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Abstract: In this paper, we examined the fine spectrum of upper tri@mglduble-band matrices over the sequence spacédso,
we determined the point spectrum, the residual spectruntrencbntinuous spectrum of the operaddr,s) on ¢1. Further, we derived
the approximate point spectrum, defect spectrum and casipre spectrum of the matrix operaf(r, S) over the spacé;.
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1 Introduction, notations and known results bvp studied by Akhmedov and Basat, B], wherebv, is
the space consisting of the sequenxkes (x¢) such that

In functional analysis, the spectrum of an operatorX= (X% —~Xk-1) € £p and introduced by Basar and Altay

generalizes the notion of eigenvalues for matrices. Thé?] (‘;\."tg 1](.5 p< °°'t|n the %ecen;[ paper, Tﬁrkam:ﬂ has
spectrum of an operator over a Banach space istudied fine spectrum oB(r,st) over the sequence

artitioned into three parts, which are the point s ectrum SPacesp and bvp .With 1< p<eo, whereB(r,st) is a
b b b P r](ijwer triangular triple-band matrix. Later, Karakaya and

the continuous spectrum and the residual spectrum. Th ! ) :
[tun have determined the fine spectra of upper triangular

calculation of these three parts of the spectrum of a Houble-band matri th d
operator is called calculating the fine spectrum of the, ouble-band matrices over Ihe sequence spacandc,

operator in [19. Quite recently, Karaisag] have determined the
: : . fine spectrum of the generalized difference operator
Several authors studied the spectrum and fmeA('F,§), defined as a upper triangular double-band matrix

spectrum of linear operators defined by some tnangle\gith the convergent sequencés— (r) and 3 = (s.)

matrices over some sequence spaces. we .'ntmduchaving certain properties, over the sequence sgace
knowledge in the existing literature concerning the vlyhere 1< p < . Finally, Karaisa and Basarl],1§]

zﬁicg# %gnsitzeeggg :pgﬂ(;:g:t?di(e:c? %ar%%?qigg;g c’rd%ave determined the fine spectrum of the upper triangular
q P y ' triple-band matrixA(r,s,t) over the sequence spaég,

where 1< p < eo. Also, weighted mean matrices of where 0< p < o. Further informations on the spectrum

_Io_ﬁ(;rgtoer;rcarfrﬁ, 2? }[/he ebgggg;rn 3/ %Stle%gtti? (t))fy o(r:oell ;“gﬂn th gnd fine spectra of different operators over some sequence
P P Spaces can be found in the list of referenc&d,[10,11,

sequence spacésy andbv investigated by Okutoyid1, 14,23
22]. The spectrum and fine spectrum of the Rhally ="
operators on the sequence spadgs examined by
Yildinm [24]. The fine spectrum of the difference In this paper, we study the spectrum and fine spectrum
operatorA over the sequence spaagsandc studied by  of the generalized difference operafiir,s) defined by a
Altay and Basar4]. The same authors also worked the double sequential band matrix acting on the sequence
fine spectrum of the generalized difference operatorspace/; with respect to the Goldberg’s classification.
B(r,s) overcy andc, in [5]. Recently, the fine spectra of Additionally, we give the approximate point spectrum,
the difference operatak over the sequence spadgsand  defect spectrum.
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By w, we denote the space of all complex valued

sequences. Any vector subspacewis called a sequence L 2 3
. Ty~ exists Ty~ exists Ty
space. We write/, Co, ¢ and bv for the spaces of .a”_ and is bounded and is unbounded does not exist
bounded, convergent, null and bounded variation acop(T.X)
sequences, respectively, which are the Banach spaces? | Ral-T)=X | a¢€p(T.X) - a € 0ap(T. X)
with  the  sup-norm |X||l = supgx| and
keN o a € oc(T,X) a € 0p(T,X)

0 . B | Ral-T)=X | aep(T,X) a € oap(T,X) a € oap(T,X)
Xy =Y X% — X«+1|,  respectively,  where aeas(T.X) | aeos(T,X)

k=0 a e o (T,X) ac o (T,X) a € ap(T,X)
N={0,1,2,...}. Also by/; and/p, we denote the spaces | c |Ral-T)#X | acos(T.X) | aconTX) | acow(T.X)
of all absolutely summable anp-absolutely summable acos(T.X) | aeos(T.X)
sequences, which are the Banach spaces with the norm 9 €00(TX) | 0€0n(TX) | &€0n(TX)

1/p

[IX|lp = ( S |xk|p> , respectively, where £ p < .
k=0

Let X andY is a Banach space arid: X — Y be a
bounded linear operator. BY(T), we denote range of,
ie.,

RT)={yeY:y=Tx, xe X}.

By B(X), we also denote the set of all bounded linear
operators oiX into itself. If T € B(X) then the adjoinT*
of T is a bounded linear operator on the dial of X
defined by(T*f) (x) = f (Tx) for all f € X* andx € X.

Let X # {6} be a complex normed space and
T :D(T) — X be a linear operator with domain
D(T) € X. With T we associate the operator
Tq =T —al, wherea is a complex number anidis the
identity operator orD(T). If T, has an inverse that is
linear, we denote it bff; %, that is

Tyt =(T—al)™t

and call it the resolvent operator ©f

Many properties off, and T, ' depend ona, and
spectral theory is concerned with those properties. Fo
instance, we shall be interested in the set ofcaih the
complex plane such that, * exists. The boundedness of
T, 1 is another property that will be essential. We shall
also ask for whatr the domain ofT,; ! is dense inX, to
name just a few aspects For our investigatioil pT, and
T, L, we need some basic concepts in spectral theor
which are given as follows (se2@, pp. 370-371]):

Let X # {6} be a complex normed space and
T :D(T) — X be a linear operator with domain
D(T) C X. A regular valuea of T is a complex number
such that

(RL)T, ! exists,
(R2)T, L is bounded,
(R3)T, ! is defined on a set which is denseXn

Theresolvent set p(T) of T is the set of all regular values
a of T. Its complement\ p(T) in the complex plan€ is
called the spectrum d&f . Furthermore, the spectruof(T)

is partitioned into three disjoint sets as follow$e point
spectrum oy (T) is the set such thal; ! does not exist.
a € 0p(T) is called an eigenvalue of The continuous
spectrum ag(T) is the set such thai, ! exists and satisfies
(R3) but not(R2). The residual spectrum oy (T) is the set
such thafl, ! exists but not satisfyR3).

Table 1: Subdivisions of spectrum of a linear operator.

In this section, following Appell et al.g], we define
the three more subdivisions of the spectrum called as the
approximate point spectrum, defect spectrum and
COMpression spectrum.

Given a bounded linear operatérin a Banach space
X, we call a sequence) in X as aWeyl sequence for T
if x| =1 and||Tx«|| — O, ask — .

In what follows, we call the set

Oap(T, X)
:= {a € C:there exists a Weyl sequence for— T} (1)

the approximate point spectrum of T. Moreover, the

subspectrum
05(T,X) :={a € C: al —T is not surjectivé

)

is calleddefect spectrumof T.
The two subspectra given by)(and @) form a (not
necessarily disjoint) subdivisions

1o (T, X) = 0ap(T,X) U0gs(T,X)

of the spectrum. There is another subspectrum,
Oeo(T,X) ={a € C:R(al —T) #X}

which is often calledcompression spectrum in the

)Literature.

By the definitions given above, we can illustrate the
bdivisions spectrum in the following table:

From Goldberg 15] if T € B(X), X a Banach space,
then there are three possibilities (T ) the range off :

(A) R(T)=X.

(B) R(T)#RT) =X

(C) R(T)#X.

and and three possibilities far !

Su

(1) T !exists and is continuous.
(2) T-lexists butis discontinuous.
(8) T~!does not exist.

If these possibilities are combined in all possible
ways, nine different states are created. These are labelled
by: A1, Ao, A3, By, By, B3, C1, G, Ca. If isa complex
number such thaly € A; or Ty € B; thena is in the
resolvent sep (X, T) of T. The further classification gives
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rise to the fine spectrum df. If an operator is in statB, Therefore, we introduce the operaté(r,s) from /1 to
for example, themR(T) # R(T) = X andT ! exists butis  itself by
discontinuous and we writg € Boo (X, T). AT, 8)X = (X + Sir1)ieo Where x = (xg) € £1.
Let 4 andy be two sequence spaces ahe: (an) be
an infinite matrix of real or complex numbeaig,, where
nkeN={012...}. Then, we say that A defines a 2 The fine spectrum of the operatorA(T,3s)

matrix mapping fronp into y and we denote it by writing over the sequence spacé
A: u — yif for every sequence = (x) € U the sequence

Ax= {(Ax)n}, theA—transform ofxis in y; where Theorem 2.1.The operatoA(F,S) : /1 — /1 is a bounded

linear operator and
AX)p = Zankxk for eachn e N. (3) AT, 8], = sup|ry| + sup|sq|.
keN keN

Proof. The proofis simple. So we omit detail.
Throughoutthe paper, % and.¥ 2 we denote the set

of constant sequences and the set of sequences of distinct

none-zero real numbers, respectively.

d Theorem 2.2.

By (U : y), we denote the class of all matrices A such that
A:u —y. Thus,Ac (u:y)if and only if the series on
the right side of 8) converges for each € N and every
x € p, and we have®x = {(AX)n}nen € v for all x € .

Proposition 1.1.[8, Proposition 1.3, p. 28] Spectra an

. L @) If r,se ¥,

subspectra of an operatdre B(X) and its adjoinfT* S
B(X*) are related by the following relations: (ii)(lf (,r[’ ?gg@'{a €Cilr—al<ls}.
(a)a(T*,X*) — o(T,X). {a e Cisupey |55 | <1} C 0p(Ar9). ).
(D)ae(T, X*) € Gap(TvX> (iii) If F,5€.79,

(C)Oap(T*,X*) = 05(T, X). -
(d)as(T*,X*) = Tap(T, X). 0p(A(T,S),41) C {a € C:infpey |90 | < 1}
(e)op(TH, *) = ( ,X). iv) If 7,S€ .79,

(N0eo(T",X") 2 Gp(T.X). {f:ke N} C 0p(A(T,9), ).

@o(T,X) =  0p(TX) U op(TX) = WIff.se.79,

0p(T.X) U Gap(T*,X"). {aeC:lr—al <8} C op(AT.9), ).

The relations (c)—(f) show that the approximate point 700 LELA(T,S)x = ax for 6 # x € £1. Then, by solving
Iquar equation

spectrum is in a certain sense dual to defect spectrum, an

the point spectrum dual to the compression spectrum. l'oXo 4 SoX1 = aXg
The equality (g) implies, in particular, that F1X1+S1X2 = Xy
0(T,X) = 0ap(T,X) if X is a Hilbert space and is F2Xo +$X3 = axXz

normal. Roughly speaking, this shows that normal (in
particular, self-adjoint) operators on Hilbert spaces are o

most similar to matrices in finite dimensional spaces (see k- 1X-1 1 S-1% - %

(8]). :

Lemma 1.1[15, p. 60] The adjoint operator* of T is X = (G—fkfl)xk L forallk>1 and
onto if and only ifT is a bounded operator. -1 - -

LetT = (rk) andS= (s be sequences whose entries . [ (0 —r1)(a —rk2) - (a —r1)(a —ro)
either constants or distinct none-zero real numbers ¥ S 1Sc2--.-S150
satisfying the following conditions: (i) Assume thaf,Se %. Letr, — r ands — sfor all
limrg=r, k € N. We observe thax, = (2 ) Xo. This shows that
ke xe lifandonlyifja—r| <|g, as asserted.
lim s¢=s#0, (i) LetF,S€.72 andfora e C, sup,cy | %52 < 1. So
[rk—r| #19. we have
Then, we define the sequential generalized difference
matrix A(T,S) by 20|xk|
k=
ros 0 O0... o
M1 —0) (k2 —a)---(ro— o
0ris 0 ... :|xo|+z(k1 Mz — ) o )|Xo|
v _ | 00rs... =1 S-1%-2---S0
A(F,9) =
000O0r3... k
< ol + [sup_uxo.
ol z sup == o
@© 2014 NSP
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Hencex= (x) € {1 .
(i) Let7,5€ .2 andx= (x) € ¢1. Thus,

[ee]

> Ixd

K=o
o | (lk1—a)(rk2—a)---(ro—a)

= %ol +

ol kZ 15 .5 Xl

k

> |%o| + inf | —— i 4

ol 5 |int |52 | ol @
If we use inequality of4) and we considex = (x) € /1,
inf

(iv) Letr,Se 2. ltis clear that, for alk € N, the
vectorx = (Xp,X1,.--,%,0,0,...) is an eigenvector of the
operatorA(T,S) corresponding to the eigenvalee= ry,

wherexgy # 0 andx, = for 1< n<k. Thus

{rk :ke N} C 0p(A(T,9),41).
(v) Letr,Sc.#2 and|a —r|<|s|. Since lim_,e |%\ =

I|m;H<,°|rk 1— “\ = |=2| < 1, x € £1. This completes the
proof.
Theorem 2.3.0,(A(T,8)*,4;) = % ’ 2;2 ?9 where,

B ={r:keN,|r—r¢ > |g}.
Proof. We prove the theorem by dividing into two parts.
Part 1. Assume tha§, 7 € ¢. ConsideA(T,S)*f = a f
for f # 6 = (0,0,0,...) in ¢] = {». Then, by solving the
system of linear equations
o fo = Ufo
sfot+rifi=af;
sifi+rof, =af;

Sc-1fk1+refe = afy

we find thatfo=0if a #r=rgandfi=f,=---=0
if fo = 0 which contradictsf # 6. If fy, is the first non
zero entry of the sequende= (f,) anda =r, then we
getsfy, + 1 fnyr1 = a fny1 Which implies f,, = 0 which
contradicts the assumptiofa, # 0. Hence, the equation
A(T,5)*f = af has no solutiorf # 6.

Part 2. Assume that,se . 2. Then, by solving the
equationA(r,s)*f =af for f £ 08 =(0,0,0,...) in {» We
obtain (ro —a)fo = 0 and(rx.1 — a) fxe1 + s fk = O for
all k e N. Hence, for alla ¢ {r : k € N}, we havefy =0
for all k € N, which contradicts our assumption. Sp ¢
0p(A(T,S)",£w). This shows thatp(A(T,S)*, lw) C {rk:
ke N}\{r}. Now, we prove that

a € 0p(A(T,9)",lw) ifand only if a € A.
Let a € op(A(T,9)*,4»). Then, by solving the equation

forall k> 1. Sincel; C ¢, we can applying ratio test and
we have

S
r—ro|

S-1
l'k—Tro

fi

k-1

= lim =
k— 00

But our assumptiorbﬁ’ # 1. Hence,

=roe{rck:keN/rg—r| > s} = A.
Similarly we can prove that =ry € {rc: ke N, |rx—r| >

|} = 4, for a =r #r for all k € N;. Conversely, let
a € A. Then,existke N, a =rg#r and

. . s

lim = lim =

n—elin1| N=eflneg—Tk r—rg

Thatisf € ¢1. Sincely C lw, f € £. SO we have
% C 0p(A(T,9)*,4x). This completes the proof.
Theorem 2.4

01 (A(F,9), £1) = 0p(A(F, )", £1)\ Op(A(FS), £1).
Proof. The proof is obvious so is omitted.
Theorem 2.5. Let (ry),(sx) in 2 and ¥.
o (A(T,S),01) =0
Proof.
By Theorem 2.2-2.4, we gek (A(T,S), (1) =
Theorem 2.6. o(A(T,S),l1) = & U %,
o ={aeC:|r—a|<]g}.
Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that,Se€ % andy = (Yk) € ¢». Then, by
solving the equatio\((T,S) — al)*x =y for x = (x) in
terms ofy, we obtain

where

SYk-1 Yk

a2 r—a’

AN

1 kK s \¢!
a2 (m) 4
for all k € N. Hence,

x| <

< |r
For|s| < |r— a|, we can observe that

1
Xlles < g [¥l]eo-
Ir—al-|s|

Thus for|s| < |[r —al, A(T,S)* —al is onto and by Lemma
1.1,A(T,S) — al bounded inverse. This means that
0c(A(T,9),l1) C{aecC:|r—a|<|9}.

Combining this with Theorem 2.2 and Theorem 2.5, we
get

{aeC:r—al<|s} Ca(A[,S),l1).

A9t =afforf#68=(000,..)infkawitha=ro  gjnce the spectrum of any bounded operator is closed, we
have
. 0919 Sc 1 . i
k (ro—rk)(ro—rk,l)(ro—rk,z)---(ro—rl) 0 G(A(r@,él):{aec:|r—a|§|s|}.
(@© 2014 NSP
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Since the spectrum of any bounded operator is closed, we
Part 2. Assume that,se€ .2 andy = (y) € {». Then,  have
by solving the equatioA((T,S) — al )*x =y terms ofy, we O(AF,9),01) = o UB
obtain = ’

(—1)%s081 - - S_1Yo This completes the proof.

Xk = Theorem 2.7.Let (ry), €S9,
(fo— “gfr;; ‘?“2 —9) ')'/'k(”‘ —9) Op(AF,S), (1) = {é ke)c(sﬂ)r —a| < |8} UBU . Where;
(rk—a)(r-1—a)  re—a’ _ —ri_ 1
Then, x| < SllY| where %:{O’EC'W‘”:'S"I(Z |_L| }
S — 1 Sk-1 Proof. The proof is obvious.
fe—a| (e a)(ne—a) Theorem 2.8.
Sk—1%-—2 0c(A(T,S),41)
(rk2—a)(re_1—a)(rg—a) { {aeC:|r—a|=|d} ,TF,5€%,
L SOSL. .- S1 {aeC:r—al= |s|}\%,?,§§99.
(ro—a)(ri—a)--(rk—a)|’ Proof. The proof follows of immediately from Theorem
. 2.2, Theorem 2.5, Theorem 2.6 and Theorem 2.7 because
Now, we prove that (&) € {». Since

) . the partsoc(A(T,S), 7 r,s),¢1) andap(A(T,S),4
22};%%2%%&?&;5/5&1 ))||z pojv 1h p:e<n fhfe(z)rre are ppairwfée(dlgo%)t se(ts(ar?d t)mon o?(trge;)e slgts is
allk>ko+1, ’ o(A(T,S), ().
Theorem 2.9.Let (ry), () € .Z and¥ . If |a —r| < |9,

S el o e a € o(AlS), f)As

N Proof. From Theorem 2.2a € 0p(A(T,S),¢1). Thus,

12 Skt 15 - - SO (A(T,3) — al)~* does not exist_. Itis suffiqient to shoyv that
(k12— ) (N 2—0) - (Tr1— ) (Mg —Q) - (To—a) the operator (A(T,S) — al) _is onto, e, for given
y = (V) € ¢1, we have to findx = (x) € ¢1 such that

< — {1+ Po+ P+ +po k°+p" o_I%0-1] (A(r,S) — al)x = y. Solving the linear equation
Ir—a| I'o—1—af (AT, — al)x=Yy,
k—ko Sk—-18-2-+-S0 } _
R . ro—a 0 0
P e 1-a)(ng 2— ) (ro-a) 0 e o Xo
Therefore; ~ _ X1
erefore AF,8) — allx = 8 8 rzoa 2 ||
< (2+ po P+ Pl + b *Mko) fa—a...
= |rk— a| 0 0 0 ) . . . . .
where Vo
Sko—1 Sko—15-2 Y1
Mko =1+ =
Mo-1= 0| [(No-1—-0)(Ng-2—0a) = |2
Sko—15g—2---S0 :
4.+ . -
(No-1—0)(Ng—2—0a) -~ (fo— Q) |
Then,Mky > 1 and so et X = 30
X1 = —,
< (1+po+p%+---+p§"‘°). S
IMe—a C(a-ryo v
But there existk; € N and a real numbep; such that X2 = 1% + s’
\rk a <P1 forallk > k;. Then,S¢ < (Mp1ko)/(1— po) for
all k> max{ko, ki }. Hence, sup.ry S < . This shows that :
Xl < [1(S)||oo][Yl] 0 < ©0, SiNCE(YK) € leo. Thus for|s| < Yo — (a—r1)(a—rz)--- (o —r-1)Yo n
[r —al, A(T,S)* — al is onto and by Lemma 1.A(T,S) — SS1 K1
al bounded inverse. This means that (Mo — O)Yke2 Vi1
oc(AF,8),01) C{aeC:r—al<|s}. S-1%-2 S
Combining this with Theorem 2.2 and Theorem 2.5, we Then, ¥ [Xc| < sup(Tk) S« |y«|, where
o ) o 2] e [ (ka=a)(iee—a)
PU{aecC:|r—al|<|s} Ca(AT,S),l1). K= s St XS 152
@© 2014 NSP
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forallk € N. Since|(rgs1 — o) /Sr1] — |S/(r—a)| <1,
ask — oo, then there existky € N and a real number
such thatsc,1/(rks1 — a)| < 7o for all k > k. Then, for
allk>ko+1,

Tk< 1
||
But, there exist&; € N and a real number such that
11/s¢| < z for all k> ky. Then, T* < 71 /(1 — z), for all
k > max{ko, ki }. Thus, sup_y TX < 0. Therefore,

Z|Xk| < sup(Tk) Z Yk < 0.
keN

This shows thak = (x¢) € ¢1. ThusA(F,S) —al) is
onto. So we have € g(A(T,S), (1)As.

Theorem 2.10Let (ry), (s«) € € withr,=r, s¢ =sforall
k € N. Then, the following statements hold:

(j)oap(A(~F,§')7£l) = O'(A(F,g),fl),
(iNos(A(T,5), 1) ={a e C:|r—al =g},
(i) Oco (A(F. ), (1) = 0.
Proof. (i) From Table 1, we obtain
O—aP(A(T;ﬂ §),£1) =0 (A(Fv §),€1) \U (A(F, §)7‘€l) Ci.
We have by Theorem.2
0 (A(T,S),01)C1 = 0 (A(T,9),£1)C2 = 0.
Hence;
O—ap(A(’f(,g,él) == d
(i) Since the following equality
O—é(A(Fvg)aél) = U(A(?,g),él)\U(A(?,g),él)Ag
holds from Table 1, we derive by Theoremé2and
Theorem 2 thatos (A(T,9),41) ={a € C:|r—a| = 9|}
(iii) From Table 1, we have
Oco(A(T,S), /1)
= O'(A(F,g),él) Ciu U(A(?,g),él) Cu U(A(?,g),él) Cs
by Theorem 23 it is immediate thabeo (A(T,S), 1) = 0.
Theorem 2.11.Letr,Se€ . %. Then
O‘ap(A(F/,g,él) - »Q%U:%,
05(A(F.9),01) = {a € C:lr—a| =5} U,
Gco(A(?,g,él) - g

(1+2+Z+-).
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