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Abstract: For the multisensor multi-channel autoregressive moving average (ARMA) signals with white measurement noises and an
ARMA colored measurement noise as a common disturbance noise, a multi-stage information fusion identification method is presented
when model parameters and noise variances are partially unknown. The local estimators of model parameters and noise variances
are obtained by the multi-dimensional recursive instrumental variable (MRIV) algorithm, correlation method, and the Gevers-Wouters
algorithm, and the fused estimators are obtained by taking the average of the local estimators. They have the consistency. Substituting
them into the optimal fusion Kalman filter weighted by scalars, a self-tuning fusion Kalman filter for multi-channel ARMA signals

is presented. It requires a less computational burden, and is suitable for real time applications. Applying the dynamic error system
analysis (DESA) method, it is proved that the proposed self-tuning fusion Kalman filter converges to the optimal fusion Kalman filter

in a realization, so that it has asymptotic optimality. A simulation example shows its effectiveness.

Keywords: Information fusion Kalman filter,identification,convergence analysis, self-tuning Kalman filter.

1. Introduction data. Compared to centralized data fusion, distributed data
_ o ) _ fusion effectively utilizes information from a lot of differ-
Multi-sensor data fusion is a technique, which seeks toent sensors. It has many advantages such as lighter pro-

combine data from multiple sensors to achieve improvedcessing load, lower communication load, easy fault detec-
accuracies that could not be achieved by using a singlgjon and isolation, and high reliability [11]. And, the exist-
sensor. Although there have been a significant amount ofng information fusion Kalman filtering is mainly focused
research efforts reported during the past twenty years, fupn the information fusion Kalman filtering with known
sion of multi-sensor data is still a challenging problem [1- model parameter and noise statistics. However, in many
5]. As we all known, two basic data fusion methods are gpplications, the model parameters and/or noise variances
centralized and distributed (Or decentralized) fusion meth'are usua”y unknown. The f||ter|ng for the Systems with un-
ods [6,7]. The centralized filter method can provide theknown model parameters and/or noise variances is called
globally optimal state estimation by directly combining lo- self-tuning filtering [12]. Several self-tuning weighted fu-
cal measurement data. However, the centralized filter cagjon estimators [13-16] were presented. Their drawbacks
cause alarge computational burden in the fusion center dugre that only the noise variances are assumed to be un-
to the high-dimension computation and large data mem+nown, while the model parameters are assumed to be known.
ory [8]. In distributed fusion, the information from local The self-tuning information fusion Kalman or Wiener fil-
estimators can yield the global optimal or suboptimal stateter was presented for the multisensor single-channel ARMA
estimation aCCOfding to certain information fusion crite- Signa|s with unknown model parameters and unknown noise

ria. The Bayesian algorithm [9] and the genetic algorithmyariances in [17,18]. However, only a few results were re-
[10] were also studied for distributed fusion of multisensor
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ported for the multisensor multi-channel ARMA signals B(q~!)andR(¢ ') are polynomials of backward shift op-
with unknown model parameters and unknown noise vari-eratorg—! with the following form:

ances[19,20]. And in [19], for the multisensor multi-channel _ _ -

ARMA signals, using the modern time series analysis method, X(g) =Xo+ X1+ X g )
based on the online identification of the autoregressive moywhere X, = 1,,, I, is them x m identity matrix, n,,

ing average (ARMA) model, the self-tuning weighted mea-, . 1, 1, are the orders of polynomial matricei{q 1),
surement fusion Wiener filter was proposed. Its limitation C(q™Y), B(q71Y), R(¢™1), respectively.

is that the measurement noises of sensors are assumed t0 Assumption 1.w(t), £(¢) andv;(t) (i = 1,--- , L) are

be white measurement noises. The convergence analysjgdependent white noises with zero mean and variances
method of the self-tuning Kalman or Wiener fuser has beery) | Q¢ andQ,;, respectively.

proved in [13,14], which is called dynamic error system = Assumption 2. 4(¢™1), C(¢}), B(¢™*) andR(¢™?)
analysis (DESA) method, and a new concept of conver-are stable polynomialg.A(¢—1), C(¢')) and (B(g™}),
gence in a realization was presented in [13,14], which isp(;~1)) are left coprime.

weaker than the convergence with probability one. The — Assumption3.4(¢~!), C(¢~!) andQ,, are unknown,
convergence analysis method of the self-tuning Riccati equart B(¢—1), R(¢}), Q¢ andQ,,; are known.

tion and Lyapunov equation was proved in [16], whichis  Assumption 4.A realization of measurement stochas-

called dynamic variance error system analysis (DVESA)tic processgy; (¢)(i = 1,2, - - - , L) is bounded fot .

method. . _ o The problem is to find self-tuning information fusion
Inthis paper, using the classical Kalman filtering methogaiman signal filter weighted by scalars when the ARMA

the self-tuning fusion Kalman filter weighted by scalars is model parameters and noise variances are partially unknown.
presented for the multisensor systems with colored mea-

surement noises, and with partially unknown model pa-
rameters and noise variances. By the DESA method, th@ 1. The conversion of ARMA signal model into
convergence of self-tuning information fusion Kalman fil-

ter was proved by the DESA method, i.e., the self-tuningState space model

fusion Kalman filter converges to the optimal fusion Kalmarsettinguw(t) = w(t — 1), yields thatw(t) has the variance

filter in a realization, so it has asymptotic optimality. Com- ) . The ARMA signal (1) can be rewritten as
pared with [19, 20], the paper presents the information fu-

sion Kalman filter for multisensor multi-channel ARMA A(g")s(t) = C(g Hw(t) (5)
signals with an ARMA colored common disturbance mea- 1y -1 —n. . o
surement noise. The results proposed in [21] are extende\ghereg(q ) =Cotlig Qngq £y =0,C; =

to multi-channel case with an ARMA colored measure- Ci—1:% = 1,2, -+, 1¢, e = me + 1. .
The signal system (5) has the state space model with

ment noise. .
The rest of this paper is organized as follows: In Sec-the companion form

tion 2 we give the optimal fusion Kalman signal filter. a(t+1) = Aa(t) + Cw(t) (6)

Multi-stage information fusion estimators of model param- s5(t) = Hoo(t) 7)

eters and noise variances is presented in Section 3. Self- 4 I

tuning fusion Kalman filter is presented in Section 4. Sec- _Al I Cm

tion 5 presents convergence analysis. Section 6 gives ongy _ 2 m(ne—1) C = !

simulation example. The conclusion is presented in Sec- : = : ’

tion 7. —An,, 0 0 Chae
Hy=[I,0---0] (8)

with definition n,. = max(ng,n. + 1),4; = 0(j >
nac)acj =0(j > Nac)-

Consider the multisensor multi-channel ARMA signals with S|m|IarIy_, makingé (t) = £(t — 1), ylel_ds thatt (¢) has
. ‘ also the varianc€)¢. And the colored noise model (3) can
a colored common disturbance measurement noise

be transformed to the equivalent state space model

2. The optimal fusion Kalman signal filter

A(g)s(t) = Clg~Hw(t) (1) B +1) = PB(t) + RE(L) (9)
yi(t) = s(t) + n(t) +vi(t),i=1,---, L @) n(t) = HsB(t) (10)
Blg~)n(t) = R(g~)&(1) @ where
wheret is the discrete times(t) € R™ is the signal to -B I,
be estimatedy;(t) € R™ is the measurement of théh =By I(ny—1)
sensor(t) is a white noisew(t) € R, v;(t) € R™ P=1. R = , o (11)
andn(t) € R™ are a white process noises, white mea- ' B R
surement noises and an ARMA colored common distur- B, 0 0 Tor
bance measurement noise, respectivdly '), C(¢™!), Hg= [In 0---0]
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with ny,. = max(ny,n, + 1),B; = 0(j > np), Rj =
0(] > nbr).

Introducing the augmented statg), augmented input
noisew(t),

ot _ w(t
o= 5000 = [ a2

Then augmented system is given as
x(t+1) = Px(t) + I'v(t) (13)

yi(t) = Hx(t) + v (t) (24)

s(t) = Hsx(t) (15)
where

A0 Co

o= (2] r= {55
H=[H, Hg|,H,=[H, 0]. (16)

Noting w(t) andw;(t) are uncorrelated white noises with
zero mean and variance matricgs and@,;, respectively,
and

Q= |§"¢

0 Qg] ,Quiy = 0,5 = E[w(t)v] (£)] = 0(17)

2.2. The optimal fusion Kalman signal filter
weighted by scalars

Lemma 1 [22]. For the multi-sensor systems (13)-(15) with
known model parameters and noise variancesjttheen-
sor subsystem has the local optimal Kalman filte(t|¢)

of z(t) as

Zi(t]t) = Upi(t) 23 (¢ — 1t — 1) + Kpi(t)y:(2) (18)

wfi(t) = [Im(na+nb) - Kfi(t)H]¢ (19)

Kp(t) = 2t — VHY(HEZ;(t)t — 1)H" (20)
+Qui)

Pi(t‘t) = [Im(na+nb) - Kfi(t)H]Ei(tlt -1) (21)

8,(t[t) = Hyas(t]t) (22)

2;(0]0) = p, P;(0[0) = Fo (23)

where the prediction error variance matricegt|t — 1)
satisfy the time-varying optimal Riccati equation

it +1t) = o[Zi(t|t — 1) — Zi(t|t — V)HT(H  (24)
xZi(t|t — DH" + Qui) " HX;(t]t — 1))
x®T + IQul'™

The local filter error cross-covariancBs (t|t) = E[z;(¢[t)Z] (¢[t)],

i,7 = 1,2,--- L, with Z;(t|t) = x(t) — &;(¢t|t), satisfy
the time-varying Lyapunov equation

Pij(tt) = Wpi(8) Py (t = 1|t — D)W /(t)
L (ng4ny) = Kri(OHITQup I
XL tny) — Kpj (O H i #

(25)

with the definition P;(¢|t) = P;(t|t), where the cross-
covariances among the filter erraggt|t) = s(t) — 8, (¢|t),
P.i; = E[3;(t[t)5] (t]t)], are

Pyij(t|t) = Hs Py (tlt)HY (26)
Lemma 2[22] For the multi-sensor systems (13)-(15)

with assumptions 1 and 2, we have the optimal information
fusion Kalman signal filter weighted by scalars

L
So(tlt) =Y _wi(tl)3;(¢le) (27)
j=1

where the optimal scalars weighting coefficient vectors
w;(t[t) are given by

[wi(tlt), - wr(tlt) ] = [ (P (tft))e] et PT(t]E)

(28)
wheree™ = [1,--- 1], andL x L matrix P, (t|t) is defined
as

P, (t|t) = (trPs;;(t]t)),4,5=1,--- ,L (29)

whose(i, j)th elementP; (¢|t) aretrPg;; (t|t).

3. Multi-stage information fusion estimators
of model parameters and noise variances

For the multisensor systems (1) -(3) with assumptions 1-4,
we can apply the multi-stage information fusion identifi-
cation method [23] to obtain estimators of the model pa-
rameters and noise variances. The information fusion esti-
mators can be obtained by the following three stages.

3.1. Information fusion autoregressive (AR)
parameter estimator

Substituting (1) and (3) into (2) yields
yi(t) = A7 (g™ C (@ Hw(t)
+BH (g R(gHE() +vil?)
(30) can be rewritten as
det B(q~")A(q™)yi(t) = det B(g~")C(q~ w(t) (31)
+A(q"H)adjB(q™)
xR(g™1)E(t) +det B(g™")
x Ag™i(t)

(30)

Settingdet B(q~1)y;(t) = 2i(t), so we have
A(g™")zi(t) = det B(g~1)C (g~ w(?)

+A(g YadjB(g ") R(g~VE()
+det B(g~ ) A(g vy (t)

(32)
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Defining
Clg") =det B(g ")C(q")
=In+Cig + +Chg ™,
R(g™") = A(g”HadjB(q ")R(¢™ ")
=In+Rig + + R, g,
A(q™") =det B(g~ ") A(q™)
=Iy+Aig A g (33)

With nz = ng +np +n,, nzg = mny+ne, ng = mny +ng.
(32) can be written as

Alg "zt

Clg Mw(t)+ R(g~ &) + A(g " ui(t)

From (43),4,(t) is thelth element of&(t). Hence, we
have

Al(t)—>Al,l:1,---7na,as t — oo, w.p.1 (45)

Hence,A(¢~!) is obtained. Then subsututm@( ~1yinto
(33) we can yleIdA( -1y and R(¢~ 1Y), i.e. A;(t)(1
1,--+,ng) ande( )(I=1,---,nz) are obtained.

3.2. Information fusion estimators of moving
average (MA) parameters and variance

34)
Hence for theith sensor, we have the least squares (LS)From (31), (33) and (38), we have

structure as

Zi<t):Q(pi(t>+7“i<t),i:1,2,“- , L (35)

with the definition
6=1[A1, -, An] (36)
@i(t) = [—zi(t —1); -+ —2(t — ng) | (37)
ri(t) = Clg " w(t) + R(g &) + A(g Hui(t) (38)

Lemma 3 [23]For theith sensor subsystem with multi-
channel stationary ARMA model (1)-(3), the multidimen-
sional recursive instrumental variable (MRIV) local esti-
mator@;(t) of © are

~ A Zi 21
O;(t) = 6;(t—1) + | il ?t()P(t)— 1()?'}%)(]5) )
xPi(t—1)
5T (¢
P = pi- ) - PO g
@i(t) = @i(t —no) )

with initial value ©;(t) = Oy9, Pi(to) = alpn, , zi(k)
0(k < 0), ng = max(ng,ng ns). Applying the multi-
dimensional recursive instrumental variable (MRIV) al-
gorithm [23], the multidimensional local RIV estimators
©,(t) of © converge to the true value with probability one,
ie.
@Ai(t)ﬂ@,as t—oo,w.plyi=1,---,L (42)
where “w.p.1” denotes “with probability one”. The infor-

mation fusion estimata® () of © is defined as

so that from (43) it is also strongly consistent, i.e.

(43)

)7 7Ana(t)]

h \

éf(t) — 6O,as t— oo, w.p.l (44)

ri(t) = A(g " uyi(t)

It is clearly thatA(¢!) is a stable polynomials of 1,
y:(t) is a stationary stochastic process, so it yields that
r;(t) is also a stationary stochastic process with cross-corr-
elation function as

(46)

Ryi(k) = Elri(t)rf (t — k)],

with a cut-off as lagn; . At time ¢, the estimate of the
measurement procesgt) is defined as

k=0, (47)

yNa

7i(t) = A(g ™ )yi(t) (48)
The on-line sampled correlation functlm k) of Ry (k)
is defined as
. 1<
Ry (k) = 2 D i(w)i (u— k) (49)
u=1
which has the recursive form
R N 1
Ry (k) = Ry (B) + 5 [Fa()7] (0= ) = RIS (k)] (50)
t
with the initial valueR,; (k) = 2 >~ #(1)iT (1 — k) .
7j=1
Defining the MA process as
m(t) = C(q~"w(t) (51)
from (38), we can obtain that
ri(t) = m(t) + R(g" ) + Alg Hui(t)  (52)

andm(t) is a stationary stochastic process, whose correla-

tion functionR,,, (k) is defined agi,,, (k) = E[m(t)m™ (t—
k)] . From (51), we have that
ZCQw k=0,---,nz (53

(© 2012 NSP
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In order to yieldC,, andQ,,, we need to findz,,, (k). Com-  where
puting the correlation function of the two sides of (52) } - }
yields that m 0 Cr— g1lm
Ny _ - glIm :

R (k) = Ryij(k) — Zk RuQeRy_y, (54) RE L P L

ng Imny Im g1lm mnp+1

- Z AuQviAE_kaiﬁ k = Oa o, Ne . 7

u=k -0 gmanm_ _Cné ( _)

Substituting the sample estimat®s, . (k), and fused esti- 65
ing the samp Bpi; (k) , which yields

matesA;(t) andR;(t) into (54) yields the local estimates M= (2" '0"r (66)

of R, (k) as

Ry = By () — 3 Ru(hQeRT_ (1) (55)
u=k

- ju(t)szjE,k(t)(sw, k = 07 R
u=k

Bases on the estimat%nij (k), using the Gevers-Wouters

algorithm [24] with a dead band, we can obtain the local

estimatesC.;; (t)(u = 1,--+ ,ngi,j = 1,---,L) and
Qwij(t) as
Qwij (t) = lliglo meij (l7 l) (56)

C7(uij (t) = lliglo meij (l, l— U)R;zimg (l7 l)a (57)
u=1--,n;
Ryl =) = Beyis(w) = S Ry (1,1 — 7)(58)
r=u+1
xR, (=7l —7)

Xmeij(l —u,l —’l")

with the definitions

meij(o, 0) = an”(O), meij(l,l — 7“) = 0(l < ’I“)
71 _
meij (l-rl—r)y=0(1I<r) (59)

Then the information fusion estimatég(t), Q. (t) based
on all sensors are defined as

L L
. 1 A
Qw (t) = ﬁ Z Z szg (t)a (60)
i=1 j=1
N 1 K-
Cult) = 13D Cuij(thu=1, ,ne (61)
i=1 j=1
Defining
det B(g7") =1+ g1a7 "+ Gmnyg” ™™ (62)
M=[CE, ..., cr " (63)
From (33), we have
QM =7 (64)

Substituting the estimatoéu(t)(u =1,---,ng) into the
first formula of (33) yields

Clg") = det B(g™")C(g™") (67)
= I+ Ci(t)g 4 Co (g™
where
Clg ) =In+Ci()g "+ +Co(t)g ™ (68)
Defining
i = [6F@, - CEm]T (©9)
SubstitutingC,, (¢) into (64) yields
QM(t) = T(t) (70)
where R )
Cl (t) - gl-[m
% an (t) = Gmnydm
T)= | 2"" b 71
(t) ) (71)
G0t -
Solving (70) by Pseudo inverse yields that
M(t) = (2T2)710QT1(t) (72)

Theorem 1. For the multisensor systems (1)-(3) with
assumptions 1-4, the fused estimators of model parameters
and noise variances are consistent, i.e.

;lL(t) — A i=1,--- ,ng,as t— oo, iar (73)
Ri(t) — Riyi=1,--- ,np,as t— oo,iar (74)
Cu(t) = Cpyu=1,-+ ,ngyas t— oo,iar (75)

Qu(t) = Qu,as t— oo, iar (76)
C’u(t) —Cy,i=1, -+ ,neas t— oo,i.ar (77)

where the notation “i.a.r” denotes the convergence “in a
realization”[13].
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Proof. From (33) and (45), we have that (73) and (74) Step 3.In Lemma 1,8, I and Q4 are replaced by
hold. From (53) and the existence theorem of implicit func-é(¢), I'(¢) and Q. (t) respectively. Substituting the esti-
tion [25], C,, andQ,, are the continuous functions of the mates into (18)-(26) , the self-tuning local Kalman signal

elements of?,,,(k)(k = 0,--- ,ne) in a sufficiently small filter can be given as

neighborhood, ie. , . , .

 — F(RA(O). e | B ggy 0D = TR0 =1 =D+ Rp@u) (@9
Qu; fw( m( ) ..,’ Rm(ng)) (79) Wfi(t) = [Im(naJrnb) - Kfi(t)H]@(t) (87)
where f; and f,, are the continuous functions, whetis Kpi(t) = Zutli - DH (HE(t — 1) H” (88)
sufficiently Iarge, we have relations +Qui)”

s At z(tlt) Lin(na+n) — K H) Zi(t]t — 1) (89)
Qwij( ) fw( mz]( ) R;:rnj( )) (81)

where the prediction error variance matrigg(t|t — 1)

According to the ergodicity [26], we have satisfy the self-tuning Riccati equation

Rl.(k) — Ryij(k),as t—oo,iar  (82)  Si(t+1[t) = d(B)[Zi(tlt — 1) — Si(tt — DHT  (91)
» T —1
and from (54),(55),(73), (74) and (82), we have X({f Xi(tft - })H + Qm)A )
x Zi(tlt — V]S (t) + L(6)Qu ()™ (1)
where the cross -covariances among the signal filter errors

From (78)-(81), (83), and the continuity ¢f and f,,, we 35 (t[t) = s(t) — 8; (t|t), Pui; (t) = E[5; (¢[t)3] (t]t)], are
have

R (k) — Rmy(k),as t— oo,iar (83)

mij

. o Py (t|t) = HoPy(t|t)HY (92)
Cuij(t) = Cu, Quij(t) = Qu.as t— oo,iar (84) 3 (tl) 3 (21

) The local filter error cross-covariances satisfy the self-tuning
Therefore, from (60), (61) and (84), it follows that (75) | yapunov equation

and (76) hold. From (66) and (72), the each element/of .
and M (t) is a continuous function of elements 6f, and P (t[t) = Wy (t) Py (t — 1|t — 1)@ J(t) (93)

Cu(t)(u=1,--- ,nz), whichyieldsM (t) — M,as t — HTmmm) — Ky (O HIT(6)Qu (1)) T (1)
oo, i.a.r, i.e., (77) holds. N
X[Im(nmtnb) - Kfj(t)H] iF# ]
with the definition?;; (t|t) = P;(t|t).
Step 4.By (28) and (29), the estimate’, (¢|t) and

w;(t|t) can be obtained and the self-tuning fused Kalman
¥|gnal filter is given as

4. Self-tuning fusion Kalman filter

When model parameters and noise variances are partiall
unknown, substituting their estimators into the optimal fu-
sion Kalman filter yields the self-tuning fusion Kalman fil-
ter. It consists of the following steps: (L) = Z (t[t)&5(t]t) (94)

Step 1.a)Applying the multidimensional recursive in-
strumental variable (MRIV) algorithm [23], yields the in-
formation fusion parameter estimatotg(t)(I = 1,--- ,n,) The above four steps are repeated at each time t.
attimet. And based on (33)4;(t), R;(t) can be obtained.

b) Based on the estimates (¢), k;(¢) and the sampled

correlation function estimateéﬁij(k), and applying the 5. Convergence analysis
Gevers-Wouters algorithm with a dead band to (55), the ) ) )
information fusion estimate§, (1) and@w(t) can be ob- Lemma 4[16] Consider the discrete dynamic error system

tained. From (72), the fused estimatégt) (v = 1,--- , n.) 5(t) = F()5(t — 1) + u(t) (95)
can be obtained .

Step 2.Substituting all the estimates obtalned by stepwheret > 0, 6(t) € R™ is the outputu(t) € R" is the
1 into (16) and (17) yields the estimat®$t), I'(t) and  input, and the matrid’(t) € R™ " is uniformly asymp-

~

Qw( ) of @, I" and@, and we have that totically stable. Ifu(t) is bounded, then(t) is bounded. If
. . . u(t) — 0, ast — oo, thend(t) — 0, ast — oo.
[P(t) = @] — 0,[I'(t) = I'] = 0,[Qu(t) — Qu] =0, Theorem 2. For the multisensor systems (1)-(3) with
as t— oo,i.a.r (85)  the assumptions 1-4, the self-tuning local Kalman signal
@© 2012 NSP
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filters §: (t|t) converge to the local optimal Kalman signal Settingw(t|t) = w(t|t) + Ad(t|t),i = 1,2,---, L. From
filters 3;(t|¢t) in a realization, i.e. (28) and (104), we have yield

(87 (¢[t) — 8:(t[t)] — 0,as t — oo,iar (96) O(tt) — w(tlt),as t — oo, iar (105)

Proof. According to [27], it can be proved similarly
that
(Zi(t+1t) — Zi(t +1|t)) — 0,as t — oo,i.ar (97)
According to the stability theory of the Kalman filter-
ing [28], from (20), the steady-state Kalman filter gains
K ; are the continuous functions &f, i.e., K ;; = fi(X;).
Hence, from (20) and (88), applying the continuity faf
it can be obtained that
Kpi(t) — Kyi(t),as  t — oo,i.ar (98)
From (19),the steady-state Kalman filter transition matri-
ces¥y, are the continuous functions df¢; and,i.e.,
Uy = gr(Kyi, P). Hence, from (85) and (98), applying
the continuity ofg, it can be obtained that

Tpi(t) — Wpi(t),as t — oo, iar (99)

SettingK 7i(t) = Kpi(t)+AK (1), and@y;(t) = Uy, (t)+
AWy, (t), from (98) and (99), we have that

AKpi(t) — 0, AWy(t) — 0,as t — oo,iar (100)

Notice thatk ;(t) andK f;(t)y;(t) are bounded, andl;; ()

is uniformly asymptotically stable [26]. Hence, applying
the Lemma 4 to (86), we have thaf(t|¢t) are bounded.
Subtracting (18) from (86), and setting(t) = &7 (¢|t) —
Z;(t|t), yields the dynamic error equation

0i(t) = Wpi(t)6i(t — 1) + uy () )

whereu; (t) = AWy, (125 (t — 1]t — 1) + AK 1;(1)yi (1)
From the boundedness&f(¢|t) andy; (t), and from (100),
we obtainu;(t) — 0. Hence, applying the Lemma 4 to
(101), we can yield;(t) — 0, and from (22) and (90), we
have that (96) holds. This completes to the proof.

Theorem 3 For the multisensor systems (2)- (3) with
the assumptlons 1-4, and with the estlmambts) I'(t)
andQ; (t), the self-tuning fusion Kalman signal filteg (|t)
given in (94) converges to the optimal fusion Kalman sig-
nal filter 5o (¢|t) given in (27) in a realization, i.e.

(101

[55(t]t) — 30(t[t)] — 0,as t — co,iar  (102)
Proof.Applying dynamic variance error system analy-

sis (DVESA) method [29], it has been proved that

Pyj(tt) — Py(t]t),as t — co,iar (103)
From (26), (92) and (103), we also have
PLij(t[t) — Puj(tlt),as t — oo,i.a.r (104)

From (105), we have thadw(¢]t) — 0, ast — oo, i.a.r.
Subtracting (27) from (94) yields

si(tlt)]  (106)

83 (t]t) — 3o(t]t) = Zw t|t)[85 (t]t) —
=1

L
Ad(t|t)s; (t[t)

=1
From (90) and the boundednessif(t|t), we have that
§7(t|t) is bounded. Applying the boundednessf; (t|t),
we have thab(t|t) is bounded. Applying (96)A& (¢[t) —
0 and the boundedness oft|t) and 5 (¢|t), yields that
(102) holds.

6. Simulation example

Consider the multisensor multi-channel autoregressive mov-
ing average (ARMA) signal with white measurement noises
and a colored noise

(I + Arg~" + A2q?)s(t) = (I + C1g Hw(t) (107)
yi(t) = s(t) +n(t) + v (t),i=1,--- | L (108)
(I + Big ")n(t) = (I + qufl) &(t) (109)

where the signad(t) = [ s1(t) SQ(t)] ,yi(t) € R? is the
measurement of thith sensorw(t), £(t) andv;(t) are in-
dependent white noises with zero mean and unknown vari-
ancesR).,, Q¢ andQ@,;, respectively. Assumd;, A, Cy
and@,, are unknown. (107)-(109) have the equivalent state
model (13)-(15). Hence the problem of finding self-tuning
fusion Kalman filters§ (¢|t) of signals(¢) can be converted
into the problem of finding the self-tuning fusion Kalman
filter weighted by scalars of stai€t)’s first component.

In simulation we take that

= [ a¥] e [3207.
Q= o) 0= 01" 05”)
N [ e
o= [0, 0= [80,],
= [10,] 0= [30]

In Figure 1-Figure 10, the straight lines denote the true
values, and/ (k, r) denotes thg, r)th element of the ma-
trix M. Applying Lemma 3, we can obtain the fused esti-

matesA;(t)(I = 1,2).The curves of the fused estimates
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Figure 1 The curves of the fused parameter estimate Figure 3 The curves of the fused noise variance estindate
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Figure 2 The curves of the fused parameter estimége Figure 4 The curves of the fused parameter estin@e
Ay (t) and Ay (t) are shown in Figure 1 and Figure 2. Ap- 1(; M1
plying the correlation method and Gevers-Wouters algo- = [ || [\ 5% """ i ?t Ry
. . .oa - t " i
rithm with the dead ban@; = 200, we can obtairC', (¢) | P ®) \ f \ |
and Q. (t). The curves of the fused estimadg, (¢) are 2 f\i i , s { 5
shown in Figure 3. The curves of the fused estin@té&) o i /\/\ | 1 | \ A
are shown in Figure 4. The curves of the siga@l and -2 | 1’% | 5 .
i
measuremeny; () = [yi(t) yia(t)]" (i = 1,2,3) are : o I ii ]
given in Figure 5 and Figure 7. From Figure 6 and Fig- s | ‘ J ’: {1
ure 8, we can see that the optimal fused filkgft|t) = o | g . % ; |

[ 801 (tt) §Og(t|t)]T and the self-tuning filteg§(t[t) = 800 805 810 815 820 825 830

[ 85 (1) §32(t|t)]T approximate to the true signa(t). Ustep

The error curves between the self-tuning and optimal fused

Kalman signal filters are presented in Figure 9 and Figurerigure 5 The curves of the signak,(¢), the measurement
10. We see the errors approximate to zero, which verifyy:: (¢), the measurement; (t) and the measuremems; (¢).

the self-tuning fusion Kalman signal filter converges to the

optimal fusion Kalman signal filter .

partially unknown, a self-tuning information fusion Kalman
7. Conclusion filter weighted by scalars has been presented by the classi-

cal Kalman filter method. In this paper, four main contribu-
For the multisensor multi-channel ARMA signal with white tions are as follows: (i) The multi-stage information fusion
measurement noises and an ARMA colored measurementlentification method has been presented for the multisen-
noise, when the model parameters and noise variances aser multi-channel ARMA signal with an ARMA colored
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Figure 6 The signals: (¢), the optimal fused filtego: (¢]t), and
the self-tuning fused filteg, (¢]t).

10 r r v
8 | 8,(1) Ty (0)
6 A I\ yn(t) yn([)
ol \ A
2 M % g; ! \‘\k
0 '; | a \ ‘@\j Voo N )
2 H i
4 Y|
|
6 H |
[
8 |
i |
-10
800 805 810 815 820 825 830

t/step

Figure 7 The curves of the signak:(t), the measurement
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Figure 8 The signalsz(t), the optimal fused filtego2 (¢]t), and
the self-tuning fused filteg, (¢|t).
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Figure 9 The error curves; (t) = 85, (¢]t) — So1(t]t).
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Figure 10 The error curves(t) = 852 (t[t) — So2(t]t).

with a colored measurement noise, which has not been
solved in the existing papers [19-21,23]. The classical sys-
tem identification method [26] has been developed to han-
dle the multi-sensor system with a colored noise. (ii) By
converting the ARMA signal model to the state space model,
the signal can be regarded as a component of the state.
Then using the classical Kalman filtering method, the in-
formation fusion Kalman signal filter is obtained. (iii) The
proposed self-tuning information fusion Kalman signal fil-
ter overcomes the limitation that the existing results are
only suitable for multisensor system with single-channel
white measurement noises. (iv) By the DESA method, it
has been proved strictly that the self-tuning fused Kalman
filter converges to the optimal fused Kalman filter in a re-
alization, so that it has the asymptotic optimality.

Acknowledgement

The authors thank to the support from National Natural

noise, which consists of the multidimensional RIV algo- Science Foundation of China (60874063), Automatic Con-
rithm, the correlation method, and the Gevers-Wouters altrol Key Laboratory of Heilongjiang University, Science
gorithm with a dead band. It solves the online identifica- and Technology Research Foundation of Heilongjiang Ed-
tion problem of the multi-channel ARMA signal system ucation Department (11553101).

© 2012 NSP
Natural Sciences Publishing Cor.



616 %N = o Guili Tao et al : Self-tuning Information Fusion Kalman Filter ...

References [19] X. J. Sun and Z. L. Deng, Optimal and self-tuning weighted

measurement fusion Wiener filter for the multisensor mul-
[1] S.Gao, Y.Zhong and X.Zhang, B.Shirinzadeh, Multi-sensor Egggg)nd ARMA signals,Signal Processing 8938 752
2?%;“222 ggéﬁiiiiég;gﬁig%;g Igggg; SyStem’[20] C. J. Ran and Z.L.Deng, Self-tuning distributed measure-
2] 0 Gug S. Chen, H. Leung and SgLiu Covariance ilntersec- ment fusion Kalman estimator for the multi-channel ARMA
tion based image fusion technique with application to pan- [21] jlgnﬁh ?ﬁgi Erg(;ens&rgeﬁi%i?nzo\jlvti(zk(])tg) measurement
sharpening in remote sensing,Information Sciences 180.18 L Rty 9 9

fusion Kalman filter for ARMA signals with colored noise,

34343443 (2010). , . Applied Mathematics& Information Sciences 6.1, 7
[3] R.R. Yager, A framework for multi-source data fusion, In- (2012).

formation Sciences 163_75200 (_2004)' [22] Z. L. Deng, Multisensor Information Fusion Filtering The-
[4] E. Zervas and A. Mpimpoudis, C.Anagnostopoulos, O." oy with Applications (Harbin Institute of Technology Press

Sekkas, S. Hadjiefthymiades, Multisensor data fusion for Harbin, 2007).

fire detection,Information Fusion 1250159 (2011). [23] H.Q.Xu, Z.L. Deng and M.B.Zhang, Multidimensional and
[5] M.E.Liggins, D.L.Hall and J.Llinas, Handbook of Multisen-

. . Vil multiple recursive instrumental variable identification algo-
sor Data FUS|0n:TheOry and PraCt|Ce(SeC0nd Edltlon)(CRC rithms’ Science Technok)gy and Engineering:gm’ 371
Press, BocaRaton,2009).. (2010).

[6] F. Caron, E. Duflos, D. Pomorski and P. Vanheeghe,[24] M. Gevers and WRE. Wouters, An innovation approach to
GPS/IMU data fusion using multisensor Kalman filtering: discrete-time stochastic realization problem, Quartely Jour-

Introduction of contextual aspects, Information Fusion 7. nal of Automatic Control 1990, 110 (1978).
221,230 (2006).. [25] W.Rudin,Principles of Mathematical Analy-
[7] X.R.Li, Y.M.Zhu, J.Wang and C.Z.Han, Opimal linear esti- sis,thirded.,(Chinese Machine Press,Beijing,China,2004).

mation fusion-part: unified fusion rules, IEEE Transactions [26] L. Ljung, System Identification Theory for the User, Second
on Information Theory 49. 2192 2208 (2003). Edition,( Tsinghua University Press , Beijing, 1999).
[8] S.L.Sun and Z.L.Deng, Multi-sensor optimal information [27] G.L.Tao and Z.L.Deng, Convergence of self-tuning Riccati

fusion Kalman filter, Automatics 400171023 (2004). equation for systems with unknown parameters and noise
[9] A. Makarenko and H. Durrant-Whyte, Decentralized variances, Proceedings of the 8th Congress on Intelligent

Bayesian algorithms for active sensor networks, Information ~ Control and Automatio®732 5736 (2010).

Fusion 7418 433(2006). [28] EEW.Kamen and J.K.Su, Introduction to Optimal
[10] N. Gnanapandithan and B. Natarajan, Joint optimization of ~ Estimation,(Springer-Verlag, London Berlin Heidelberg,

local and fusion rules in a decentralized sensor network,  1999).

Journal of Communications 1917 (2006). [29] G.L.Tao and Z.L.Deng, Self-tuning fusion Kalman filter

[11] D. Smith and S. Singh, Approaches to multisensor data  With unknown parameters and its convergence, Acta Auto-
fusion in target tracking: a survey, IEEE Transactions on matic Sinica 38.1.09, 119 (2012).

Knowledge and Data Engineering 18.18961710 (2006).

[12] P.Hagander and B.Wittenmark, A self-tuning filter for fixed-
lag smoothing, IEEE Transactions on Information Theory
23.3.377,384 (1977).

[13] Z. L. Deng, Y. Gao, C. B. Li and G. Hao, Self-tuning decou-
pled information fusion Wiener state component filters and
their convergence, Automatica 4885, 695 (2008).

[14] z.L.Deng and C.B. Li, Self-tuning information fusion
Kalman predictor weighted by diagonal matrices and its
convergence analysis, Acta Automatic Sinica 3358, 163
(2007)

[15] S.L. Sun, Optimal and self-tuning information fusion
Kalman multi-step predictor,IEEE Trans. Aerospace and
Electronic systems 43418 427 (2007)

[16] C. J. Ran, G.L.Tao, J.F.Liu and Z. L. Deng, Self-tuning de-
coupled fusion Kalman predictor and its convergence anal-
ysis, IEEE Sensors Journal 9.2824 2032 (2009)

[17]J. F. Liu and Z. L. Deng, Self-tuning information fuaion
Kalman filter for the ARMA signal and its convergence, Pro-
ceedings of the 8th Congress on Intelligent Control and Au-
tomation6907, 6912 (2010).

[18] G. L. Tao, W.Wang and Z.L.Deng, The self-tuning dis-
tributed information fusion Wiener filter for the ARMA sig-
nals, Proceedings of the 8th Congress on Intelligent Control
and Automatior6897 6902 (2010).

(© 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.6, No. 3, 607-33 (2012) / www.naturalspublishing.com/Journals.asp

Guili Tao was bornin Hei-
longjiang,China,in 1980. She
received the B.Sc.and M.Sc. de-
grees from the Department of
Automation,Heilongjiang Uni-
versity,Heilongjiang, respectively.
Currently,she is working towards
the Ph.D.degree at the Depart-
ment of Automation, Heilongjiang
University. She has beenalLec-
turer in Heilongjiang Institute
of Science and Technology.Her research interests include
multisensor information fusion, signal processing, and self-
tuning filtering.

Zili Deng is a Professor at
the Department of Automation,
Heilongjiang University. He has
published more than 400 pa-
pers and 8 books in the fields
of optimal filtering, self-tuning
filtering, time series analysis,
and multisensor information fu-
sion. He is the author the books
"Kalman Filtering and Wiener
Filtering-Modern Time Series
Analysis Method”(2001), "Self-tuning Filtering Theory with
Applications-Modern Time Series Analysis Method”(2003),
"Optimal Estimation Theory with Applications-Modeling,
Filtering, Information Fusion Estimation”(2005), and "In-
formation Fusion Filtering Theory and Applications”(2007).
His research interests include optimal and self-tuning fil-
tering, deconvolution, state estimation, signal processing,
estimation theory, identification, time-series analysis, and
multisensor information fusion.

© 2012 NSP
Natural Sciences Publishing Cor.



