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Abstract: The purpose of this paper is to characterize the minimumggneontrol that steers a hyperbolic system to a final state
between two prescribed functions only on a subregioof the system evolution domaif2. We give some definitions and properties
of this new concept, and then we concentrate on the detetioninaf the control which would realize a given final statetwi@utput
constraints incw with minimum energy. This problem is solved using the Lagran approach and leads to an algorithm for the
computation of the optimal control. The obtained resulésibustrated by numerical simulations which lead to somgectures.
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1 Introduction [3] or on a part of the boundary].
The mathematical model of a real system is obtained from

. . . . measurements or from the approximation techniques and
Most mechanical, biological or economical problems are. bp q

modelled using partial differential equations, the is often affected by disturbance§|]and the solution of

formulation of these phenomena in a distributed systemSUCh a system Is approxmat(_aly knovv_n. For these reasons
e are here interested in introducing the concept of

has the advantage to describe them accurately and keeﬁ;\"s IR . ; L
for each parameter its true physical meaning. Appliedgogttéﬂle}?g'r;y ;vétr;nﬁgglsgg?etst'owgI%rr:;?%g:aml;;xeséfet:/vo
mathematics and control theory aim to rigorously develop y

methods for solving problems related to real applications.prescr'bEd fungtlons given only on a part .Of a supreguon
In the field of analysis and control of these systems,Of the geometric are@ where the system is considered.

several notions have been developed particularIyTh's work is a contribution to the enlargement of the

controllability, stability and by duality observabiliynd  rcgional analysis of distributed systems, representing a

detectability, etc. These various concepts have beefl&W concept of controllability ‘with constraints6]{

widely studied and leads to a vast and disparate Iiteraturgr.nlted “?a'”'y to .systems.descnbed by hyperbth partial
(1], [2] differential equations. It aims to explore this notion aod t

give approach which leads to characterize the optimal

The concept of controllability is one of the most control that satisfied the output constraints. The paper is
important concepts in the analysis of distributed systems, . ) put > pap
rganized as follows: In section 2, we introduce the

This notion can be done in an abstract way by considerinq(:otion of regional controllability of hyperbolic systems
various types of functional spaces and operators to 9 Y yp y '

introduce some definitions and establish various' - provi'd_e' results on this type of controllab'ility and we
characterization and properties give definitions and properties related to this notion. In

The term of regional controllability has been used to refer>cction 3, we solve the problem of minimum energy

to control problems in which the target of our interest is control using Lagranglgn approach devoted to the
computation of the optimal control problem for the

not fully specified as a state, but refers only to a smaIIerh erbolic equations excited by an internal zone actuator.
region (which can be internal or boundary) of the system yp q y X

domain. This concept has been widely developed andT Ih?)rilt?ﬁ; \;Sviet(r:]tlr?gmlgrigael\/g)t:?n t?e ;gyspil#iléggngb tained
interesting results have been obtained, in particular, thé"d P '

possibility to reach a state only on an internal subregion
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2 Problem statement

Let Q be an open bounded and regular subsefRBf
(n=1,2,3) with a boundarg Q.

ForT >0, letQ=Qx]0,T[ and ¥ = dQx]0,T[, we
consider the following hyperbolic system

2%y

W(X’t) — Ay(x,t) = Bu(t) Q
yx.0) =000, 2 (%,0) = ya(x 0
y(§,t)=0 b2

Where A is a second-order elliptic linear operator,

B < Z(RP,L%(Q)), uc U =L?(0,T;RP) (p depends on
the number of the considered actuators)
(Yo.y1) € H}Q) x L% Q). We design by
Zu(.) = (yu(\), %(.)) € H3(Q) x L?(Q) the solution of

(1) when it is excited by a contral.

_ y
If we denote by A = (25) z = [%] and
ot
Bu = B())u then, the systeml1j can be written as
follows:

0z e o
E(X’t) + Az(x,t) = Bu(t) Q 2
2(0) = (yo,y1) " “

The operatorA is closed and linear, with dense
domain inH(Q) x L2(Q). Hence the systen®) admits

and

Let w be an open set of2 with Lebesgue positive
measure, and the restriction operator dn defined as
follows:

Xo: L2(Q) x L2(Q) — L% (w) x L?(w)
(21,2) = (2, 22),,,

While g, is its adjoint operator defined from
L?(w)xL?(w) to L?(Q) x L?(Q) by

(z1,2)X, XE W

Xo(21,22)(X) = {o e 0\ w

And let’s consider

Xo : L2(Q) — L?(w)
Z+— Z‘m

Let ai(.) andBi(.) (i = 1,2) be functions inL?(w) such
thatoi(.) < Gi(.) a.e inw.
Throughout the paper we set

1= [oa(), Ba()] < [a2(). Ba()] = {(y2(),y2()) € L) x L2(w) |
ar() <ya(.) < Bl andaz() < ya(.) < Ba(.) aein w}

We recall that an actuator is conventionally defined by a
couple(D, f), whereD C Q is the geometric support of
the actuator and is the spatial distribution of the action
on the supporD.

In the case of a pointwise actuator (internal or boundary)
D = {b} andf = d&(b—.), whered is the Dirac mass
concentrated irb, and the actuator is then denoted by
(b,&). For definitions and properties of strategic
actuators we refer ta4[8].

a_unique solution which is expressed using a semigroupVe also recall that the systeni)(is said to bew—

(S(t))i>0 (for_more details about semigroups, se@)
generated byA and given as follow:

_ T _ _
2T) = S(T)zo+/o ST - 1)Bu(t)dt

With the assumption that the operafoadmits a basis
orthogonal eigenfunctiongwy,;) associated with the

eigenvaluess of multiplicity rn, the semigrougS(t))i=o
can be written as:

@
N

1 )
[< 7, Wy, > <:os(\/—y,1t)+\/?yn < 25, Wy, >S|n(\/—ynt)] W, ()

(VW) < 21,0, > Sin(y/=t) + < 22, Wy > cosly/=1at) | wn ()

M
M3

>
it
Il

1

g1
El

>
Il
el
Il
el

Then we have

(z [ 7

j UOT < BU(t)-,wnj >cos(\/—_yn(T—t))dt] an(_)

n=1j=

< Bu(t), wh; > sin(v/=w(T —t))dt] W, (1)

exactly (resp.w—approximately ) controllable, if for all
(p9, V) € L?(w) x L?(w) (resp. for alle > 0) there exists
a control u € U such that §oyu(T) = p and

~ 0 X w
It )::u (T) —\d (resp. H XwYu(I ) pd HLZ( )
~ yU € 9

Let H be the operator frod — L?(Q) x L?(Q), for
u e U, defined by:

Hu= /OT S(T — 1)Bu(1)dt

Definition 1.
We say that the system (1) is [a1(.), B1(.)] X
Controllablein wif

[a2(.), B2(.)]-

(ImxewH) N ([ax(.), Ba(-)] %

Remark.
The above definition is equivalent to say that:

[a2(.), B2(.)]) # @
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The system 1) is [a1(.),Bi(.)] x [a2(.),B2(.)]-
Controllable inw at the timeT if there existau € U such
that :

1) < () < Ba(.) andet(.) < fo o () < ol
Definition 2.
The  actuator (D, f) is sad to be
[a1(.), Br(-)] x [a2(.), B2(.)] - strateg|c in w if the excited
systemis [a1(.), Ba(.)] x [az(.), B2(.)]- controllablein w
Remark.

1.A system {) which is [a1(.), Ba(.)] x [a2(.), B2(.)]-
Controllable in c; is [01(.),B1(.)] x [a2(.), B2(.)]-
Controllable for anyw, C w;.

2.Let
=5 [ ) [
0

be the transfer costp?,v) € I, and consider the sets
17
Vo= {ue L2O.TRP) /xulyu(T), Z(T) = (¢%.)}

Wi = {u € L2(0,T RP)/al(.) < XwYu(T) < Ba(.)and
aal.) < fu inw}

Xw—( )< Bo(.)aeinw

We have?”,, C #,, then

0 )< Ipf

This means that the cost of steering the systetnin
less than steering it to a fixed desired stgié, ) ¢

[a1(-), ()] x [a2(.), B2(.)]-

The[ai(.),B1(.)] x [a2(.), B2(.)]-controllability in w may
be characterized by the following result:

Proposition 1.

The system (1) is [o1(.),Ba(.)] x [a2(.), B2(.)]-
Controllablein w if and only if

(Ker Xeo+ ImH) N ([at1(.), 1 ()] x [at2(.), Ba(-)]) # O
Proof
We suppose that there exists
z € ([o1(.), B1(.)] x [02(.),B2(.)]), andu € U such that
XoZu(T) = Xwz , let's considerz; = z— Z,(T) and

7z, = Zy(T), thenz= z + 2z wherez € ker(x,) and
2, € Im(H) which prove thatz € (Ker x, + ImH).

Conversely,
it (Kerxew + 1mH) N ([a1(.), Bo(.)] x [a2(.),B2(.)]) # O
(), Ba()] x [2(.), B2()]) such

then there existz € ([0
thatz € (Kerxe + ImH),

S0z= 273+ 2, wherexepzz =0and3ueU |z =Hu.lt
follows that there existze [ai(.), B1(.)] x [02(.), B2(.)],
andu € U such thaty,Z,(T) =z

3 Minimum energy control

The purpose of this section is to explore the Lagrangian
multiplier approach devoted to the computation of the
optimal control problem, for the hyperbolic equation
excited by an internal zone actuator, which steers the
system 1) from (yo,y1) € H}(Q) x L?(Q) to a final state
(p,v) € L?(w) x L2(w) such thata() < p < Bi(.)
andaz(.) <V < By(.) in a subregiono.

More precisely we are interested to the following
minimization problem

{ inf_# (u) 3)

UEUad

Where
Uag={u €U | gl( ) < XoYu(T) < Ba(.) and
az(.) < Xo yu( T) < Be(.) aeinw},

is the set of adm|SS|bIe controls.
The following result ensure the existence and the
uniqueness of the solution of the proble8).

Proposition 2.

If the system (1) is [oa(.).Ba(-)] x [o2(.),B2(.)]-
Controllable in w then the problem (3) has a unique
solution u*.

Proof

If the system 1) is [ou(.),B()] x [a2(.),B2(.)]-
Controllable inw thenUgq is a non-empty subset of the
reflexive U, then the mappingi — (yu(T),%(T)) is

linear, soUyq is convex, and to prove that,, is closed,
we consider a sequenden)n in Uyg such thatu, — u
strongly inU. Since x,H is continuous, thery,Hun
converges strongly tox,HuU in L?(w) x L?(w), and

Xo(Yun (T), 0y;'" (T)) € I which is closed st,q is closed.
Furthermore

e

1 .
s | u||? is continue and strictly convex theB)(has a
unique solution.

= 4o and the mapping

Remark.
The solution u* of (3) is characterized by
(u*,u—u*) > 0,Vu € Uy, but this characterization is

difficult to be implemented from a numerical point of
view. In the following, we give the Lagrangian multiplier
approach characterizing the optimal control solution of
@)

We consider the problem3), when the system is
excited by one zone actuat@D, f). The following result
gives a useful characterization of the proble3h (

Theorem 1.
If the actuator (D, f) is [aa(.),B1(.)] X [02(.),B2(.)]-
strategic in w then the solution of (3) isgiven by :

—(XoH)"(A1,43) (4)
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Where (A{,A5) isthe solution of:
{(pd;vdp = RlP(Af,A3) + (pL V)]
(" V)+ Ru(Af,A5) = XoS(T) (Yo, 1)

While B : L?(w) x L?(w) — | denotes the projection
operator, p > 0and Ry, = (XoH) (XeH )™

(®)

Proof

If the actuator (D, f) is [o1(.),B1(.)] x [02(.),B2(.)]-
strategic inw thenUyy # 0 and @) has a unique solution.
The problem 8) is equivalent to the following saddle
point problem:

inf 7 (u)
{ (u,fZ,vd) eV (6)
Where P
V={(u, p V) U X1 | Royu(T) = pd,)?w%(T) _y

To study this constraints, we’ll use a Lagrangian functiona

and steers the probleri)(to a saddle points problem.
We associate to the proble®) the Lagrangian functional
defined by:

¥(u, p%, v, A1, A2) €U x| x L2(w) x L2(w),
1 5
L(u p, V¥ A, 22) = 5 [ u 12+, KeoVu(T) = P 2

ay

+(A2, Xw o“rtu (T) =) 2
Where(.,.) 2 (4 is the scalar product ib*(w).

Let recall that(u*, p?" v A5, A5) is a saddle point of the

functionall if:

max - L(u", pT v A Ap) = LU, pT v AL AZ)
(A1.A2)el%(w) xLe (w)

o : d * 3k
- rl.rullun L(U7p 7Vd>)\l>)\2)
(pd.vd)el

The proof will be continued in three steps.
e Step 1

e Step 2
Let (u*,p? ,v4",A{,A5) be a saddle point df and prove
thatu* is the solution of ). We have

L(u, p V7 An,A2) < L(ut, pT VAL A8) < L(upd v AL M)

For all (u, p?,v¥,A1,A2) € U x | x L?(w) x L?(w)
From the first inequality

L(u*7 pd*7\/d*7A17)\2) S L(u*7 pd*7\,d*7)\I7Aék)

if follows that :

< J .
O, K (T) = B¥) + (A, Ko 3 (T) =) <
~ ayu *

AL Ko (T) = ) + (A3, Ro—3-(T) =)

which implies that{yu: (T)=
hence

p* andfw g;’
p XoYu (T) € [a1(.), Ba(.)]
S g (T) € [az(.),Bal.)]

From the second inequality if follows that :

1 - 7] N
2 10 12 40 Ty (T) = B) + (43 Ko 31 (T) V) <
1 - . 0
5 Il +A1, Rayu(T) - )+ (A3, Xo 5 Yo (T - V)
and(p,v) €.
SinceXwyu: (T)= p andxw 0t % (1) =v¥" we have,
1 1 - . 0
S 1P 5 Ul +A1, Reyu(T) - P+ (A3, Ko y”(T) V)
taking p(; = XoWu(T) € [a1(.),Bu(.)] and
Vo= Ko o"t( ) € [a2(.),B(.)], we obtain
} | u* |\2< AL |2 which implies thatu* is the

mlnlmum energy

U x| are non-empty, closed and convex subset. The, Step 3

FunctionalL satisfies conditions

(u, p9, v — L(u, p?, v, A1, A5) is convex and lower
semi-continuous for allA1,A2) € L?(w) x L?(w).
(A1,A2) — L(u,p%,v¥,A1,A,) is concave and upper
semi-continuous for allu, p?, V) € U x |

Moreover there exist\ %, A9) € L?(w) x L?(w) such that

I|m L(u’ pd’vd’)\o’)\O):
[ (u, pd V) | —+o0 1,72 @)
And there existguo, p§,Vg) € U x | such that
lim Lu’djvdj)\’)\ .
H(Aly)\z)H—>+oo ( 0 po 0:/1 2) (8)

(ut,p?" V¥ Af,A5) is a saddle point ot then the
following assumptions hold:

(U u—u*) +{(Af,A5), XwH(U—U*)) =0 YueU 9)
((A1.23), (P = (0 ) <0 w(pl v el (10)
(0, 20) = (4. 23). Xl (T), 2 ()) — (9 ) =
V(A1,A2) € L2(w) x L2(w)
(11)

Details on the sadlle point theory and its applications can

be found for instance intf1,12,13)].
From ©) we deduce that4) and (1) is equivalent to

Then, the functional admits a saddle point. For more (p% ,V¥)=xuS(T)(Yo,y1) + XewH(u*), and with @) the

details we refer to10].

second part of5) is obtained. From the inequality. Q)

(@© 2014 NSP
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we obtain o o

<(p*()\f7*/\5) + (pd avd )) - (pd 7Vd )7(pdavd) -
(p%",v¥")) <0, for all (p?,v) € I, which is equivalent to
the first part of §).

Corollary 1.

If the system (1) is exactly controllable in w, and p
convenably chosen, then the system (5) has only one
solution (A7, A5, p?",va).

Proof

The regional controllability irw implies that(x,,H)* and
Ry, are bijective, so ifu*, pd", v A+ A5) is a saddle point
of L then the systen®] is equivalent to

+(p" )

XwS(T< 2Y1)
4 V) + PR, X S(T) (Yo, y1) + (P

(B (2

)

Itfollows that(p?",v@") € | is a fixed point of the function

Foil—
(Z1,Z2) = (A (—pRy (Z1,Z2)
+ PRLIXwS(T) (Yo, Y1) +

The operatoR;! is coercive, then there exists > 0
such that
<R(j)l(21722)7

(13)
(Z1,22))

821722» >mll (Z,22) |2

V (Z1,2Z5) € L?(w) x L?(w)
It follows that
| Fo(Z1.22) — Fo(Y1,Ya) |I?

< (1+p? (IR P —2pm) || (Z1,Z2) — (Y1, Y2) |I?
for all (Z1,Z2) and(Y1,Y2) in |, then we deduce that if

compute the saddle points &f which is equivalent to
solve the following problem

nt (0 sup LV Aug)
(upd ) EUXT N (A Ap)el?(w) x L2(w)
(14)
To attain this, the implementation can be based on the

following algorithm of Uzawa typel[3]

1.Choose:
.The inner regiomw, the actuato(D, f) and a precision
thresholds small enough.
Functionspf € [a1(.), Bu(.)].V§ € [a2(.), B2()],
A €L2(w) andA} € L% (w)
2.(pd v AN AD) known, we determineun, pd,vd
with the formula

un— (XwH)"(AL,A7),
= Play() Bl (p)‘l"‘pn 1)
P[Gz p)\z +Vd )
BATTE = AT+ (KeoYun(T) — PY)
andAg ™ = A3+ (Y %m )
40F || PRy — PR Iz + [l Vs — VA lliz() < € we stop,

else we return to 2

Example

Here we give a numerical example that leads to some
results related to the choice of the subregion, the
constraints functions and the actuator location. Let's

ThenF, is contractant, which implies the uniqueness of consider the following one-dimensional system in

pd" VA A andA.
Remark.

1.If a1 = By anda, = B, we find the notion of exact
regional controllability and the solution o8)is given

by

U (t) = (XoH) Ry (a2, 02) — XoS(T) (Yo, Y1))

2.Similar results can be obtained in pointwise actuatony, take T= 2, b= 085 (location of the poi

case.

4 Numerical approach

In this subsection we describe a numerical scheme which

=]0, 1] excited by a pointwise actuator:

2 2

Ity = T x0) + 8- bu(y) 0x)0.T|

y(x,0) =0, %’ (x,00=0 Q

yO,t) =y(1,t)=0 10,T]
(15)

intwise
actuator),

ar(x) = :—5Lx2(x— 1)

az(X) = %xz(x—

2, Ba(x) = _—1x(x— 1),

1)? andBa(x) = %x(x— 1).

allows the calculation of the initial state (position and Applying the previous algorithm we obtain the following
speed) between the constraints functions. So fronresults:

theorem (1), the solution of the problerB) (arises to

Forw=Q
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0104 — () o7 47;,((,))
B, () \
o4 7 p‘1 008 d
0664
0,06
. I
0,04
002+
e ST — 0,02
/'/// \*\
000 = —
T 0,00
00 02 04 06 08 10
0o 02 D‘A 06 08 10
Fig. 1: Desired position betweem (.) andi(.) Fig. 4: Desired speed between(.) andBz(.).

From figure 3 and 4, we note that the reached state
(resp. speed) is between (.) and 1(.) (resp.a»(.) and
Bz2(.)) in the subregiorw, the location of the actuator is
[ai(.), Bi(.)]-strategic and the reached state and speed are

) obtained with reconstruction errar= 2.46 x 10~# and
0 N B0 cost|| u* ||?= 3.07x 10°°

Fig. 2: Desired speed between(.) andf,(.).

T T T T

05 10 15 2:0
Figure 1 and 2 show that the reached state (resp. speed) is
between[a1(.),B1(.)] (resp.[az(.),B2(.)]) in the whole
domain so the sensorjai(.), Bi(.)]-strategic inQ .

Fig. 5: Evolution of the control function

F =]0.25,0.65 btain the following fi .
ore =] ’ [ we obtain the following figures Figure 5 shows the evolution of the optimal contudl

which steers the system from the initial states to the
desired ones between(.) andfi(.).

" —a0) 0,0000030 4
B, ()
B B, 0,0000028 4
0,06 0,0000026 -
0,0000024 4
Ul g v”’ i
; 0,0000022
0,02 ;
e 0,0000020 4
} e g
000 aaf/ Py LS 0,0000018 4
00 02 04 0‘5 08 1.0 0,0 02 04 Ojﬁ 08 10
Fig. 3: Desired position betweem (.) andi(.) Fig. 6: Cost evolution with respect to actuator location.
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10.25,0.65[ 2.46x10°%
10.33,0.58] 7.76x10°°
10.08,0.22[ 1.89x10°°
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