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1 Introduction

It is known that the general theory of linear closed
operators in Hilbert spaces and its applications to physical
problems have been investigated by many researchers (for
example, see [1,2]). But many physical problems require
studying the theory of linear operators in direct sums or
general direct integrals of Hilbert spaces. The concepts of
direct integral of Hilbert spaces and direct integral of
operators as a generalization of the concept of direct sum
of Hilbert spaces and direct sum of operators were
introduced to mathematics and developed in 1949 by John
von Neumann [3]. These subjects were incorporated in
several works (see [4,5,6,7]). A spectral theory of some
operators on a finite sum of Hilbert spaces was
investigated by N. Dunford [8,9]. Note that, in terms of
application, there are some results in papers [10,11,12]
for the finite sum cases. Also, for the infinite direct sum
cases the spectral and compactness properties are
surveyed in [13]. Furthermore, some spectral
investigations of the direct integral of operators in the
direct integral of Hilbert spaces have been provided by
T.R. Chow [14], T.R. Chow, F. Gilfeather [15], E.A.
Azoff [16,17], and L.A. Fialkow [18]. It must be noted
that the theory of direct integral of Hilbert spaces and
operators on the these spaces has important role in the
representation theory of locally compact groups, the
theory of decomposition rings of operators to factors,
invariant measures, reduction theory, on Neumann
algebras and etc. On the other hand, many physical
problems of today arising in the modelling of processes of

multiparticle quantum mechanics, quantum field theory
and the physics of rigid bodies require to study a theory
of direct integral operators in the direct integral of Hilbert
spaces (see [19] and references in it).

Numerical scientific investigations have been done for
explain of the quantum measurements. Dealing with these
subjects, S. Machida and M. Namiki [20,21,22] also [23]
and [24]) have offered many-Hilbert-space theory (or
continuous superselection-rule space method) lately. Note
that a direct integral space of continuously many Hilbert
spaces often arises in the quantum version of Lax-Phillips
theory [25].

In second section of this paper connections between
spectrum, resolvent set of direct integral of operators in
the direct integral of Hilbert spaces and its coordinate
operators are established. Note that the another approach
to analogous problem has been used in the work [14]. In
this paper sharp formulas for the connections are given.

In third section these connections are researched for
compactness properties. Finally, in special case the
analogous questions for the power and polynomially
bounded operators are researched. Note that, these
questions for the direct sum case of Hilbert spaces have
been investigated in [13] and [28].

Along this paper the triplet(Λ ,Σ ,µ) is a measure
space and all Hilbert spaces are infinite dimensional. In
addition, the space of compact operators and
Schatten-von Neumann classes in any Hilbert space will
be denoted byC∞(·) andCp(·),1 ≤ p < ∞ respectively.
On the other handσp(·),σc(·),σr (·),σ(·),ρ(·) and
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Rτ(·),τ ∈ ρ(·) will be called point spectrum, continuous
spectrum, residual spectrum, spectrum, resolvent set of an
operator and resolvent operator respectively.

2 On the Spectrum of Direct Integral of
Operators

In this section, the relationship between the spectrum and
resolvent sets of the direct integral of operators and its
coordinate operators will be investigated.

Before of all prove the following result.

Theorem 2.1.Let Hλ be a Hilbert space,Aλ ∈ B(Hλ ) for

anyλ ∈ Λ , H =
⊕
∫

Λ
Hλ dµ(λ ) andA=

⊕
∫

Λ
Aλ dµ(λ ). In this

case the following relations are true

σp(A)⊂
⋃

λ∈Λ
σp(Aλ )

{τ ∈
⋂

λ∈Λ
σp(Aλ ) : Aλ xτ

λ = τxτ
λ ,
∥

∥xτ
λ
∥

∥ ∈ L2(Λ)} ⊂ σp(A)

Proof. For anyτ ∈ σp(A) there exist elementx = (xλ ) ∈
D(A),λ ∈ Λ such thatx 6= 0 andAx= τx . Then almost
everywhereλ ∈ Λ with respect to measureµ it is true that
Aλ xλ = τxλ . Sincex 6= 0 , then there existλ⋆ ∈ Λ which
satisfy the above equality andxλ⋆ ∈ D(Aλ⋆),xλ⋆ 6= 0 . This
means thatτ ∈ σp(Aλ⋆) . Hence

τ ∈
⋃

λ∈Λ
σp(Aλ )

From this it is obtained that

σp(A)⊂
⋃

λ∈Λ
σp(Aλ )

The proof of the second proposition is clear.
Actually, in one special case the following stronger

assertions are true.

Theorem 2.2. Assume that every one-point set is
measurable and its measure is positive. LetHλ be a
Hilbert space, Aλ ∈ B(Hλ ) for any λ ∈ Λ ,

H =
⊕
∫

Λ
Hλ dµ(λ ) andA=

⊕
∫

Λ
Aλ dµ(λ ). In this case for the

parts of spectrum and resolvent sets of the operatorA the
following claims are true

σp(A) =
⋃

λ∈Λ
σp(Aλ )

σc(A) =

{(

⋂

λ∈Λ
(σc(Aλ )∪ρ(Aλ ))

)

∩

(

⋃

λ∈Λ
σc(Aλ )

)}

∪

{

τ ∈
⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖= ∞

}

σr(A) =

(

⋂

λ∈Λ
(σc(Aλ )∪σr(Aλ )∪ρ(Aλ ))

)

∩

(

⋃

λ∈Λ
σr(Aλ )

)

ρ(A) =

{

τ ∈
⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖< ∞

}

Proof. Firstly let us prove the first relation of the theorem.
Assumed that τ ∈ σp(A) . Then there exist
x= (xτ

λ ) 6= 0,(xτ
λ ) ∈ D(A) such thatAx= τx. So for every

λ ∈ Λ
Aλ xτ

λ = τxτ
λ , xτ

λ ∈ D(Aλ )

andxτ
λ⋆ 6= 0 for someλ⋆ ∈Λ . Henceτ ∈σp(Aλ⋆) and from

this
τ ∈

⋃

λ∈Λ
σp(Aλ )

On the contrary, assumed thatτ ∈
⋃

λ∈Λ
σp(Aλ ) . Then for

at least one indexλ⋆ ∈ Λ it is hold thatτ ∈ σp(Aλ⋆), i.e.
for some xτ

λ⋆ 6= 0, xτ
λ⋆ ∈ D(Aλ⋆) it is true that

Aλ⋆x
τ
λ⋆ = τxτ

λ⋆ . In this case we haveAx = τx for the
elementx = (xλ ) 6= 0,(xλ ) ∈ D(A),λ 6= λ⋆,xλ = 0 and
xλ⋆ = xτ

λ⋆ .

Now we prove the second relation on the continuous
spectrum. Letτ ∈ σc(A) . In this case by the definition
of continuous spectrumA− τE is a one-to-one operator,
R(A− τE) 6= H andR(A− τE) is dense inH. From this
and definition of direct integral it implies that for every
λ ∈ Λ operatorAλ − τEλ is a one-to-one operator inHλ ,
R(Aλ − τEλ ) is dense inHλ andR(Aλ⋆ − τEλ⋆) 6= Hλ⋆ for
at least oneλ⋆ ∈ Λ or τ ∈ ρ(Aλ ) for everyλ ∈ Λ , but
sup‖Rτ(Aλ )‖= ∞ . Hence

τ ∈

(

⋂

λ∈Λ
(σc(Aλ )∪ρ(Aλ ))

)

∩

(

⋃

λ∈Λ
σc(Aλ )

)

or
τ ∈

⋂

λ∈Λ
ρ(Aλ ) and sup‖Rτ(Aλ )‖= ∞

This means that

σc(A) ⊂

{(

⋂

λ∈Λ
(σc(Aλ )∪ρ(Aλ ))

)

∩

(

⋃

λ∈Λ
σc(Aλ )

)}

∪

{

τ ∈
⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖= ∞

}

On the contrary, suppose that

τ ∈

{(

⋂

λ∈Λ
(σc(Aλ )∪ρ(Aλ ))

)

∩

(

⋃

λ∈Λ
σc(Aλ )

)}

∪

{

τ ∈
⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖= ∞

}
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In this caseτ ∈ σc(Aλ ) ∪ ρ(Aλ ) for every λ ∈ Λ and
τ ∈ σc(Aλ⋆) for at least one λ⋆ ∈ Λ or
τ ∈

⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖ = ∞ for everyλ ∈ Λ . This

means that for everyλ ∈ Λ operatorAλ − τEλ is a
one-to-one operator inHλ ,R(Aλ − τEλ ) is dense inHλ
and R(Aλ⋆ − τEλ⋆) 6= Hλ⋆ . From this

A− τE =
⊕
∫

Λ
(Aλ − τEλ )dµ(λ ) is a one-to-one operator,

R(A− τE) 6= H and R(A− τE) is dense inH. Hence,
τ ∈ σc(A) . Moreover, whenτ ∈

⋂

λ∈Λ
ρ(Aλ ) such that

sup‖Rτ(Aλ )‖ = ∞ for every λ ∈ Λ , it is clear that
τ ∈ σc(A) . This completes proof of second relation.

Now third relation of theorem will be proved. Letτ ∈
σr(A) . In this case by the definition of residual spectrum
A−τE is a one-to-one operator andR(A− τE) 6=H . From
this for everyλ ∈ Λ an operatorAλ − τEλ is a one-to-one
operator inHλ and there exist at least oneλ⋆ ∈Λ such that
R(Aλ⋆ − τEλ⋆ 6= Hλ⋆ . Hence

τ ∈

(

⋂

λ∈Λ
(σc(Aλ )∪σr(Aλ )∪ρ(Aλ ))

)

∩

(

⋃

λ∈Λ
σr(Aλ )

)

This means that

σr(A) ⊂

(

⋂

λ∈Λ
(σc(Aλ )∪σr(Aλ )∪ρ(Aλ ))

)

∩

(

⋃

λ∈Λ
σr(Aλ )

)

It is easy to prove the inverse implication.
Finally, let us prove the fourth claim of the theorem.

Let τ ∈ ρ(A) . In this case,A − τE is a one-to-one
operator,R(A− τE) = H and(A− τE)−1 ∈ B(H) . From
this for everyλ ∈ Λ operatorAλ − τEλ is a one-to-one
operator in Hλ ,R(Aλ − τEλ ) = Hλ and
(Aλ − τEλ )

−1 ∈ B(Hλ ) . This means thatτ ∈ ρ(Aλ ) for
every λ ∈ Λ . Then τ ∈

⋂

λ∈Λ
ρ(Aλ ) . Moreover, since

(A− τE)−1 =
⊕
∫

Λ
(Aλ − τEλ )

−1dµ(λ ) :
⊕
∫

Λ
Hλ dµ(λ ) −→

⊕
∫

Λ
Hλ dµ(λ ) and(A− τE)−1 ∈ B(H) , then

∥

∥(A− τE)−1
∥

∥= sup
∥

∥(Aλ − τEλ )
−1
∥

∥< ∞

This means that

‖Rτ(A)‖= sup‖Rτ(Aλ )‖< ∞

From this

ρ(A)⊂

{

τ ∈
⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖< ∞

}

. It is easy to prove the inverse of this relation.
Consequently it is obtained that

ρ(A) =

{

τ ∈
⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖< ∞

}

On the other hand the simple calculations show that the
following relations are true.

Corollary 2.3. Under the assumptions of last theorem we
have

σc(A) =

{[(

⋃

λ∈Λ
σp(Aλ )

)c

∪

(

⋃

λ∈Λ
σr(Aλ )

)c]

∩

(

⋃

λ∈Λ
σc(Aλ )

)}

∪

{

τ ∈
⋂

λ∈Λ
ρ(Aλ ) : sup‖Rτ(Aλ )‖ = ∞

}

σr(A) =

(

⋃

λ∈Λ
σp(Aλ

)c

∩

(

⋃

λ∈Λ
σr(Aλ )

)

Corollary 2.4. Let Λ = {λ1,λ2, . . . ,λn} ,n ≤ ∞ be any
countable set,Σ = P(Λ) and µ be any measure with
propertyµ ({λ}) > 0 for every pointλ ∈ Λ . In this case
the formulas

σp(A) =
n
⋃

m=1

σp(Aλm)

σc(A) =

{( n
⋂

m=1

(

σc(Aλm)∪ρ(Aλm)
)

)

∩

( n
⋃

m=1

σc(Aλm)

)}

∪

( n
⋂

m=1

{

τ ∈
n
⋂

m=1

ρ(Aλm) : sup
∥

∥Rτ(Aλm)
∥

∥= ∞
})

σr(A) =

( n
⋂

m=1

(σc(Aλm)∪σr(Aλm)∪ρ(Aλm))

)

∩

( n
⋃

m=1

σr(Aλm)

)

ρ(A) =
{

τ ∈
n
⋂

m=1

ρ(Aλm) : sup
∥

∥Rτ(Aλm)
∥

∥< ∞
}

are true.
Note that whenΛ = N,Σ = P(N) is counting measure

the analogous results have been established in work [13]
and [28].

3 Some Compactness Properties of Direct
Integral of Operators

In this section the compactness and spectral properties
between direct integral of operators and their coordinate
operators have been established. In general, there is not
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any relation between mentioned operators in compactness
means.

Example 3.1. Let be Λ = N,Σ = P(N) µ-counting
measure,Hn = C,An : C −→ C,An = En,n ≥ 1,H =

∞
⊕

n=1
Hn,A =

∞
⊕

n=1
An. . In this caseAn ∈ C∞(Hn) for every

n≥ 1 ,butA /∈C∞(H) .

Example 3.2.In some cases from the relationsA /∈C∞(H)
no implies thatAn ∈C∞(Hn) for everyn≥ 1 .

Indeed, from the definition of direct integral of
operators on the set having nullµ-measure the coordinate
operators may be defined by arbitrary way. But in certain
situations there are concrete results.

Theorem 3.3.Let Λ = {λ1,λ2, . . . ,λn} ,n ≤ ∞ ,Λ be any
countable set,Σ = P(Λ) and µ be any measure with
propertyµ ({λ})> 0 for every pointλ ∈ Λ .Then

(1) If A=
n
⊕

m=1
Aλm ∈C∞(H),H =

n
⊕

m=1
Hλm ,then

Aλm ∈C∞(Hλm) for every 1≤ m≤ n .

(2) Let Λ infinite countable set andAλn ∈C∞(Hλn) for
everyn≥ 1 . In this case

A=
∞
⊕

n=1
Aλn ∈C∞(H) if and only if lim

n→∞

∥

∥Aλn

∥

∥= 0 .

This theorem is proved by analogous scheme of the
proof in theorem 4.6 in [13].

Now give one characterizating theorem on the point
spectrum of compact direct integral of operators which can
be easily proved.

Theorem 3.4.Let Hλ be a Hilbert space,Aλ ∈ C∞(Hλ )

for any λ ∈ Λ , H =
⊕
∫

Λ
Hλ dµ(λ ), A =

⊕
∫

Λ
Aλ dµ(λ ) and

A∈C∞(H).
In this case there exist countable subset

Λ⋆ = {λ1,λ2, . . . ,λn} ⊂ Λ ,n ≤ ∞ such that the setΛ⋆ is
minimal and

σp(A) =
n
⋃

m=1

σp(Aλm)

From the definition of singular numbers(·) (or
characteristic numbers) of any compact operator in any
Hilbert space [1] and Theorems 2.1 and 3.4 it is easy to
prove the validity of the following result.

Theorem 3.5.Let Hλ be a Hilbert space,Aλ ∈ C∞(Hλ )

for any λ ∈ Λ , H =
⊕
∫

Λ
Hλ dµ(λ ), A =

⊕
∫

Λ
Aλ dµ(λ ) and

A∈C∞(H).
In this case there exist countable subset

Λ⋆ = {λ1,λ2, . . . ,λn} ⊂ Λ ,n≤ ∞ such that

(1) {sk(A) : k≥ 1}=
n
⋃

m=1

{

sq(Aλm) : q≥ 1
}

;

(2) If A∈Cp(H),1≤ p< ∞, thenAλm ∈Cp(Hλm)
for everym∈N : 1≤ m≤ n ;

(3) LetAλm ∈Cp(λm)(Hλm),1≤ m≤ n, 1≤ p(λm)<
∞, 1≤ p= sup{p(λm) : 1≤ m≤ n}< ∞ .Then

A ∈ Cp(H) if and only if the series
n
∑

m=1

∞
∑

q=1
sp
q(Aλm) is

convergent ;

(4) If Aλm ∈ Cp(λm)(Hλm),1 ≤ m≤ n, 1 ≤ p(λm) <

∞, p = sup{p(λm) : 1≤ m≤ n} < ∞ and the series
n
∑

m=1

∞
∑

q=1
sp(λm)
q (Aλm) is convergent, thenA∈Cp(H) ;

(5) If Aλm ∈ Cp(λm)(Hλm),1 ≤ m ≤ n,1 ≤ p(λm) <

∞, p(λm) = inf
{

α ∈ [1,∞) : Aλm ∈Cα(Hλm)
}

and
sup{p(λm) : 1≤ m≤ n} = ∞ , thenA /∈ Cp(H) for every
1≤ p< ∞ ;

(6) If Aλm ∈ Cp(λm)(Hλm),1 ≤ m≤ n, 1 ≤ p(λm) ≤

∞, p(λm) = inf
{

α ∈ [1,∞] : Aλm ∈Cα(Hλm)
}

and
sup{p(λm) : 1≤ m≤ n} = ∞ and for some
k ∈ N, Aλk

∈ C∞(Hλk
), then A /∈ Cp(H) for every

1≤ p< ∞ .

Proof. The validity of the claims (1) and (2) is clear. Prove
third assertion of theorem. If the operatorA∈Cp(H) , then

the series
∞
∑

k=1
sp
k(A) is convergent. In this case by the first

proposition of this theorem and important theorem on the
convergence of the rearrangement series it is obtained that

the series
n
∑

m=1

∞
∑

q=1
sp
q(Aλm) is convergent.

On the contrary, if the series
n
∑

m=1

∞
∑

q=1
sp
q(Aλm) is

convergent, then the series
∞
∑

k=1
sp
k(A) which is a

rearrangement of the above series is also convergent. So
A∈Cp(H) .

Now prove (4). If
∥

∥Aλm

∥

∥ ≤ 1 for everym,1 ≤ m≤ n
then from the inequality

n

∑
m=1

∞

∑
q=1

sp
q(Aλm)≤

n

∑
m=1

∞

∑
q=1

sp(λm)
q (Aλm)< ∞

and first claim the validity of this assertion is clear. Now
consider the general case. In this case the operator A can
be written in formA=CB ,where

C=
n
⊕

m=1

(

1+
∥

∥Aλm

∥

∥

)

Em , B=
n
⊕

m=1

(

Aλm
(

1+
∥

∥Aλm

∥

∥

)

)

ThenC∈ B(H).
On the other hand, since‖Bm‖ ≤ 1,1≤ m≤ n and

n

∑
m=1

∞

∑
q=1

sp(λm)
q (Bm) =

n

∑
m=1

∞

∑
q=1

sp(λm)
q (Aλm)

(

1+
∥

∥Aλm

∥

∥

)p(λm)

c© 2015 NSP
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≤
n

∑
m=1

∞

∑
q=1

sp(λm)
q (Aλm)< ∞

then from the section (3) of this theorem it implies that
B∈Cp(H) with p= sup{p(λm) : 1≤ m≤ n}
Therefore,A=CB∈Cp(H) [1].

Furthermore, by using proposition (2) of this theorem
it is easy to prove the claim (5). On the other hand, the
claim (6) is one of the corollary of (5).

Remark 3.6. Note that for the someλ⋆ ∈ Λ⋆ in

representationσp(A) =
n
⋃

m=1
σp(Aλm) in Theorem 3.4. it

may be hold that

card
[

σp(Aλ⋆)∩σp(A)
]

< ∞

In these situations corresponding conditions for such index
in the Theorem 3.5(3-6) may be omitted, for example, as
in the following assertion.

Theorem 3.7.Let Hλ be a Hilbert space,Aλ ∈ C∞(Hλ )

for any λ ∈ Λ , H =
⊕
∫

Λ
Hλ dµ(λ ), A =

⊕
∫

Λ
Aλ dµ(λ ) and

A∈C∞(H).
In this case there exist countable subset

Λ⋆ = {λ1,λ2, . . . ,λn} ⊂ Λ ,n≤ ∞ such that

{sk(A) : k≥ 1}=
n
⋃

m=1

{

sq(Aλm) : q≥ 1
}

If

card
{

λ⋆ ∈ Λ⋆ : card
[

σp(Aλ⋆)∩σp(A)
]

< ∞
}

< ∞,

Aλm ∈Cp(λm)(Hλm), 1≤ p(λm)< ∞, λm ∈ Λ⋆,

Λ⋆⋆ =
{

λ⋆ ∈ Λ⋆ : card
[

σp(Aλ⋆)∩σp(A)
]

< ∞
}

,

λm /∈ Λ⋆⋆,1≤ p= sup{p(λm) : λm ∈ Λ⋆�Λ⋆⋆}< ∞

and

∑
λm∈Λ⋆�Λ⋆⋆

(

∞

∑
k=1

sp(λm)
q (Aλm)

)

< ∞

ThenA= (Aλ ) ∈Cp(H) .

4 Power and Polynomially Boundednessity of
the Direct Sum Operators

In this section let usΛ = N,Σ = P(N) and µ is the
counting measure. Here a connection of power (and
polynomially) boundedness property of the direct sum
operators in the direct sum Hilbert spaces and its
coordinate operators were established. In advance, give
some necessary definitions for the later.

Definition 4.1.[26,27] Let H be any Hilbert space.

(1) An operatorT ∈ B(H) is called power bounded
(T ∈ PW(H)) if there exist a constantM(≥ 1) such that
for anyn∈N it is satisfied that‖Tn‖ ≤ M (3.1);

(2) Operator T ∈ B(H) is called polynomially
bounded(T ∈ PB(H)) ,if there exist a constantM(≥ 1)
such that for any polynomialp(·) it is satisfied that
‖p(T)‖ ≤ M ‖p‖∞ (3.2) ,
where‖p‖∞ = sup{|p(z)| : z∈C, |z| ≤ 1} .

(3) The smallest numberM satisfying (3.1) (resp.(3.2))
is called the power bound (resp.polynomial bound) of the
operatorT and will be denoted byMw(T) (resp.Mp(T)).

Before of all note that the following theorem is true.

Theorem 4.2.If H =
∞
⊕

n=1
Hn,A =

∞
⊕

n=1
An ∈ PW(H) , then

An ∈ PW(Hn) for everyn≥ 1.
The proof of this theorem is a result of the following

equation

sup
m≥1

(

sup
n≥1

‖Am
n ‖

)

= sup
n≥1

(

sup
m≥1

‖Am
n ‖

)

< ∞

In general, the inverse of last assertion may be not true.

Example 4.3.Let us H =
∞
⊕

n=1
Hn , Hn = L2(−1,1),

A=
∞
⊕

n=1
An : H −→ H, An : L2(−1,1)−→ L2(−1,1),

An f (x) = αn

x
∫

−x
f (t)dt, αn ∈R, n≥ 1, sup

n≥1
|αn|= ∞.

In this case it is easy to see that

‖An‖=
4|αn|

π
and A2

n = 0,n≥ 1

Consequently,

sup
m≥1

‖Am‖= sup
m≥1

(

sup
n≥1

‖Am
n ‖

)

= sup
n≥1

‖An‖= sup
n≥1

4|αn|

π
=∞

Hence An ∈ PW(Hn) for any n ≥ 1 , but

A=
∞
⊕

n=1
An /∈ PW(H) .

Example 4.4.Let usH =
∞
⊕

n=1
Hn ,Hn = C2,A=

∞
⊕

n=1
An

A : H −→ H, An : C2 −→ C2,An =

(

0 0
αn 0

)

,αn ∈ C,

n≥ 1,sup
n≥1

|αn|= ∞ .

In this case ‖An‖ = |αn| and A2
n = 0,n ≥ 1 ,i.e.

An ∈ PW(C2) for anyn≥ 1 ,but

sup
m≥1

‖Am‖= sup
m≥1

(

sup
n≥1

‖Am
n ‖

)

= sup
n≥1

‖An‖= sup
n≥1

|αn|= ∞
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Therefore,A=
∞
⊕

n=1
An /∈ PW(H) .

Actually, it is true the following result.

Theorem 4.5.Let H =
∞
⊕

n=1
Hn,A =

∞
⊕

n=1
An andA ∈ B(H).

In this caseA ∈ PW(H) if and only if An ∈ PW(Hn) for
everyn≥ 1 and sup

n≥1
Mw(An)< ∞ .

Proof. If A∈ PW(H) , then from the following relation

sup
m≥1

‖Am‖= sup
m≥1

(

sup
n≥1

‖Am
n ‖

)

= sup
n≥1

(

sup
m≥1

‖Am
n ‖

)

< ∞

it is implied that

sup
m≥1

‖Am
n ‖< ∞ for each n≥ 1

From this it is determined thatAn ∈PW(Hn) for anyn≥ 1.
On the other hand, it is clear that for eachn≥ 1

sup
m≥1

‖Am
n ‖ ≤ sup

n≥1

(

sup
m≥1

‖Am
n ‖

)

= sup
m≥1

(

sup
n≥1

‖Am
n ‖

)

= sup
m≥1

‖Am‖ ≤ Mw(A)< ∞

Therefore
sup
n≥1

Mw(An)≤ Mw(A)< ∞

On the contrary, if for anyn≥ 1

An ∈ PW(Hn), sup
m≥1

‖Am
n ‖ ≤ Mw(An), sup

n≥1
Mw(An)< ∞

Then from the equality

sup
m≥1

‖Am‖ = sup
m≥1

(

sup
n≥1

‖Am
n ‖

)

= sup
n≥1

(

sup
m≥1

‖Am
n ‖

)

≤ sup
n≥1

Mw(An)< ∞

it is obtained thatA∈ PW(H)

Now polynomially boundedness property of the direct
sum operators will be investigated. In advance, note that
the following proposition is true.

Theorem 4.6. If H =
∞
⊕

n=1
Hn ,A =

∞
⊕

n=1
An ∈ PB(H) ,

thenAn ∈ PB(Hn) for everyn≥ 1.

Unfortunately, the inverse of last theorem may be not
true in general.

Example 4.7.Let us H =
∞
⊕

n=1
Hn , Hn = L2(−1,1),

A=
∞
⊕

n=1
An : H −→ H, An : L2(−1,1)−→ L2(−1,1),

An f (x) = αn

x
∫

−x
f (t)dt, αn ∈ R, αn ≥

π
4 , n≥ 1,

sup
n≥1

|αn|= ∞.

In this case it is known thatAn ∈ C∞(Hn) and An is
a nilpotent operator with power of nilpotency 2 for any
n≥ 1. Then for any polynomial function

p(z) =
q

∑
k=0

akz
k,z∈ C,q= 0,1,2, . . .

we have for eachn≥ 1

‖p(An)‖ ≤ |a0|+ |a1|‖An‖ ≤
4|αn|

π
(|a0|+ |a1|)

≤ ‖An‖‖p‖∞

In other words,An ∈ PB(Hn) for everyn≥ 1.
Unfortunately, for the polynomialp⋆(z) = z,z∈ C we

have

‖p⋆(A)‖= sup
n≥1

‖p⋆(An)‖= sup
n≥1

‖An‖= sup
n≥1

4|αn|

π
= ∞

i.e.A /∈ PB(H) .

But in general case the following result is true.

Theorem 4.8.Let H =
∞
⊕

n=1
Hn,A =

∞
⊕

n=1
An andA ∈ B(H).

In this caseA ∈ PB(H) if and only if An ∈ PB(Hn) for
everyn≥ 1 and sup

n≥1
Mp(An)< ∞ .

Proof. Assumed that for every polynomialp(·)

‖p(An)‖ ≤ Mp(An)‖p‖∞ and sup
n≥1

Mp(An)< ∞

In this case since

p(A) =
∞
⊕

n=1
p(An)

for every polynomial functionp(·) , then

‖p(A)‖= sup
n≥1

‖p(An)‖

From last relation it is obtained that

‖p(A)‖ ≤ sup
n≥1

Mp(An)‖p‖∞

HenceA∈ PB(H) .
Now let us A ∈ PB(H), i.e. for any n ≥ 1 and

polynomialp(·) it is valid that

‖p(An)‖ ≤ ‖p(A)‖= sup
n≥1

‖p(An)‖ ≤ sup
n≥1

Mp(An)‖p‖∞

Then it is clear thatAn ∈ PB(Hn),n≥ 1 .
On the other hand, from last equality it is implied that
Mp(An) ≤ Mp(A) < ∞ for every n ≥ 1. Hence,
sup
n≥1

Mp(An) < ∞ . This completes the proof of the

theorem.
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