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1 Introduction multiparticle quantum mechanics, quantum field theory
and the physics of rigid bodies require to study a theory
It is known that the general theory of linear closed of direct integral operators in the direct integral of Hitbe
operators in Hilbert spaces and its applications to physicaspaces (seelp] and references in it).
problems have been investigated by many researchers (for - yymerical scientific investigations have been done for
example, seel|2]). But many physical problems require eypjain of the quantum measurements. Dealing with these
studying the theory of linear operators in direct sums orghiects, S. Machida and M. Namitdg, 21, 22] also [23]
general direct integrals of Hilbert spaces. The concepts 0fng p4]) have offered many-Hilbert-space theory (or
direct integral of Hilbert spaces and direct integral of continuous superselection-ruie space method) lateiye Not
operators as a generalization of the concept of direct SUnfa¢ 4 direct integral space of continuously many Hilbert

of Hilbert spaces and direct sum of operators werespaces often arises in the quantum version of Lax-Phillips
introduced to mathematics and developed in 1949 by JOh'?neory p5.

von Neumann 3]. These subjects were incorporated in
several works (seed[5,6,7]). A spectral theory of some
operators on a finite sum of Hilbert spaces was
investigated by N. Dunfordg9]. Note that, in terms of
application, there are some results in papé&11,12]

In second section of this paper connections between
spectrum, resolvent set of direct integral of operators in
the direct integral of Hilbert spaces and its coordinate
operators are established. Note that the another approach

for the finite sum cases. Also, for the infinite direct sum to analogous problem has been used in the ww In

cases the spectral and compactness properties a}gis papgrsharp formulas for the cpnnections are given.
surveyed in  13. Furthermore, some spectral In third section these connections are researched for
investigations of the direct integral of operators in the COmpactness properties. Finally, in special case the
direct integral of Hilbert spaces have been provided byanalogous questions for the power and polynomially
T.R. Chow [L4], T.R. Chow, F. Gilfeather 5], E.A. bounded operators are researched. Note that, these
Azoff [16,17], and L.A. Fialkow [L8]. It must be noted guestions fpr the Q|rect sum case of Hilbert spaces have
that the theory of direct integral of Hilbert spaces andbeen investigated irlB and [28].

operators on the these spaces has important role in the Along this paper the tripletA,>, i) is a measure
representation theory of locally compact groups, thespace and all Hilbert spaces are infinite dimensional. In
theory of decomposition rings of operators to factors,addition, the space of compact operators and
invariant measures, reduction theory, on NeumannSchatten-von Neumann classes in any Hilbert space will
algebras and etc. On the other hand, many physicabe denoted byCw(-) andCpy(-),1 < p < o respectively.
problems of today arising in the modelling of processes ofOn the other handap(-),oc(-),0r(-),0(-),p(-) and
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R:(-), T € p(-) will be called point spectrum, continuous o;(A) = (ﬂ (UC(A)\)UUr(A)\)Up(A)\))>

spectrum, residual spectrum, spectrum, resolvent set of an

operator and resolvent operator respectively.

2 On the Spectrum of Direct Integral of
Operators

In this section, the relationship between the spectrum an
resolvent sets of the direct integral of operators and it

coordinate operators will be investigated.
Before of all prove the following result.

Theorem 2.1.LetH, be a Hilbert spaced, € B(H,) for
D D

anyA e A ,H = [Hydu(A) andA= [A,du(A). In this
A A

case the following relations are true

ap(A) C | gp(A)
AEN

{re () op(A)) 1 AN, =TX],
Aen

X3 || € L2(A)} € ap(A)

Proof. For anyt € op(A) there exist element= (x,) €

D(A),A € A such thatx # 0 andAx= 1x . Then almost
everywherel € A with respect to measuyeit is true that
AyX) = TX; . Sincex # 0, then there exist, € A which

satisfy the above equality amg, € D(A), ),X), # 0. This

means that € op(A,,) . Hence

Te (Jop(A)
AEN

From this it is obtained that

ap(A) C | ap(A)
AEN

The proof of the second proposition is clear.

Actually, in one special case the following stronger

assertions are true.

Theorem 2.2. Assume that every one-point set is

measurable and its measure is positive. Egt be a
Hilbert space, Ay, € B(H,) for any A € A

D D
H = [H,du(A) andA= [A,du(A). In this case for the
A A

parts of spectrum and resolvent sets of the operatbe
following claims are true

ap(A) = | gp(A))
AEN

Tc(A) = { < N (UC(AA)Up(A)\))> n ( U UC(A/\)>}

AEN AEN

U{TG [ p(A)) : sup|Re(Ay)| =°°}

AEN

B

S

AeN

N < U Ur(A)\)>
AeN

p(A) = {r € () P(A) :sup||Re(Ay)]| < w}

AeEN

roof. Firstly let us prove the first relation of the theorem.
Assumed that T € op(A) Then there exist
x= (x}) #0,(x]) € D(A) such thatAx= tx. So for every
AeA
AyX; =Tx;, X3 € D(AY)

andx; ## 0forsomel, € A . Hencer € op(A,,) and from
this
T | op(Ar)

Aen

On the contrary, assumed thae |J op(Ay) . Then for
AEN

at least one index, € A it is hold thatt € gp(A,,), i.e.
for some xj # 0, x; € D(Ay) it is true that
ALX,, = TX; . In this case we havéx = 1x for the
elementx = (X)) # 0,(xy) € D(A),A # A, x, =0 and
X =X, -

Now we prove the second relation on the continuous
spectrum. Letr € ac(A) . In this case by the definition
of continuous spectrurA — TE is a one-to-one operator,
R(A—1E) # H andR(A— TE) is dense irH. From this
and definition of direct integral it implies that for every
A € A\ operatorA, — TE, is a one-to-one operator H, ,
R(Ay — TE,) is dense irH, andR(A,, — TE,,) # H,, for
at least one\, € A or T € p(A,) for everyA € A, but
sup||R: (A, )]| = e . Hence

TE < N (UC(A)\)UP(A/\))> N ( U UC(A/\)>

AeN AEN

or
Te [ p(Ay) and suplR:(A))| =
AEN
This means that

Oc(A) C { < N (GC(AA)Up(AA))> n < U UC(A)\)>}

AEN AeN

U{T € [ P(A)) :supl|Re(Ay)]| = °°}
AEN
On the contrary, suppose that

Te {(ﬂ (GC(A/\)Up(A)\))> N < U GC(A)\)>}
AN AEN
U{Te () P(Ay) : supl|Re(Ay)]| =°°}

AN
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In this caset € g.(Ay) Up(A,) for everyA € A and

T € o¢(Ay,) for at least one A, € A or

7€ (N p(A)):sup||R:(Ay)]|| = o for everyA € A . This
Aen

means that for ever\ € A operatorA, — 7E, is a
one-to-one operator ifl, ,R(Ay — TE,) is dense inH,
and R(Ay,, — TEy) # Hy. From this

D
A—1E = [(Ay — TE,)du(A) is a one-to-one operator,
A

R(A—TE) # H and R(A— 1E) is dense inH. Hence,

T € 0c(A) . Moreover, whent € [ p(A,) such that
Aen
sup||R¢(Ay)|| = o for every A € A | it is clear that

T € 0c(A) . This completes proof of second relation.

Now third relation of theorem will be proved. Lete

o:(A) . In this case by the definition of residual spectrum

A—TE is a one-to-one operator aR§A — TE) £ H . From
this for everyA € A an operatoA, — TE, is a one-to-one
operator inH, and there exist at least ong € A such that

R(Ay, — TE,, #H,, . Hence

This means that

U or (Ax ))

AEN

(Oc(Ar) U ar(AY) UP(A/\))> n (

or(A) C (ﬂ (UC(A)\)UUr(A)\)Up(A)\))>

AeEN

N ( U Ur(A)\)>
AeN

Itis easy to prove the inverse implication.

Finally, let us prove the fourth claim of the theorem.
Let T € p(A) . In this case, A— TE is a one-to-one
operatorR(A—tE) = H and(A—tE)~1 € B(H) . From
this for everyA € A operatorA, — TE, is a one-to-one
operator in Hy ,RAy — TE)) H, and
(A, — TE,)~1 € B(H,) . This means that € p(A,) for
everyA € A . Thent € N p(Ay) . Moreover, since

AeN

(A=) = [(Ay — TE) Hdu(A) : [Hidu(h) —

D
[Hydu(A)and(A—T1E)"t € B(H), then
A

[(A—TE) 7| = sup||(Ay —TE)) | < oo
This means that
[Re(A)]| = supl[Re(Ay)]| < oo

From this

p(A) C {r € () P(A) :sup||Re(Ay)]| < w}

AEN

It is easy to prove the inverse of this relation.
Consequently it is obtained that

P(A) = {r € [ P(Ay) :supl|R:(Ay)]| < w}

AeN

On the other hand the simple calculations show that the
following relations are true.

Corollary 2.3. Under the assumptions of last theorem we

have
() = { KH op<AA>)Cu <H m(Aﬂ)C}
m(ALEJA o) ) fu e () o) sumlR ()] = g

o (A)

- <H op<AA)Cm <H () )

Corollary 2.4. Let A = {A1,A2,...,An},n < o be any
countable set> = P(A) and yu be any measure with
propertyu ({A}) > 0 for every pointA € A . In this case
the formulas

n

op(A) = U op(Ay,,)

m=1
o = { @1(oc<AAm> 0P ) (nLiJlodAAm)) }
U (ni]l{r € ni]lp(A,\m) s sup||Re(An,) || = oo})
(= ( rél(oc(AAm) L) Up ()
N (mL:Jlar (A)\m)>

o) ={re [ ol suplRe )| <}
m=1

are true.
Note that whem\ = N, > = P(N) is counting measure
the analogous results have been established in w8k [

and 2§].

3 Some Compactness Properties of Direct
Integral of Operators

In this section the compactness and spectral properties
between direct integral of operators and their coordinate
operators have been established. In general, there is not
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any relation between mentioned operators in compactness (2) If Ac Cy(H),1 < p <, thenA, € Cp(H,,)
means. foreverymeN:1<m<n;

Example 3.1.Let be A = N, = P(N) p-counting (3) LetAy, € Cppay (Ha), 1=m=n, 1< p(Am) <

measureHy = C,A, : C —s C,Ay = Ep,n > 1LH = @ 1< p=sup{p(Am):1<m<n} < .;!'hen
%1Hn,A: élAn. . In this caseA, € Co(Hy) for every A € Cp(H) if and only if the series Zl leg(A/\m) is
n= n= m=1q=
n>1,butA¢ Cy(H). convergent ;

Example 3.2.In some cases from the relatioAgt C.,(H)
no implies that\, € C.(Hy) for everyn> 1.

Indeed, from the definition of direct integral of
operators on the set having nultmeasure the coordinate 5 S sé“““ (Ay,,) is convergent, theA € Cy(H) ;
operators may be defined by arbitrary way. But in certain™=1d=1
situations there are concrete results. (5) If An, € Coay(Han): 1 <m <1l < p(Am) <

Theorem 3.3.Let A = {A1,A2,...,An},n< o A beany P(Am) = inf{a €[Le):A) €Cq(H),)} and
countable setS = P(A) and u be any measure with SUP{ p()\m)_i 1<m<n} =, thenA¢ Cp(H) for every
propertyu ({A}) > 0 for every pointA € A.Then 1<p<o;

(4) If A)\m € CP()\m)(H)\m)71 <m<n, 1< p()\m) <
o, p=sup{p(Am):1<m<n} < o and the series
n oo

(1) If A= EnB A)\ c Coo(H),H _ EnB H)\ ,then (6) If A)\m S C.:p()\m)(H)\m)al S m S n, 1 S p()‘m) S
m=1 " me1 w, p(Am) = inf{a €[l,0]:A, €Cq(H,,)} and
Ay, € Cw(H,,,) forevery 1I<m<n. sup{p(Am):1<m<n} = o and for some
ke N, Ay €Cxs(Hy), then A ¢ Cp(H) for every
(2) Let A infinite countable set an#l, € C,(H,,) for 1<p<ow.
everyn> 1. In this case

A= & Ay, € Co(H) if and only if lim ||A, || =0. Proof. The validity of the claims (1) and (2) is clear. Prove

=t e third assertion of theorem. If the operafoe Cp(H) , then

This theorem is proved by analogous scheme of thethe seriesoo P(A) is convergent. In this case by the first
proof in theorem 4.6 in13. © kzlsk( .) g y

Now give one characterizating theorem on the pointPproposition of this theorem and important theorem on the
spectrum of compact direct integral of operators which canconvergence gf the rearrangement series it is obtained that

. n

be easily proved. the seriesy 5 (A, is convergent.

Theorem 3.4.Let H, be a Hilbert spaced, € Cu(H,) m=1g=1 -
® @ i i p i

foranyA €A, H = [Hydu(A), A= [Aydu(A) and On the contrary, if the Se”e?nélqglsq(A)\m) is
N N )

A€ Cu(H). convergent, then the seriesy L(A) which is a

k=1

In this case there exist countable subset

. rearrangement of the above se:ries is also convergent. So
A ={A1,A2,...,An} C A n < o such that the sed\, is g g

minimal and A€ Cp(H) .
n Now prove (4). If||A;, || <1 foreverym1<m<n
ap(A) = U ap(Ay,) then from the inequality
m=1 n o n o o(m)
P(AL) < ™ (Ay,) < oo
From the definition of singular numbes(-) (or ngq:lsq( An) < m:quls] ()

characteristic numbers) of any compact operator in any i ) o ) o
Hilbert space ] and Theorems 2.1 and 3.4 it is easy to and first claim the validity of this assertion is clear. Now

prove the validity of the following result. consider the general case. In this case the operator A can
i be written in formA = CB ,where
Theorem 3.5.Let H, be a Hilbert spacei,, € C.(H,)

@ @ n n Ax
foranyA € A ,H = [Hydu(A), A= [Adu(A)and C= @1(14-HA,\m||)Em ., B=@a (7“‘
A A m=

wr \ @A)
AeCo(H).
In this case there exist countable subsetThenC e B(H).
N ={A1,A2,...,An} C A, n < o0 such that On the other hand, sindBm|| < 1,1 <m<nand
n n o n o P(Am)
@{s®):k=1) = U {s(Ay,) 021} S5 En =y y )
m=1 m=1¢=1 m=1g=1 (1—|— HA,\mH) PiAm
@© 2015 NSP
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n 00
<3 A, <
m=1g=1

(1) An operatorT € B(H) is called power bounded

then from the section (3) of this theorem it implies that (T € PW(H)) if there exist a constaril(> 1) such that

B € Cp(H) with p = sup{p(Am) : L<m<n}
ThereforeA=CBe Cy(H) [1].

foranyn € N it is satisfied thafiT"|| <M (3.1);

(2) Operator T € B(H) is called polynomially

Furthermore, by using proposition (2) of this theorem Pounded(T  PB(H)) ,if there exist a constaril(> 1)
it is easy to prove the claim (5). On the other hand, theSUch that for any polynomiap(-) it is satisfied that

claim (6) is one of the corollary of (5).
Remark 3.6. Note that for the someA, € A, in

n
representatiorop(A) = U 0p(Ay,,) in Theorem 3.4. it
m=1

may be hold that

card [op(Ay,) N Op(A)] <

Ip(T)I| < Mpll, (3.2),
where||p|l, = sup{|p(2)| : 2z C,[Z] <1} .

(3) The smallest numbé satisfying (3.1) (resp.(3.2))
is called the power bound (resp.polynomial bound) of the
operatorT and will be denoted b (T) (resp.Mp(T)).

Before of all note that the following theorem is true.

In these situations corresponding conditions for suchinde Theorem 4.2.1f H = & Hn, A = B A, € PW(H) , then
=1 n=

in the Theorem 3.5(3-6) may be omitted, for example, as

in the following assertion.
Theorem 3.7.Let H, be a Hilbert spacef, € Co(H,)

D 5]

foranyA e A ,H = [H,du(A), A= [Aydu(A) and
A A

A€ Cx(H).

In this case there exist countable
A ={A1,A2,...,An} CA,n < oo such that

{s(A) i k>1} = [ {sq(An,) 19> 1}
m=1

card{A, € A, : card[0p(Ay,) N Op(A)] < 00} < oo,
A)\m € Cp()\m)(H)\m)’ Am € A,
N = {Ac € AL card [op(Ay,) NOp(A)] < o},

An & N, 1< p=sup{p(Am) : Am E ANAN} < o0

1< p(Am) < oo,

and

AmEAN A <k=1
ThenA= (A,) €Cp(H) .

4 Power and Polynomially Boundednessity of
the Direct Sum Operators

subset

n=
A, € PW(H,) for everyn > 1.

The proof of this theorem is a result of the following
equation

sup(supw"n) :sup(supnAm) <o
n>1 \m>1

m>1 \n>1
In general, the inverse of last assertion may be not true.
Example 4.3 Letus H — élHn . Hn=Ll2(-1,1),
n=
A= & AvtH—H, AgL2(—1,1) — L(—1,1),
n=1

sup|an| = co.
n>1

X
Anf(X)=an [ f(t)dt, aneR, n>1,
—X

In this case it is easy to see that

4
Al =% and 2—on>1
Consequently,
m| _ my ) _ e dlon|
sup||A™| = sup( supl|Ay| | = sup|/Aq|| = sup—— =
m>1 m>1 \n>1 n>1 n>1 n
Hence A, € PW(H, for any n > 1 , but

A:rélAn ¢ PW(H) .

Example 4.4LetusH = @ Hy ,Hh=C2A= © Ay
n=1 n=1

In this section let usA = N, 5 = P(N) and i is the A:H-—H, A;:C?— C2A,= ((3 8) ,on € C,
counting measure. Here a connection of power (anq1>1 sup|dn| = oo A
polynomially) boundedness property of the direct sum = ’n>f e

operators in the direct sum Hilbert spaces and itS|, this case Al = |an| and A2 = O,n > 1 ie.

coordinate operators were established. In advance, givR < pw(C?) for anyn > 1 ,but

some necessary definitions for the later.
Definition 4.1.[26,27] Let H be any Hilbert space.

sup|[A™| = sup(supnAa“n) — sup|An]| = suplan| = e
m>1 m>1 \n>1 n>1 n>1

(@© 2015 NSP
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Therefore A= EB An¢PW(H) .
Actually, it |s true the following result.
Theorem 4.5.LetH = & Hn, A= @ Ay andA € B(H).

n= 1
In this caseA € PW(H) if and onIy |f An € PW(Hp) for
everyn > 1 and supy(An

) <
n>1
Proof. If A€ PW(H) , then from the following relation

sup ") ~ sup(supnAn |) _ sup(sumAn ||)

m>1 \n>1 m>1
it is implied that

sup||Af|| <« foreach n>1
m>1

From this it is determined th#{, € PW(Hp) for anyn > 1.
On the other hand, it is clear that for eathk 1

sup| AT < sup(sumA;“n) _ sup(supnA;“n)
m>1 n>1 \m>1 m>1 \n>1
— SUPJAT| < My(A) < o
m>1

Therefore

supMy (An

n>1

) < My(A) < oo

On the contrary, if foranp > 1

An € PW(Hn), sup||AY| < Mw(An),
m>1

supMy (An) <
n>1

Then from the equality
supl ™|  sup(‘suplaf| ) —sup( supl |
m>1 m>1 \n>1 n>1 \m>1

< supMy,(An) < o

n>1

it is obtained thaf € PW(H)

Now polynomially boundedness property of the direct
sum operators will be investigated. In advance, note that

the following proposition is true.
Theorem 4.6.1f H = EB Hn
thenA, € PB(H

A= @ Ay € PBH)
n=1

n) for everyn > 1.

sup|an| = o.
n>1

In this case it is known thaf, € C»(Hn) and A, is

a nilpotent operator with power of nilpotency 2 for any

n> 1. Then for any polynomial function

q
=3 aZ,zeC,q=0,1,2,...
k=0
we have for each > 1

[IP(A)I| < [ao| + [aa| [[An]l < —=
< [[Anll TPl

4% (g + )

In other wordsAn € PB(Hp) for everyn > 1.
Unfortunately, for the polynomiagb, (z) = z.ze C we
have

4o

[P« (A)[| = supl| p«(An)|| = sup||An|| = sup—— =
n>1 n>1 n>1 TT

i.e.A¢ PB(H).

But in general case the following resultis true.
Theorem 4.8.LetH = 69 Hn, A= 69 A, andA € B(H).

In this caseA € PB(H ) |f and onIy |f A, € PB(H,) for

everyn > 1 and suplp(An) < .
n>1

Proof. Assumed that for every polynomipl(-)

IP(An)[ <Mp(An) [Pl and r1-‘=»>ullMp('°~n)<°°

In this case since

P(A) = & p(An)

n=1
for every polynomial functiomp(-) , then

(A = :gllollp(MH

From last relation it is obtained that
[P(A)[| < supMp(An) [| Pl
n>1

HenceAc PB(H) .
Now let us A € PB(H), i.e. for anyn > 1 and
polynomialp(-) it is valid that

Unfortunately, the inverse of last theorem may be not [[P(An)[| < [[P(A)[| = :gf”p(An)H < ﬁngp(A”) [Plle

true in general.

Example 4.7.Letus H — élHn . Hn=L2(-1.1),
n=
A= @ AvH - H, Ay:L2(-1,1) —L2(~1,1),
n=1
X
Anf(X)=an [ f(t)dt, aneR, an>F , n>1,
—X

Then it is clear tha#, € PB(H,),n> 1.

On the other hand, from last equality it is implied that

Mp(An) < Mp(A) < « for every n > 1. Hence,
SUpMp(An) < o . This completes the proof of the

n>1
theorem.
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