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Abstract: In this paper we present some new generalized retardedneanlintegral inequalities of Gronwall-Bellman type. Ugin
integral and differential skills, some new results whicloyide explicit bounds on unknown functions in integral inelities are
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1 Introduction However, sometimes we need to study such inequalities

. Lo . . with differentiable function in place of nondecreasing
Gronwall inequality is an important tool in the study of .4ntinuous function tern (t). In this paper, some of our

existence, uniqueness, boundedness, stability, and otheLgts concern with integral inequalities with such a
qualitative properties of solutlons of differential eqoas  jifrerentiable functiorf (t).

and integral equations see O Throughout this papeR denoted the set of real numbers;
instance 1-3,5-7,9, 11,13 14, 16,17]. Many results on R, = [0,0), R% = (0,0), J = [a,b] is the subset oR, /

its generalization can be found for example MF-15] . yengtes the derivative'(J,R.) denotes the set of all
However, in certain situations the bounds provided by the.;ntinuous functions fromJ into R, and ¢(J,J)
above mentioned inequalities are not directly applicable g otes the set of all continuously differentiable funesio
and it's desirable to find some new estimates which will 51 Jinto J.

be equally important in order to achieve of desired goals;

see B, 4,13-22]. The main purpose of this paper is to

establish explicit bounds on retarded Gronwall-Bellman,2 Main results

Bihari and Pachpatte-like inequalities which can be used

to study the qualitative behavior of the solutions of certai In this section, several new retarded integral inequalitfe
classes of retarded integral and differential equationsGronwall-Bellman type are introduced.

Some applications of some of our results are also given. Theorem 2.1. Let u(t), g(t), h(t) € €(J,R,),
Pachpatte in]5] investigated the retarded inequality f(t) € €(J,R%), be nondecreasing functions ape: 1 is

a constant. Suppose thata(t) € %*(J,J) be
nondecreasing function witha(t) <t on J. If the

t aft)
u(t) < k+ /a g(s)u(s)ds+ /a h(Su(edsVted, (1) jnequality

wherek is a constant. Replacinkg by a nondecreasing t o aft) b
continuous functiorf (t) in (1), Rashid in L6] studied the u(t) < f(t)+ /a g(s)uP(s)ds+ /a h(s)uP(s)ds, (3)

following retarded inequality holds for allt < J. then

u(t) < f(t) +/tg(s)u(s)ds+ /a(t) h(s)u(s)ds. v t € J. .
a a @ u(t) < f(t){1+(1— p)[E(t)+n(t)]} Vited, (4)
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where

= [ o

al)
/ fP-1(s)h(s)ds V't € J.
a

(s)ds,Vt e, (5)

and

n() (6)

Proof. Sincef (t) is a positive and nondecreasing function,

we observe from3) that

- 1+/ o1 o]

+/ §)fP1(s) {f(s]ds,VteJ.
Let
r(t):%,VteJ, r(0) <1, @)
then

t
(t) < 1+/ g(9) P L(s)rP(s)ds

[

Define a functior(t) by the right hand side of the above
inequality, then we have

rt) <zt), r(a(t)) <z(a(t)) <z(t),  za)=1 (8)
Differentiatingz(t) with respect ta and using8), we have
Z P()Z(t) < g®) P~ H(t) + h(a(t) FIP-(a(t)a't),
for all t € J.By takingt = s in the above inequality and

integrating both sides fromto t, and making the change
of the variable we get

s) fPL(g)rP(s)ds vVt e J.

E=

1+A-plE®+n®]| vteld

z2(t) < 9)
where &(t) and n(t) are defined by §) and @)
respectively . Therefore fron¥), (8) and @), we get the
required inequality in4). The proof is complete.
Theorem 2.2. Let u(t), g(t), h(t) € ¢(J,R.), and
f(t) € €(J,R%), a(t) € €43,J) be nondecreasing
functions with a(a) = a, and a(t) <t on J. If the
inequality

t) < fP(1) +/g s)uP(s ds+/

holds, wherep > g > 0, are constants. Then

s)ds,Vt e J,
(10)

ut) < FR)EM)] P9,V e, (11)

where

o(t) :exp(Pl /atg(s)ds>

a a~1(s)
X {1+ Plr/a v h(s) f*[p*Cﬂ(S) exp( — Pl,/a ( )g()\)d)\> ds} ,
(12)

forall t € J, wherePy = [P54].

Proof. Sincef(t) is a positive, monotonic, nondecreasing
function, we observe fromlLQ) that

R Lo
A

)[ﬁ} ds, vt € J.

f(s)
Let
ri(t) = %, vteld, r(a) <1, (13)
hence
a(t)
)< 1+/ (s ds+/ I(9)rd(s)ds,
(14)
forall t € J. Define a functiork (t) such that
t al(t)
P(t) = 1+ / g(s)rP(s)ds+ / h(s)f~[P-drd(g)ds,
a a (15)
for all t € J, we can easily obtain
ra(t) <k (1), ra(a(t)) <k(a(t) <k(t), k(@) =1,vted.
(16)

Differentiating (L5) with respect ta and using 16), we
have

UK’ (t) < g(t)kP(t)
+ h(a () fP-d(a(t)a’ (t)k9(t), vt € J,

p[p

butk > 0. Thus, we have

kP4 3k’ (1) — g(t)k P~ (t) < h(a (1)) FP-9(a(t)a’ (1),

17

if we let
klP=dt) = vt), (18)
then we haver(a) = 1, andpk P-4 Uk/(t) = [g]Y'(1),

thus from (L7) we obtain

Y —Pg(t)Y(t) < Prh(a(t))f~

The above inequality implies the estimation #6{t) such
that

P=d(a(t))a’(t),vt €.

Y(t) <O(t),Vted,
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where ©(t) as defined in 12). Then from the above DifferentiatingV (t) with respect ta, and using 23) we

inequality and (2.16) in (2.14), we have obtain
f(t) < [O)]Fd Wt € J. VI[t) <gla®)a’tVO)[1+ flat)y®),Vted, (24)
The desired bound in1Q) follows from the above wherey(t) :V(t)+j}f“) h(s)V(s)ds, hencey(a) =1, and
inequality and 13). The proof is complete. V(t) < y(t).
Remark 2.1. Theorem 2.2 gives the explicit estimation in Differentiatingy(t) with respect td, and using24) we get
Theorem 2.3 in{6 whenp = 1. Y (©) < [o(a(®) + h(a(t))]o’ (t)y(t)
Theorem 23. Let u(t), g(t), h(t) € €(J,R;), and ,
e S ) A be ondetenamg -+ S@®)a’ (@) ¥t
functions withar ( ) =a, a(t) <tonJ.If the inequality buty(t) > 0, thus from the above inequality we get
) < f(t)+ s)ds+
/ / V2 ()Y (1) — [9(a () +h(a(®)]a’(t)y () (25)
+ / h(A)u(A)dA]ds, (19) <gla(t)a’(t)f(a(t),vted
: If we let
holds for all t € J. Then () = y L0,V t €, (26)
ut) < f(t)exp( /am a(s)(1+ f(s)@l(s))ds> Vted,  thenweget(a)=1andy 2y (t) = —I'(t), thus from @5)
a (20) we have
where () +[g(a(t)) +h(a(t)]a’ (1) > —g(a(t)a' ) f(at).
o1t) = exp(f:(t)[ (s) +h(s)]ds) The above inequality implies the estimation f¢r) such
1- 7V g(s)f () exp([3la(T) +h(t )]df)d(21) that
forallt € J, such that I(t) > 1- IV g(s)f ( )eXp(fa[ (1) +h(1)]d1) Vied
- exp( /4" [9(s) + h(s)]ds)
/a exp(/ Dldrjds<1vted. Then from the above inequality i2€), we have

Proof. Sincef(t) is a positive, monotonic, nondecreasing y(t) <O4(t),Vted,
function, we observe froni@) that

ﬂ < 1+/a(t> a(s )@ds

where©y(t) as defined inZ1), thus from @4) and the
above inequality we have

(t) f(s) V/(t) < gla(t))a’ )V ()[1+ f(t)Out)],Vt e J.
u(s) u(s) als) u(A) . . . .
et [f [ e frjon os negaing the above neaualty romto and malin
forallt € J. Let aft)
a0 V(t) < exp( / g1+ f(s)@l(s))ds> Vted,
ra(t) = W’Vt el ra(a) <1, (22) a

Using the above inequality an@3) in (22), we get the
hence required inequality inZ0). The proof is complete.

a(t) af(t)
ro(t) < 1+ / gSra(s)ds+ [ g(9f(Sra(9)lra(s)
: : 3 Further Inequalities

S
+ / A)dAJds ¥t € J, o
In this section, we present a number of more retarded

forall t € J. LetV(t) equal the right hand side in the above nonlinear integral inequalities of Gronwall-Bellman,
inequality, we have Bihari and Pachpatte-like, which are further
generalizations for some known results and can be used
ra(t) <V(t), ra(a(t)) <V(a(t)) <V(t),V(a)=1Vted. as ready and powerful tools in developing the theory of
(23) nonlinear retarded differential and integral equations.
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Theorem 3.1. Letu(t), g(t), h(t) € €(J,R), f(t), ag(t),
ax(t) € €1(J,3) be nondecreasing functions with(a) =

a, andai(t) <tonJfori=12 andp> 1is a constant.

Suppose that

C{l 02
) < fP(t) +/ ds+/

(27)
forallt € J.If f(t) > 1,vt € J, then
o) < |15+ ()19 - ()
p_ii
+ G(t) +H (t)]} Med, 28)
where
ag(t)
G(t) = / g(s)ds, vt € J, (29)
and
az(t)
H(t) = / h(s)ds, ¥t € J. (30)

Proof. LetV(t) equal the right hand side i27), we have

u(t) < Va(t); u(a(t)) <Va(a(t)) <Va(t); Va(a) = f((s) i
for all t € J. DifferentiatingV(t) with respect tat and
using B1), we obtain

VPV (1) < pfPH() (1) + glou(t))ag (HVa(t)
+ h(aa(t))ag(t)Va(t), vt € J,
sinceVi(t) > 0, we get

i) < pf> Yo
1

)
+ g(aw(t))a(t) + h(az(t)) aa(t), vt € J,

but (t) > 1= Va(t) > 1= & < (1), thus from the
above inequality we get

pviP AV (1) < pflP-Y) /()

+ g(ag(t))as(t) +h(az(t))as(t), vt € J.

Integrating the above inequality fromto t, and making
the change of variable yield

Vat) < [f“’-ﬂ( 3+ (Pt - 7(a

1
+ G(t)+H (t)]} vt ed,
where G(t) and H(t) as defined in 29 and @0
respectively. Using the above inequality iB1), we get
the required inequality in28). The proof is complete.

Remark 3.1. Theorem 3.1 gives the explicit estimation in but f (t

Theorem 2.2 in16] whenas (t) = 1 anda(t) = a(t).

Theorem 3.2. Let u(t), g(t), h(t) € ¥(J,R,), and f(t),
a(t) € €13,9)
a<a(t)<tond.

be nondecreasing functions with Vj(t)

()Suppose that
£ < f(t)+ /tg(s) s)ds+ / sds, (32)
holds for all t € J, then
u(t) < Gs(t), vt € J, (33)
where
0x() — exp( Gatt) + )
X {f(a)+/t f’(s)exp(— [Gl(s)+H1(s)]>ds],
(34)
for all t € J, where Gy(t) = [ig(s)ds, and
Hi(t) = [V g(s)ds vt € J.
(iiSuppose that
+/ g(sju(s)Inu(s
+ / s)Inu(s)ds (35)
holds for all t € J, then
ut) < exp(ez(t)> vt ed, (36)

where®,(t) as defined inZ4).
Proof. (i) Let Vo(t) equal the right hand side ir8%2) we

have
u(t) <Va(t), u(a(t)) <Va(af(t)) < Va(t), Va(a) = f((g)%)

for all t € J, DifferentiatingV,(t) with respect tat and
using B7), we have

Va(t) = [g(t) + h(a(t))a'(O)Va(t) < f'(1), vt e J.

The above inequality implies the estimation Yb(t) such
that

Vo(t) < Gat), vt € J,
where ©,(t) as defined in 34), then from the above
inequality in @7) we obtain the required inequality i8)(
The proof is complete.

(ii) Let a functionVs(t) equal the right hand side of
(35), thenVs(a) = f(a), andu(t) < Vs(t), and as in the
proof of (i) we obtain

Vs(t) - f'(t)
V3(t) ~ Va(t)

()>1,:>V3()>1:>V3
above inequality we get

+g(t)InV3(t)+h(a(t))InVs(t)a’

(t),vted,

(t
(t

< f/(t), thus from the

"(1)+9(t) InV3(t) +h(a(t)) InVs(t)a'(t),vt € J.

Va(t)
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Integrating the above inequality fromto t, and making  holds forallt € J, thenfora<t <t,
the change of variable yield )
exp(Wz’l[Wz(In f(a))+G(t)+H(t)+ f(t)— f(a)]) |f wy (u) < wp(u)
u(t) <
InV3(t) = <|n f(a) + f(t) o f(a)> exp(W, HWy(In f () + G(t) + H(t) + f(t) - f(a)]) if Wa(U) < wy(u).

)ds, vVt € J.
(38)

InV3

+/g s)InVs(s) ds+/

Now by a suitable application of the inequality giver(in
to (38), we have

INV3(t) < Oy(t),Vted,

where ©,(t) as defined in %4), then from the above
inequality we get

Vs(t) < exp(@z(t)) Vteld.

Using the above inequality ii(t) < V3(t), we get the
required inequality in%6). The proof is complete.
Remark 3.2. Theorem 3.2(i) and (ii) gives the explicit
estimations in(a;) and (ag) in Theorem 2.3 in 15
respectively wheri (t) is a constant function.

Theorem 3.3. Let u(t), g(t), h(t) € €(J,R;) and f(t),
ai(t) and ay(t) € ¥1(J,J) be nondecreasing functions
with ai(a) =a, i =12 anda < ai(t) <t onJ, let
w; € €(R:,Ry) be nondecreasing functions with
wi(u) >1foru>1i=12.

(i) Suppose thaf(t) > 1,vt € Jand

ut) < (1) +/a1 g(9)wa(u(s))ds

as(t
+ / (8))dsVted (39)
holds thenfoma <t <t;
Wt Mb(f(@) + G +HO) + F(1) — f(a)]  If  wi(u) <wy(u)
u(t) <
Wt WA (f(@) +G(t) +H () + f(t) — f(a)] if Wo (U) < wy(u).
(40)

where G(t) and H(t) as defined in 29 and @0
respectively. and fori = 1,2, V\/i’l are the inverse
functions of

W(e)—/£££>05>0 (41)
(| - & Wi (5)7 0 ) I
and th € J is chosen S0 that
W (f(a)) + G(t) + H(t) + f(t) — f(a) € DomW 1), for
i = 1,2 respectively, for alt € [at1].
(i) Suppose that
ay(t
) < f(t +/ s)wi(Inu(s))ds
ao(t
+/ Swa(Inu(s))ds, (42)

“3)
whereW, W1, G(t),H(t) are as in(i) andt, chosen so
that

Wi(In f(a)) + G(t) + H(t) + f(t) — f(a) € Dom(W 1),

fori=1,2 respectively, for alt € [a,ty].
Proof. (i) Let V4(t) equal the right hand side ir89) we

have
u(t) < Va(t), u(a(t)) <Va(a(t)) <Va(t), Va(a) = f(a);
(44)

for all t € J. DifferentiatingVa(t) with respect tot and
using @4), leads to
Va(t) < (1) +g(a(t) wa(Va(t)) ai(t)

+ h(az(t))wa(Va(t)) aj(t), ¥ t € J.

In casews (u) < wy(u), then from the above inequality we
have

Va(t) < f/(t) +wa(Va(t))[g(aa (1)) oz (t) + h(az(t)) as(t)],
forallt € J, butwy(Va(t)) > 0, thus we get

Va(t) ')
W (Va(t)) — wa(Va(t

forallt € J, butf(t) > 1= Va(t) > 1= wy(Va(t)) > 1=
o) < f'(t), thus from @1) we have

) +9(a(t))ar(t) + h(az(t))as(t),

W
__Va®)
F(t) + glou(t)) ay (t) + h(az(t)) az(t).

Integrating the above inequality froatot and making the
change of variable we have

W [Va(t)] <Wo(f(a)) +G(t) +H() + f(t) - f(a).

Using the above inequality in44) gives the required
inequality 40).

The proof of the casev,(t) < wj(t) can be completed
similarly.

(if) The proof of the inequality in this case can be
completed by following the proof of the inequality ()

in this theorem and the cag¢i) in the Theorem 3.2. The
proof is complete.

Remark 3.3. Theorem 3.3(i) and (ii) gives the explicit
estimations in(by) and (by) in Theorem 2 in 15
respectively wherf (t) is a constant functiong(t) =t
andaz(t) = a(t).

Remark 3.4. Theorem 3.3i) gives the explicit estimation
in Theorem 2.4 in16] whenai(t) =t anday(t) = a(t).
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Theorem 3.4. Let u(t),h(t) € €J,Ry),a(t), f(t)
€ €%(3,J) be nondecreasing functions, witn(t) < t,
a(@ =a, a'(t) >0, letw e (R+,R}) nondecreasing
function with w(u) > 1 for u > 1 , and
kit,s) € €(J x J,Ry) with Z(t,s) € €I x J,R).
Suppose that(t) > 1 and

ult) < ft)+ h(s)w(u(s))ds
+ " k(t,s)w(u(s))ds, vt € J, (45)
then
u(t) <W-LW(f (@) + Ha(t) + f(t) — () +/t F(s)ds,
(46)

for allt € J, holds for all values of; for which
t

W(F(8))+Ha(t)+ F(t) — F(a) + / F(s)ds € Dom(W 1),
a

forallt € [a,t3], where

af(t)
Hz(t):/a h(s) + k(t,9)]ds, Vted  (47)

a(t)
F(t):/ ‘;—'t‘(t,s)ds, Vted; (48)
a
r ds
W(r)_/m@,ro>0,r,>0. (49)

Proof. LetVs(t) equal the right hand side id%) we have

u(t) <Vs(t), u(a(t)) <Vs(a(t)) <Vs(t), Vs(a) = f((a),)

50
for all t € J. DifferentiatingVs(t) with respect tat and
using 60), we have

Vi(t) < f'(t)+h(a(t))a’(t)w(Vs(t))
+ /:(t) ‘;—'t‘(t,s)w(vs(t))ds

+ k(t,a(t))w(Vs(t))a'(t), Vt e J,
butw(Vs(t)) > 0, thus 61) written as

Vs(t) £(t) /
w(Vs(t)) — w(Vs(t)) +h(a(t)a’(t)

(51)

alt) gk
+/ 5 (Ls)ds+ k(t,a(t))a’(t),Yt e,
a

but f(t) > 1= Vs(t) > 1= w(Vs5(t)) > 1=
f/(t), thus from ¢9) we get
d VL(t)

< f/(t)+h(a(t))a/(t)+/:(t)‘;—'t‘(t,s)ds

+ k(t,a(t)a’(t),vt € J.

Integrating the above inequality froatot and making the
change of variable yield

Va(t) < W_1<W(f(a))+H2(t)+ f(t)— f(a)

+/atF(s)ds]),VteJ,

where Hy(t) and F(t) as defined in 47) and @9)
respectively. Using the above inequality BO| we get the
result @6). The proof is complete.

4 Applications

In this section we apply our Theorems 3.4 and 2.3 to the
following integral equation in the Corollary 4.1 and
retarded integral equation in the Example 4.1 respectively
as follows: consider the integral equation

u(t) = y(t) + /a " o(su(a(s) ALs)ds vt ed, (52)

where® € % (R3,R), satisfy the following conditions:

ly(t)| < f(t),vted; (53)
[@(t,u(a(t),k(t,s))] < h(a(t)w(lu(a(t)))
+ Kt a(g)w(lu(a(t)))),  (54)
W‘l(W(f(a))+MH2(t)+f(t)—f(a)+M/tF(s)ds)<00,
55
where Hj(t),F(t) as defined in Theorem( 3).4,
h(t), f(t),w(t) € €(I,R;) and
M:maxi, Viteld, (56)

a’(t)

Corollary 4.1. Consider the nonlinear integral equation
(52 and suppose thgt @ satisfy the conditions5@) and
(54), and a(t) € ¥1(3,9) with a(t) <t, a(a) = a,
w(u) > 1, for u > 1 andk(t,s) € €(J x J,Ry) with
I(t,s) € €I x J,Ry), forallt € J. If f(t) > 1 then all
solutionu(t) of the equation§2) exist onJ, bounded and
satisfy the following estimation:

U(t)] < W LW (@) + MHo(t) + £(t) — (a)
+ M/IF(s)ds), Vted, (57)

whereM andW as defined in§6) and @9) respectively.

proof. Suppose that the hypothesB8)( (54) are satisfied,
and letu(t), be a solution of%2). Then from 62), (53) and
(54), we get

u®)l < f(t)+/;h(0f(8))g(lu(a(8))l)ds

+ /t k(t,a(s)g(Ju(a(s))])ds, vt € J.

(@© 2014 NSP
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by making the change of variable for the above inequalityReferences

we get
o) < 10 +M [ w(ushas
al(t)
+|v|/ K(t, s)w(|u(s)|)ds, vt € J

Applying Theorem 3.4 to the above inequality, we get the

estimation §7). Thus from the hypothesi$$) and the
estimation in $7) implies the boundedness of the solution
of (52). The proof is complete.

Example4.1. Consider the retarded integral equation:

o+ [ (s usas
+/ A(s u(s /DTu )dr)ds,  (58)
for allt € J. Assume that
ly(t)] < f(t);
IB(t,u(t))] < g(t)u(t)]; (59)

|A(s,u(t),B t),/atD(S,U(S))dS)I < [B(t, u(t))|{Ju(t)]

+ /a ' ID(s u(s))[ds):(60)

S)(1+ f(s)&1

(s))ds) <, (61)

exp(/a ()

for all t € J where f(t),h(t),g(t),a(t) andu(t) are as
defined in Theorem 2.3, from58), (59 and €0) we

obtain
a(t) af(t)

lu(t)] < f(t +/ (9)|u(s |ds+/

7)|dT]ds, Wt € J,

o
for allt € J. By Theorem 2.3 we get an explicit bound on
an unknown functiof(u(t)| such that

S)[u(s)]

(62)

o) < 1@ [ g1+ 1(901(9)ds). vt e d

(63)
where©,(t) as defined inZ1). Thus from the hypotheses

(61) and the estimation ir6@) implies the boundedness of
the solution of §8). The proof is complete.
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