0. Hence, the equation
A(r̃, s̃)∗ f = α f has no solutionf 6= θ .

Part 2. Assume that̃r, s̃ ∈ S D . Then, by solving the
equationA(r̃, s̃)∗ f = α f for f 6= θ = (0,0,0, . . .) in ℓ∞ we
obtain(r0 −α) f0 = 0 and(rk+1 −α) fk+1 + sk fk = 0 for
all k ∈ N. Hence, for allα /∈ {rk : k ∈ N}, we havefk = 0
for all k ∈ N, which contradicts our assumption. So,α /∈
σp(A(r̃, s̃)∗, ℓ∞). This shows thatσp(A(r̃, s̃)∗, ℓ∞) ⊆ {rk :
k ∈N}\{r}. Now, we prove that

α ∈ σp(A(r̃, s̃)
∗, ℓ∞) if and only if α ∈ B.

Let α ∈ σp(A(r̃, s̃)∗, ℓ∞). Then, by solving the equation
A(r̃, s̃)∗ f = α f for f 6= θ = (0,0,0, . . .) in ℓ1 with α = r0

fk =
s0s1s2 . . . sk−1

(r0− rk)(r0− rk−1)(r0− rk−2) · · · (r0− r1)
f0

for all k ≥ 1. Sinceℓ1 ⊆ ℓ∞, we can applying ratio test and
we have

lim
k→∞

∣∣∣∣
fk

fk−1

∣∣∣∣= lim
k→∞

∣∣∣∣
sk−1

rk − r0

∣∣∣∣=
∣∣∣∣

s
r− r0

∣∣∣∣≤ 1.

But our assumption
∣∣∣ s

r−r0

∣∣∣ 6= 1. Hence,

α = r0 ∈ {rk : k ∈N, |rk − r|> |s|}= B.
Similarly we can prove thatα = rk ∈ {rk : k ∈N, |rk − r|>
|s|} = B, for α = rk 6= r for all k ∈ N1. Conversely, let
α ∈ B. Then, existsk ∈ N, α = rk 6= r and

lim
n→∞

∣∣∣∣
fn

fn−1

∣∣∣∣ = lim
n→∞

∣∣∣∣
sn

rn+1− rk

∣∣∣∣=
∣∣∣∣

s
r− rk

∣∣∣∣< 1.

That is f ∈ ℓ1. Sinceℓ1 ⊆ ℓ∞, f ∈ ℓ∞. So we have
B ⊆ σp(A(r̃, s̃)∗, ℓ∞). This completes the proof.

Theorem 2.4
σr(A(r̃, s̃), ℓ1) = σp(A(r̃, s̃)∗, ℓ∗1)\σp(A(r̃, s̃), ℓ1).

Proof. The proof is obvious so is omitted.

Theorem 2.5. Let (rk),(sk) in S D and C .
σr(A(r̃, s̃), ℓ1) = /0.

Proof.
By Theorem 2.2-2.4, we getσr(A(r̃, s̃), ℓ1) = /0.

Theorem 2.6. σ(A(r̃, s̃), ℓ1) = A ∪ B, where
A = {α ∈ C : |r−α| ≤ |s|}.

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that̃r, s̃ ∈ C andy = (yk) ∈ ℓ∞. Then, by
solving the equationA((r̃, s̃)−αI)∗x = y for x = (xk) in
terms ofy, we obtain

xk =
sk−1y0

(r−α)k + · · ·−
syk−1

(r−α)2 +
yk

r−α
.

We get,

xk =
1

r−α

k

∑
i=0

(
s

r−α

)k−i

yi

for all k ∈ N. Hence,

|xk| ≤
1

|r−α|

∞

∑
i=0

∣∣∣∣
s

r−α

∣∣∣∣
i

‖y‖∞.

For |s|< |r−α|, we can observe that

‖x‖∞ ≤
1

|r−α|− |s|
‖y‖∞.

Thus for|s|< |r−α|, A(r̃, s̃)∗−αI is onto and by Lemma
1.1,A(r̃, s̃)−αI bounded inverse. This means that

σc(A(r̃, s̃), ℓ1)⊆ {α ∈ C : |r−α| ≤ |s|}.

Combining this with Theorem 2.2 and Theorem 2.5, we
get

{α ∈ C : |r−α|< |s|} ⊆ σ(A(r̃, s̃), ℓ1).

Since the spectrum of any bounded operator is closed, we
have

σ(A(r̃, s̃), ℓ1) = {α ∈ C : |r−α| ≤ |s|}.
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Part 2. Assume that̃r, s̃ ∈ S D andy = (yk) ∈ ℓ∞. Then,
by solving the equationA((r̃, s̃)−αI)∗x = y terms ofy, we
obtain

xk =
(−1)ks0s1s2 · · · sk−1y0

(r0−α)(r1−α)(r2−α) · · · (rk −α)
+ · · ·

−
sk−1yk−1

(rk −α)(rk−1−α)
+

yk

rk −α
.

Then,|xk| ≤ Sk‖y‖∞, where

Sk =

∣∣∣∣
1

rk −α

∣∣∣∣+
∣∣∣∣

sk−1

(rk−1−α)(rk −α)

∣∣∣∣

+

∣∣∣∣
sk−1sk−2

(rk−2−α)(rk−1−α)(rk −α)

∣∣∣∣

+ · · ·+

∣∣∣∣
s0s1 . . . sk−1

(r0−α)(r1−α) · · ·(rk −α)

∣∣∣∣ .

Now, we prove that (Sk) ∈ ℓ∞. Since
limk→∞ |sk/(rk −α)| = |s/(r−α)| = p < 1, then there
existsk0 ∈ N such that|sk/(rk −α)|< p0 with p0 < 1, for
all k ≥ k0+1,

Sk =
1

|rk −α|

[
1+

∣∣∣∣
sk−1

rk−1−α

∣∣∣∣+
∣∣∣∣

sk−1sk−2

(rk−1−α)(rk−2−α)

∣∣∣∣
+ · · ·+∣∣∣∣

sk−1sk−2 . . .sk0+1sk0 . . .s0

(rk−1−α)(rk−2−α) · · · (rk0+1−α)(rk0 −α) · · · (r0−α)

∣∣∣∣
]

≤
1

|rk −α|

[
1+ p0+ p2

0+ · · ·+ pk−k0
0 + pk−k0

0
|sk0−1|

|rk0−1−α|
+

+ · · ·+ pk−k0
0

∣∣∣∣
sk0−1sk0−2 . . .s0

(rk0−1−α)(rk0−2−α) · · · (r0−α)

∣∣∣∣
]
.

Therefore;

Sk ≤
1

|rk −α|

(
1+ p0+ p2

0+ · · · pk−k0
0 + pk−k0

0 Mk0

)
,

where

Mk0 = 1+

∣∣∣∣
sk0−1

rk0−1−α

∣∣∣∣+
∣∣∣∣

sk0−1sk0−2

(rk0−1−α)(rk0−2−α)

∣∣∣∣

+ · · ·+

∣∣∣∣
sk0−1sk0−2 . . . s0

(rk0−1−α)(rk0−2−α) · · · (r0−α)

∣∣∣∣ .

Then,Mk0 ≥ 1 and so

Sk ≤
Mk0

|rk −α|

(
1+ p0+ p2

0+ · · ·+ pk−k0
0

)
.

But there existsk1 ∈ N and a real numberp1 such that
1

|rk−α | < p1 for all k ≥ k1. Then,Sk ≤ (Mp1k0)/(1− p0) for
all k>max{k0,k1}. Hence, supk∈N Sk <∞. This shows that
‖x‖∞ ≤ ‖(Sk)‖∞‖y‖∞ < ∞, since(yk) ∈ ℓ∞. Thus for|s|<
|r−α|, A(r̃, s̃)∗−αI is onto and by Lemma 1.1A(r̃, s̃)−
αI bounded inverse. This means that

σc(A(r̃, s̃), ℓ1)⊆ {α ∈ C : |r−α| ≤ |s|}.

Combining this with Theorem 2.2 and Theorem 2.5, we
get

B∪{α ∈ C : |r−α|< |s|} ⊆ σ(A(r̃, s̃), ℓ1).

Since the spectrum of any bounded operator is closed, we
have

σ(A(r̃, s̃), ℓ1) = A ∪B.

This completes the proof.

Theorem 2.7.Let (rk),(sk) ∈ S D ,
σp(A(r̃, s̃), ℓ1) = {α ∈C : |r−α|< |s|}∪B∪H . Where;

H =

{
α ∈ C : |α − r|= |s|,

∞

∑
k=1

k

∏
i=0

∣∣α − ri−1

si−1

∣∣< ∞

}
.

Proof. The proof is obvious.

Theorem 2.8.
σc(A(r̃, s̃), ℓ1)

=

{
{α ∈C : |r−α|= |s|} , r̃, s̃ ∈ C ,

{α ∈C : |r−α|= |s|}\H , r̃, s̃ ∈ S D .

Proof. The proof follows of immediately from Theorem
2.2, Theorem 2.5, Theorem 2.6 and Theorem 2.7 because
the partsσc(A(r̃, s̃), ℓ1), σr(A(r̃, s̃), ℓ1) andσp(A(r̃, s̃), ℓ1)
are pairwise disjoint sets and union of these sets is
σ(A(r̃, s̃), ℓ1).

Theorem 2.9.Let (rk),(sk) ∈ S D andC . If |α − r|< |s|,
α ∈ σ(A(r̃, s̃), ℓ1)A3.

Proof. From Theorem 2.2,α ∈ σp(A(r̃, s̃), ℓ1). Thus,
(A(r̃, s̃)−αI)−1 does not exist. It is sufficient to show that
the operator (A(r̃, s̃) − αI) is onto, i.e., for given
y = (yk) ∈ ℓ1, we have to findx = (xk) ∈ ℓ1 such that
(A(r̃, s̃) − αI)x = y. Solving the linear equation
(A(r̃, s̃)−αI)x = y,

[A(r̃, s̃)−αI]x =




r0−α s0 0 0 . . .
0 r1−α s1 0 . . .
0 0 r2−α s2 . . .
0 0 0 r3−α . . .
...

...
...

...
. . .







x0
x1
x2
...




=




y0
y1
y2
...




let x0 = 0.

x1 =
y0

s0
,

x2 =
(α − r1)y0

s1s0
+

y1

s1
,

...

xk =
(α − r1)(α − r2) · · · (α − rk−1)y0

s0s1 · · · sk−1
+ · · ·

+
(rk−2−α)yk−2

sk−1sk−2
+

yk−1

sk−1
.

Then,∑k |xk| ≤ supk(Tk)∑k |yk|, where

Tk =

∣∣∣∣
1
sk

∣∣∣∣+
∣∣∣∣
(rk+1−α)

sksk+1

∣∣∣∣+
∣∣∣∣
(rk+1−α)(rk+2−α)

sksk+1sk+2

∣∣∣∣+ · · ·
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for all k ∈N. Since|(rk+1−α)/sk+1| −→ |s/(r−α)|< 1,
ask −→ ∞, then there existsk0 ∈ N and a real numberz0
such that|sk+1/(rk+1−α)| < z0 for all k ≥ k0. Then, for
all k ≥ k0+1,

T k ≤
1
|sk|

(
1+ z0+ z2

0+ · · ·
)
.

But, there existsk1 ∈ N and a real numberz1 such that
|1/sk| < z1 for all k ≥ k1. Then,T k ≤ z1/(1− z0), for all
k > max{k0,k1}. Thus, supk∈N T k < ∞. Therefore,

∑
k

|xk| ≤ sup
k∈N

(Tk)∑
k

|yk|< ∞.

This shows thatx = (xk) ∈ ℓ1. ThusA(r̃, s̃)−αI) is
onto. So we haveα ∈ σ(A(r̃, s̃), ℓ1)A3.
Theorem 2.10.Let (rk),(sk)∈C with rk = r, sk = s for all
k ∈N. Then, the following statements hold:

(i)σap(A(r̃, s̃), ℓ1) = σ(A(r̃, s̃), ℓ1),
(ii)σδ (A(r̃, s̃), ℓ1) = {α ∈ C : |r−α|= |s|},
(iii) σco(A(r̃, s̃), ℓ1) = /0.

Proof. (i) From Table 1, we obtain

σap(A(r̃, s̃), ℓ1) = σ (A(r̃, s̃), ℓ1)\σ (A(r̃, s̃), ℓ1)C1.

We have by Theorem 2.5

σ (A(r̃, s̃), ℓ1)C1 = σ (A(r̃, s̃), ℓ1)C2 = /0.

Hence;

σap(A(r̃, s̃), ℓ1) = A .

(ii) Since the following equality

σδ (A(r̃, s̃), ℓ1) = σ(A(r̃, s̃), ℓ1)\σ (A(r̃, s̃), ℓ1)A3

holds from Table 1, we derive by Theorem 2.6 and
Theorem2.9 thatσδ (A(r̃, s̃), ℓ1) = {α ∈C : |r−α|= |s|}.

(iii) From Table 1, we have

σco(A(r̃, s̃), ℓ1)

= σ (A(r̃, s̃), ℓ1)C1∪σ (A(r̃, s̃), ℓ1)C2∪σ (A(r̃, s̃), ℓ1)C3

by Theorem2.3 it is immediate thatσco(A(r̃, s̃), ℓ1) = /0.
Theorem 2.11.Let r̃, s̃ ∈ S D . Then

σap(A(r̃, s̃), ℓ1) = A ∪B,

σδ (A(r̃, s̃), ℓ1) = {α ∈C : |r−α|= |s|}∪B,

σco(A(r̃, s̃), ℓ1) = B.

Proof. We have by Theorem 2.3 and Part (e) of Proposition
1.1 that

σp(A(r̃, s̃)
∗, ℓ∗1) = σco(A(r̃, s̃), ℓ1) = B.

By Theorem 2.5 and Theorem 2.3, we must have

σ (A(r̃, s̃), ℓ1)C1 = σ (A(r̃, s̃), ℓp)C2 = /0.

Hence,σ (A(r̃, s̃), ℓ1)C3 = {rk}. Therefore, we derive from
Table 1, Theorem 2.6 and Theorem 2.9 that

σap(A(r̃, s̃), ℓ1) = σ (A(r̃, s̃), ℓ1)\σ (A(r̃, s̃), ℓ1)C1

= σ (A(r̃, s̃), ℓ1) ,

σδ (A(r̃, s̃), ℓ1) = σ (A(r̃, s̃), ℓ1)\σ (A(r̃, s̃), ℓ1)A3

= {α ∈C : |r−α|= |s|}∪B.
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[2] A.M. Akhmedov, F. Başar, On the fine spectra of the
difference operator∆ over the sequence spacebvp, (1≤ p<
∞), Acta Math. Sin. Eng. Ser. 23(10)(2007), 1757–1768.

[3] A.M. Akhmedov, S.R. El-Shabrawy, On the fine spectrum of
the operator∆a,b over the sequence spacec, Comput. Math.
Appl. 61(10)(2011), 2994–3002.
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[14] H. Furkan, H. Bilgiç, K. Kayaduman, On the fine spectrum
of the generalized difference operatorB(r,s) over the
sequence spacesℓ1 and bv, Hokkaido Math. J. 35(2006),
897–908.

[15] S. Goldberg, Unbounded Linear Operators, Dover
Publications, Inc. New York, 1985.
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