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Abstract: For the multisensor multi-channel autoregressive moving average (ARMA) signals with white measurement noises and an
ARMA colored measurement noise as a common disturbance noise, a multi-stage information fusion identification method is presented
when model parameters and noise variances are partially unknown. The local estimators of model parameters and noise variances
are obtained by the multi-dimensional recursive instrumental variable (MRIV) algorithm, correlation method, and the Gevers-Wouters
algorithm, and the fused estimators are obtained by taking the average of the local estimators. They have the consistency. Substituting
them into the optimal fusion Kalman filter weighted by scalars, a self-tuning fusion Kalman filter for multi-channel ARMA signals
is presented. It requires a less computational burden, and is suitable for real time applications. Applying the dynamic error system
analysis (DESA) method, it is proved that the proposed self-tuning fusion Kalman filter converges to the optimal fusion Kalman filter
in a realization, so that it has asymptotic optimality. A simulation example shows its effectiveness.

Keywords: Information fusion Kalman filter,identification,convergence analysis, self-tuning Kalman filter.

1. Introduction

Multi-sensor data fusion is a technique, which seeks to
combine data from multiple sensors to achieve improved
accuracies that could not be achieved by using a single
sensor. Although there have been a significant amount of
research efforts reported during the past twenty years, fu-
sion of multi-sensor data is still a challenging problem [1–
5]. As we all known, two basic data fusion methods are
centralized and distributed (or decentralized) fusion meth-
ods [6,7]. The centralized filter method can provide the
globally optimal state estimation by directly combining lo-
cal measurement data. However, the centralized filter can
cause a large computational burden in the fusion center due
to the high-dimension computation and large data mem-
ory [8]. In distributed fusion, the information from local
estimators can yield the global optimal or suboptimal state
estimation according to certain information fusion crite-
ria. The Bayesian algorithm [9] and the genetic algorithm
[10] were also studied for distributed fusion of multisensor

data. Compared to centralized data fusion, distributed data
fusion effectively utilizes information from a lot of differ-
ent sensors. It has many advantages such as lighter pro-
cessing load, lower communication load, easy fault detec-
tion and isolation, and high reliability [11]. And, the exist-
ing information fusion Kalman filtering is mainly focused
on the information fusion Kalman filtering with known
model parameter and noise statistics. However, in many
applications, the model parameters and/or noise variances
are usually unknown. The filtering for the systems with un-
known model parameters and/or noise variances is called
self-tuning filtering [12]. Several self-tuning weighted fu-
sion estimators [13–16] were presented. Their drawbacks
are that only the noise variances are assumed to be un-
known, while the model parameters are assumed to be known.
The self-tuning information fusion Kalman or Wiener fil-
ter was presented for the multisensor single-channel ARMA
signals with unknown model parameters and unknown noise
variances in [17,18]. However, only a few results were re-
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ported for the multisensor multi-channel ARMA signals
with unknown model parameters and unknown noise vari-
ances [19,20]. And in [19], for the multisensor multi-channel
ARMA signals, using the modern time series analysis method,
based on the online identification of the autoregressive mov-
ing average (ARMA) model, the self-tuning weighted mea-
surement fusion Wiener filter was proposed. Its limitation
is that the measurement noises of sensors are assumed to
be white measurement noises. The convergence analysis
method of the self-tuning Kalman or Wiener fuser has been
proved in [13,14], which is called dynamic error system
analysis (DESA) method, and a new concept of conver-
gence in a realization was presented in [13,14], which is
weaker than the convergence with probability one. The
convergence analysis method of the self-tuning Riccati equa-
tion and Lyapunov equation was proved in [16], which is
called dynamic variance error system analysis (DVESA)
method.

In this paper, using the classical Kalman filtering method,
the self-tuning fusion Kalman filter weighted by scalars is
presented for the multisensor systems with colored mea-
surement noises, and with partially unknown model pa-
rameters and noise variances. By the DESA method, the
convergence of self-tuning information fusion Kalman fil-
ter was proved by the DESA method, i.e., the self-tuning
fusion Kalman filter converges to the optimal fusion Kalman
filter in a realization, so it has asymptotic optimality. Com-
pared with [19,20], the paper presents the information fu-
sion Kalman filter for multisensor multi-channel ARMA
signals with an ARMA colored common disturbance mea-
surement noise. The results proposed in [21] are extended
to multi-channel case with an ARMA colored measure-
ment noise.

The rest of this paper is organized as follows: In Sec-
tion 2 we give the optimal fusion Kalman signal filter.
Multi-stage information fusion estimators of model param-
eters and noise variances is presented in Section 3. Self-
tuning fusion Kalman filter is presented in Section 4. Sec-
tion 5 presents convergence analysis. Section 6 gives one
simulation example. The conclusion is presented in Sec-
tion 7.

2. The optimal fusion Kalman signal filter

Consider the multisensor multi-channel ARMA signals with
a colored common disturbance measurement noise

A(q−1)s(t) = C(q−1)w(t) (1)

yi(t) = s(t) + η(t) + vi(t), i = 1, · · · , L (2)

B(q−1)η(t) = R(q−1)ξ(t) (3)

wheret is the discrete time,s(t) ∈ Rm is the signal to
be estimated,yi(t) ∈ Rm is the measurement of theith
sensor,ξ(t) is a white noise,w(t) ∈ Rr, vi(t) ∈ Rm

and η(t) ∈ Rm are a white process noises, white mea-
surement noises and an ARMA colored common distur-
bance measurement noise, respectively.A(q−1), C(q−1),

B(q−1) andR(q−1) are polynomials of backward shift op-
eratorq−1 with the following form:

X(q−1) = X0 + X1q
−1 + · · ·Xnxq−nx (4)

whereX0 = Im, Im is them × m identity matrix,na,
nc, nb, nr are the orders of polynomial matricesA(q−1),
C(q−1), B(q−1), R(q−1), respectively.

Assumption 1.w(t), ξ(t) andvi(t) (i = 1, · · · , L) are
independent white noises with zero mean and variances
Qw, Qξ andQvi, respectively.

Assumption 2.A(q−1), C(q−1), B(q−1) andR(q−1)
are stable polynomials.(A(q−1), C(q−1)) and (B(q−1),
R(q−1)) are left coprime.

Assumption 3.A(q−1), C(q−1) andQw are unknown,
butB(q−1), R(q−1), Qξ andQvi are known.

Assumption 4.A realization of measurement stochas-
tic processyi(t)(i = 1, 2, · · · , L) is bounded fort .

The problem is to find self-tuning information fusion
Kalman signal filter weighted by scalars when the ARMA
model parameters and noise variances are partially unknown.

2.1. The conversion of ARMA signal model into
state space model

Settingw(t) = w(t− 1), yields thatw(t) has the variance
Qw. The ARMA signal (1) can be rewritten as

A(q−1)s(t) = C(q−1)w(t) (5)

whereC(q−1) = C0+C1q
−1 · · ·Cnc

q−nc , C0 = 0, Ci =
Ci−1, i = 1, 2, · · · , nc, nc = nc + 1.

The signal system (5) has the state space model with
the companion form

α(t + 1) = Aα(t) + Cw(t) (6)

s(t) = Hαα(t) (7)

A =




−A1

−A2 Im(na−1)

...
−Anac 0 · · · 0


 , C =




Im

C1

...
Cnac


 ,

Hα =
[
Im 0 · · · 0 ]

(8)

with definition nac = max(na, nc + 1), Aj = 0(j >
nac), Cj = 0(j > nac).

Similarly, makingξ(t) = ξ(t− 1), yields thatξ(t) has
also the varianceQξ. And the colored noise model (3) can
be transformed to the equivalent state space model

β(t + 1) = Pβ(t) + Rξ(t) (9)

η(t) = Hββ(t) (10)

where

P =




−B1

−B2 Im(nb−1)

...
−Bnbr

0 · · · 0


 , R =




Im

R1

...
Rnbr


 , (11)

Hβ =
[
Im 0 · · · 0 ]
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with nbr = max(nb, nr + 1), Bj = 0(j > nbr), Rj =
0(j > nbr).

Introducing the augmented statex(t), augmented input
noisew̄(t),

x(t) =
[

α(t)
β(t)

]
, w̄(t) =

[
w(t)
ξ(t)

]
(12)

Then augmented system is given as

x(t + 1) = Φx(t) + Γw̄(t) (13)

yi(t) = Hx(t) + vi(t) (14)

s(t) = Hsx(t) (15)

where

Φ =
[

A 0
0 P

]
, Γ =

[
C 0
0 R

]
,

H =
[
Hα Hβ

]
,Hs =

[
Hα 0

]
. (16)

Noting w̄(t) andvi(t) are uncorrelated white noises with
zero mean and variance matricesQw̄ andQvi, respectively,
and

Qw̄ =
[

Qw 0
0 Qξ

]
, Qvij = 0, Si = E[w̄(t)vT

i (t)] = 0 (17)

2.2. The optimal fusion Kalman signal filter
weighted by scalars

Lemma 1 [22]. For the multi-sensor systems (13)-(15) with
known model parameters and noise variances, theith sen-
sor subsystem has the local optimal Kalman filterx̂i(t|t)
of x(t) as

x̂i(t|t) = Ψfi(t)x̂i(t− 1|t− 1) + Kfi(t)yi(t) (18)

Ψfi(t) = [Im(na+nb) −Kfi(t)H]Φ (19)

Kfi(t) = Σi(t|t− 1)HT(HΣi(t|t− 1)HT (20)

+Qvi)−1

Pi(t|t) = [Im(na+nb) −Kfi(t)H]Σi(t|t− 1) (21)

ŝi(t|t) = Hsx̂i(t|t) (22)

x̂i(0|0) = µ, Pi(0|0) = P0 (23)

where the prediction error variance matricesΣi(t|t − 1)
satisfy the time-varying optimal Riccati equation

Σi(t + 1|t) = Φ[Σi(t|t− 1)−Σi(t|t− 1)HT(H (24)

×Σi(t|t− 1)HT + Qvi)−1HΣi(t|t− 1)]

×ΦT + ΓQw̄ΓT

The local filter error cross-covariancesPij(t|t) = E[x̃i(t|t)x̃T
j (t|t)],

i, j = 1, 2, · · · , L, with x̃i(t|t) = x(t) − x̂i(t|t), satisfy
the time-varying Lyapunov equation

Pij(t|t) = Ψfi(t)Pij(t− 1|t− 1)ΨT
fj(t) (25)

+[Im(na+nb) −Kfi(t)H]ΓQw̄ΓT

×[Im(na+nb) −Kfj(t)H]T, i 6= j

with the definitionPii(t|t) = Pi(t|t), where the cross-
covariances among the filter errorss̃i(t|t) = s(t)− ŝi(t|t),
Psij = E[s̃i(t|t)s̃T

j (t|t)], are

Psij(t|t) = HsPij(t|t)HT
s (26)

Lemma 2[22] For the multi-sensor systems (13)-(15)
with assumptions 1 and 2, we have the optimal information
fusion Kalman signal filter weighted by scalars

ŝ0(t|t) =
L∑

j=1

ωj(t|t)ŝj(t|t) (27)

where the optimal scalars weighting coefficient vectors
ωj(t|t) are given by

[
ω1(t|t), · · · , ωL(t|t) ]

= [eT(P−1
s (t|t))e]−1eTP−1

s (t|t)
(28)

whereeT = [1, · · · , 1], andL×L matrixPs(t|t) is defined
as

Ps(t|t) = (trPsij(t|t)), i, j = 1, · · · , L (29)

whose(i, j)th elementPs(t|t) aretrPsij(t|t).

3. Multi-stage information fusion estimators
of model parameters and noise variances

For the multisensor systems (1) -(3) with assumptions 1-4,
we can apply the multi-stage information fusion identifi-
cation method [23] to obtain estimators of the model pa-
rameters and noise variances. The information fusion esti-
mators can be obtained by the following three stages.

3.1. Information fusion autoregressive (AR)
parameter estimator

Substituting (1) and (3) into (2) yields

yi(t) = A−1(q−1)C(q−1)w(t) (30)

+B−1(q−1)R(q−1)ξ(t) + vi(t)

(30) can be rewritten as

det B(q−1)A(q−1)yi(t) = det B(q−1)C(q−1)w(t) (31)

+A(q−1)adjB(q−1)
×R(q−1)ξ(t) + det B(q−1)
×A(q−1)vi(t)

SettingdetB(q−1)yi(t) = zi(t), so we have

A(q−1)zi(t) = det B(q−1)C(q−1)w(t) (32)

+A(q−1)adjB(q−1)R(q−1)ξ(t)
+det B(q−1)A(q−1)vi(t)
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Defining

C̄(q−1) = det B(q−1)C(q−1)
= Im + C̄1q

−1 + · · ·+ C̄nc̄q
−nc̄ ,

R̄(q−1) = A(q−1)adjB(q−1)R(q−1)
= Im + R̄1q

−1 + · · ·+ R̄nr̄
q−nr̄ ,

Ā(q−1) = det B(q−1)A(q−1)
= Im + Ā1q

−1 + · · ·+ Ānāq−nā (33)

with nr̄ = na +nb +nr, nc̄ = mnb +nc, nā = mnb +na.
(32) can be written as

A(q−1)zi(t) = C̄(q−1)w(t)+ R̄(q−1)ξ(t)+ Ā(q−1)vi(t)
(34)

Hence for theith sensor, we have the least squares (LS)
structure as

zi(t) = Θϕi(t) + ri(t), i = 1, 2, · · · , L (35)

with the definition

Θ =
[
A1, · · · , Ana

]
(36)

ϕi(t) =
[−zi(t− 1); · · · ;−zi(t− na)

]
(37)

ri(t) = C̄(q−1)w(t) + R̄(q−1)ξ(t) + Ā(q−1)vi(t) (38)

Lemma 3 [23]For theith sensor subsystem with multi-
channel stationary ARMA model (1)-(3), the multidimen-
sional recursive instrumental variable (MRIV) local esti-
matorΘ̂i(t) of Θ are

Θ̂i(t) = Θ̂i(t− 1) +
[zi(t)− Θ̂i(t− 1)ϕi(t)]ϕ̂T

i (t)
1 + ϕ̂T

i (t)Pi(t− 1)ϕi(t)
(39)

×Pi(t− 1)

Pi(t) = Pi(t− 1)− Pi(t− 1)ϕi(t)ϕ̂T
i (t)Pi(t− 1)

1 + ϕ̂T
i (t)Pi(t− 1)ϕi(t)

(40)

ϕ̂i(t) = ϕi(t− n0) (41)

with initial valueΘ̂i(t) = Θ̂i0, Pi(t0) = αImna , zi(k) =
0(k ≤ 0), n0 = max(nā, nc̄, nr̄). Applying the multi-
dimensional recursive instrumental variable (MRIV) al-
gorithm [23], the multidimensional local RIV estimators
Θ̂i(t) of Θ converge to the true value with probability one,
i.e.

Θ̂i(t) → Θ, as t →∞,w.p.1, i = 1, · · · , L (42)

where “w.p.1” denotes “with probability one”. The infor-
mation fusion estimator̂Θf (t) of Θ is defined as

Θ̂f (t) =
1
L

L∑

i=1

Θ̂i(t) =
[
Â1(t), · · · , Âna(t)

]
(43)

so that from (43) it is also strongly consistent, i.e.

Θ̂f (t) → Θ, as t →∞, w.p.1 (44)

From (43),Âl(t) is the lth element ofΘ̂f (t). Hence, we
have

Âl(t) → Al, l = 1, · · · , na, as t →∞,w.p.1 (45)

Hence,Â(q−1) is obtained. Then substitutinĝA(q−1) into

(33), we can yield ˆ̄A(q−1) and ˆ̄R(q−1), i.e. ˆ̄Al(t)(l =
1, · · · , nā) and ˆ̄Rl(t)(l = 1, · · · , nr̄) are obtained.

3.2. Information fusion estimators of moving
average (MA) parameters and variance

From (31), (33) and (38), we have

ri(t) = Ā(q−1)yi(t) (46)

It is clearly thatĀ(q−1) is a stable polynomials ofq−1,
yi(t) is a stationary stochastic process, so it yields that
ri(t) is also a stationary stochastic process with cross-corr-
elation function as

Rrij(k) = E[ri(t)rT
j (t− k)], k = 0, · · · , nā (47)

with a cut-off as lagnā . At time t, the estimate of the
measurement processri(t) is defined as

r̂i(t) = ˆ̄A(q−1)yi(t) (48)

The on-line sampled correlation function̂Rt
rij(k) of Rrij(k)

is defined as

R̂t
rij(k) =

1
t

t∑
u=1

r̂i(u)r̂T
j (u− k) (49)

which has the recursive form

R̂t
rij(k) = R̂t−1

rij (k)+
1
t
[r̂i(t)r̂T

j (t−k)− R̂t−1
rij (k)] (50)

with the initial valueR̂1
rij(k) = 1

t

t∑
j=1

r̂i(1)r̂T
j (1− k) .

Defining the MA process as

m(t) = C̄(q−1)w(t) (51)

from (38), we can obtain that

ri(t) = m(t) + R̄(q−1)ξ(t) + Ā(q−1)vi(t) (52)

andm(t) is a stationary stochastic process, whose correla-
tion functionRm(k) is defined asRm(k) = E[m(t)mT(t−
k)] . From (51), we have that

Rm(k) =
nc̄∑

u=k

C̄uQwC̄T
u−k, k = 0, · · · , nc̄ (53)
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In order to yieldC̄u andQw, we need to findRm(k). Com-
puting the correlation function of the two sides of (52)
yields that

Rm(k) = Rrij(k)−
nr̄∑

u=k

R̄uQξR̄
T
u−k (54)

−
nā∑

u=k

ĀuQviĀ
T
u−kδij , k = 0, · · · , nc̄

Substituting the sample estimatesR̂t
rij(k), and fused esti-

mates ˆ̄Ai(t) and ˆ̄Ri(t) into (54) yields the local estimates
of Rm(k) as

R̂t
mij(k) = R̂t

rij(k)−
nr̄∑

u=k

ˆ̄Ru(t)Qξ
ˆ̄RT

u−k(t) (55)

−
nā∑

u=k

ˆ̄Au(t)Qvi
ˆ̄AT

u−k(t)δij , k = 0, · · · , nc̄

Bases on the estimateŝRt
mij(k), using the Gevers-Wouters

algorithm [24] with a dead band, we can obtain the local

estimatesˆ̄Cuij(t)(u = 1, · · · , nc̄, i, j = 1, · · · , L) and
Q̂wij(t) as

Q̂wij(t) = lim
l→∞

Rmwij(l, l) (56)

ˆ̄Cuij(t) = lim
l→∞

Rmwij(l, l − u)R−1
mwij(l, l), (57)

u = 1, · · · , nc̄

Rmwij(l, l − u) = R̂t
mij(u)−

nc̄∑
r=u+1

Rmwij(l, l − r)(58)

×R−1
mwij(l − r, l − r)

×Rmwij(l − u, l − r)

with the definitions

Rmwij(0, 0) = R̂t
mij(0), Rmwij(l, l − r) = 0(l < r)

R−1
mwij(l − r, l − r) = 0(l < r) (59)

Then the information fusion estimates̄̂Cu(t), Q̂w(t) based
on all sensors are defined as

Q̂w(t) =
1
L2

L∑

i=1

L∑

j=1

Q̂wij(t), (60)

ˆ̄Cu(t) =
1
L2

L∑

i=1

L∑

j=1

ˆ̄Cuij(t), u = 1, · · · , nc̄ (61)

Defining

det B(q−1) = 1 + g1q
−1 + · · · gmnb

q−mnb (62)

M =
[
CT

1 , · · · , CT
nc

]T
(63)

From (33), we have

ΩM = Υ (64)

where

Ω =




Im 0

g1Im
. . .

...
. . . Im

gmnb
Im g1Im

. . .
0 gmnb

Im




, Υ =




C̄1 − g1Im

...
C̄mnb

− gmnb
Im

C̄mnb+1

...
C̄nc̄




(65)
which yields

M = (ΩTΩ)−1ΩTΥ (66)

Substituting the estimators̄̂Cu(t)(u = 1, · · · , nc̄) into the
first formula of (33) yields

ˆ̄C(q−1) = det B(q−1)Ĉ(q−1) (67)

= Im + ˆ̄C1(t)q−1 + · · · ˆ̄Cnc̄
(t)q−nc̄

where

Ĉ(q−1) = Im + Ĉ1(t)q−1 + · · ·+ Ĉnc(t)q
−nc (68)

Defining

M̂(t) =
[
ĈT

1 (t), · · · , ĈT
nc

(t)
]T

(69)

SubstitutingĈu(t) into (64) yields

ΩM̂(t) = Υ̂ (t) (70)

where

Υ̂ (t) =




ˆ̄C1(t)− g1Im

...
ˆ̄Cmnb

(t)− gmnb
Im

ˆ̄Cmnb+1(t)
...
ˆ̄Cnc̄(t)




(71)

Solving (70) by Pseudo inverse yields that

M̂(t) = (ΩTΩ)−1ΩTΥ̂ (t) (72)

Theorem 1. For the multisensor systems (1)-(3) with
assumptions 1-4, the fused estimators of model parameters
and noise variances are consistent, i.e.

ˆ̄Ai(t) → Āi, i = 1, · · · , nā, as t →∞, i.a.r (73)
ˆ̄Ri(t) → R̄i, i = 1, · · · , nr̄, as t →∞, i.a.r (74)
ˆ̄Cu(t) → C̄u, u = 1, · · · , nc̄, as t →∞, i.a.r (75)

Q̂w(t) → Qw, as t →∞, i.a.r (76)

Ĉu(t) → Cu, i = 1, · · · , nc, as t →∞, i.a.r (77)

where the notation “i.a.r” denotes the convergence “in a
realization”[13].
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Proof. From (33) and (45), we have that (73) and (74)
hold. From (53) and the existence theorem of implicit func-
tion [25], C̄u andQw are the continuous functions of the
elements ofRm(k)(k = 0, · · · , nc̄) in a sufficiently small
neighborhood, i.e.

C̄u = fc̄(Rm(0), · · · , Rm(nc̄)) (78)

Qw = fw(Rm(0), · · · , Rm(nc̄)) (79)

wherefc̄ andfw are the continuous functions, whent is
sufficiently large, we have relations

ˆ̄Cuij(t) = fc̄(R̂t
mij(0), · · · , R̂t

mij(nc̄)) (80)

Q̂wij(t) = fw(R̂t
mij(0), · · · , R̂t

mij(nc̄)) (81)

According to the ergodicity [26], we have

R̂t
rij(k) → Rrij(k), as t →∞, i.a.r (82)

and from (54),(55),(73), (74) and (82), we have

R̂t
mij(k) → Rm(k), as t →∞, i.a.r (83)

From (78)-(81), (83), and the continuity offc̄ andfw, we
have

ˆ̄Cuij(t) → C̄u, Q̂wij(t) → Qw, as t →∞, i.a.r (84)

Therefore, from (60), (61) and (84), it follows that (75)
and (76) hold. From (66) and (72), the each element ofM
andM̂(t) is a continuous function of elements ofC̄u and
ˆ̄Cu(t)(u = 1, · · · , nc̄), which yieldsM̂(t) → M, as t →
∞, i.a.r, i.e., (77) holds.

4. Self-tuning fusion Kalman filter

When model parameters and noise variances are partially
unknown, substituting their estimators into the optimal fu-
sion Kalman filter yields the self-tuning fusion Kalman fil-
ter. It consists of the following steps:

Step 1.a)Applying the multidimensional recursive in-
strumental variable (MRIV) algorithm [23], yields the in-
formation fusion parameter estimatorsÂl(t)(l = 1, · · · , na)
at timet. And based on (33),̄̂Al(t), ˆ̄Rl(t) can be obtained.

b) Based on the estimates̄̂Al(t), ˆ̄Rl(t) and the sampled
correlation function estimateŝRt

rij(k), and applying the
Gevers-Wouters algorithm with a dead band to (55), the

information fusion estimateŝ̄Cu(t) andQ̂w(t) can be ob-
tained. From (72), the fused estimatesĈu(t)(u = 1, · · · , nc)
can be obtained .

Step 2.Substituting all the estimates obtained by step
1 into (16) and (17) yields the estimateŝΦ(t), Γ̂ (t) and
Q̂w̄(t) of Φ, Γ andQw̄, and we have that

[Φ̂(t)− Φ] → 0, [Γ̂ (t)− Γ ] → 0, [Q̂w̄(t)−Qw̄] → 0,

as t →∞, i.a.r (85)

Step 3. In Lemma 1,Φ, Γ and Qw̄ are replaced by
Φ̂(t), Γ̂ (t) and Q̂w̄(t) respectively. Substituting the esti-
mates into (18)-(26) , the self-tuning local Kalman signal
filter can be given as

x̂s
i (t|t) = Ψ̂fi(t)x̂s

i (t− 1|t− 1) + K̂fi(t)yi(t) (86)

Ψ̂fi(t) = [Im(na+nb) − K̂fi(t)H]Φ̂(t) (87)

K̂fi(t) = Σ̂i(t|t− 1)HT(HΣ̂i(t− 1|t)HT (88)

+Qvi)−1

P̂i(t|t) = [Im(na+nb) − K̂fi(t)H]Σ̂i(t|t− 1) (89)

ŝs
i (t|t) = Hsx̂

s
i (t|t) (90)

where the prediction error variance matricêΣi(t|t − 1)
satisfy the self-tuning Riccati equation

Σ̂i(t + 1|t) = Φ̂(t)[Σ̂i(t|t− 1)− Σ̂i(t|t− 1)HT (91)

×(HΣ̂i(t|t− 1)HT + Qvi)−1H

×Σ̂i(t|t− 1)]Φ̂T(t) + Γ̂ (t)Q̂w̄(t)Γ̂T(t)

where the cross-covariances among the signal filter errors
s̃s

i (t|t) = s(t)− ŝs
i (t|t), P̂sij(t) = E[s̃s

i (t|t)s̃T
j (t|t)], are

P̂sij(t|t) = HsP̂ij(t|t)HT
s (92)

The local filter error cross-covariances satisfy the self-tuning
Lyapunov equation

P̂ij(t|t) = Ψ̂fi(t)P̂ij(t− 1|t− 1)Ψ̂T
fj(t) (93)

+[Im(na+nb) − K̂fi(t)H]Γ̂ (t)Q̂w̄(t)Γ̂T(t)

×[Im(na+nb) − K̂fj(t)H]T, i 6= j

with the definitionP̂ii(t|t) = P̂i(t|t).
Step 4. By (28) and (29), the estimateŝPs(t|t) and

ω̂j(t|t) can be obtained and the self-tuning fused Kalman
signal filter is given as

ŝs
0(t|t) =

L∑

j=1

ω̂j(t|t)ŝs
j(t|t) (94)

The above four steps are repeated at each time t.

5. Convergence analysis

Lemma 4[16]Consider the discrete dynamic error system

δ(t) = F (t)δ(t− 1) + u(t) (95)

wheret ≥ 0, δ(t) ∈ Rn is the output,u(t) ∈ Rn is the
input, and the matrixF (t) ∈ Rn×n is uniformly asymp-
totically stable. Ifu(t) is bounded, thenδ(t) is bounded. If
u(t) → 0, ast →∞, thenδ(t) → 0, ast →∞.

Theorem 2.For the multisensor systems (1)-(3) with
the assumptions 1-4, the self-tuning local Kalman signal
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filters ŝs
i (t|t) converge to the local optimal Kalman signal

filters ŝi(t|t) in a realization, i.e.

[ŝs
i (t|t)− ŝi(t|t)] → 0, as t →∞, i.a.r (96)

Proof. According to [27], it can be proved similarly
that

(Σ̂i(t + 1|t)−Σi(t + 1|t)) → 0, as t →∞, i.a.r (97)

According to the stability theory of the Kalman filter-
ing [28], from (20), the steady-state Kalman filter gains
Kfi are the continuous functions ofΣi, i.e.,Kfi = fk(Σi).
Hence, from (20) and (88), applying the continuity offk,
it can be obtained that

K̂fi(t) → Kfi(t), as t →∞, i.a.r (98)

From (19),the steady-state Kalman filter transition matri-
cesΨfi are the continuous functions ofKfi and Φ,i.e.,
Ψfi = gf (Kfi, Φ). Hence, from (85) and (98), applying
the continuity ofgf , it can be obtained that

Ψ̂fi(t) → Ψfi(t), as t →∞, i.a.r (99)

SettingK̂fi(t) = Kfi(t)+∆K̂fi(t), andΨ̂fi(t) = Ψfi(t)+
∆Ψ̂fi(t), from (98) and (99), we have that

∆K̂fi(t) → 0,∆Ψ̂fi(t) → 0, as t →∞, i.a.r (100)

Notice thatK̂fi(t) andK̂fi(t)yi(t) are bounded, and̂Ψfi(t)
is uniformly asymptotically stable [26]. Hence, applying
the Lemma 4 to (86), we have thatx̂s

i (t|t) are bounded.
Subtracting (18) from (86), and settingδi(t) = x̂s

i (t|t) −
x̂i(t|t), yields the dynamic error equation

δi(t) = Ψfi(t)δi(t− 1) + ui(t) (101)

whereui(t) = ∆Ψ̂fi(t)x̂s
i (t − 1|t − 1) + ∆K̂fi(t)yi(t).

From the boundedness ofx̂s
i (t|t) andyi(t), and from (100),

we obtainui(t) → 0. Hence, applying the Lemma 4 to
(101), we can yieldδi(t) → 0, and from (22) and (90), we
have that (96) holds. This completes to the proof.

Theorem 3 For the multisensor systems (1)-(3) with
the assumptions 1-4, and with the estimatorsΦ̂(t), Γ̂ (t)
andQ̂w̄(t), the self-tuning fusion Kalman signal filterŝs

0(t|t)
given in (94) converges to the optimal fusion Kalman sig-
nal filter ŝ0(t|t) given in (27) in a realization, i.e.

[ŝs
0(t|t)− ŝ0(t|t)] → 0, as t →∞, i.a.r (102)

Proof.Applying dynamic variance error system analy-
sis (DVESA) method [29], it has been proved that

P̂ij(t|t) → Pij(t|t), as t →∞, i.a.r (103)

From (26), (92) and (103), we also have

P̂sij(t|t) → Psij(t|t), as t →∞, i.a.r (104)

Settingω̂(t|t) = ω(t|t) + ∆ω̂(t|t), i = 1, 2, · · · , L. From
(28) and (104), we have yield

ω̂(t|t) → ω(t|t), as t →∞, i.a.r (105)

From (105), we have that∆ω̂(t|t) → 0, ast → ∞, i.a.r.
Subtracting (27) from (94) yields

ŝs
0(t|t)− ŝ0(t|t) =

L∑

i=1

ω(t|t)[ŝs
i (t|t)− ŝi(t|t)] (106)

+
L∑

i=1

∆ω̂(t|t)ŝs
i (t|t)

From (90) and the boundedness ofx̂s
i (t|t), we have that

ŝs
i (t|t) is bounded. Applying the boundedness ofPsij(t|t),

we have thatω(t|t) is bounded. Applying (96),∆ω̂(t|t) →
0 and the boundedness ofω(t|t) and ŝs

i (t|t), yields that
(102) holds.

6. Simulation example

Consider the multisensor multi-channel autoregressive mov-
ing average (ARMA) signal with white measurement noises
and a colored noise

(I2 + A1q
−1 + A2q

−2)s(t) = (I2 + C1q
−1)w(t) (107)

yi(t) = s(t) + η(t) + vi(t), i = 1, · · · , L (108)

(I2 + B1q
−1)η(t) = (I2 + R1q

−1)ξ(t) (109)

where the signals(t) =
[
s1(t) s2(t)

]T
, yi(t) ∈ R2 is the

measurement of theith sensor,w(t), ξ(t) andvi(t) are in-
dependent white noises with zero mean and unknown vari-
ancesQw, Qξ andQvi, respectively. AssumeA1, A2, C1

andQw are unknown. (107)-(109) have the equivalent state
model (13)-(15). Hence the problem of finding self-tuning
fusion Kalman filter̂ss

0(t|t) of signals(t) can be converted
into the problem of finding the self-tuning fusion Kalman
filter weighted by scalars of statex(t)’s first component.

In simulation we take that

A1 =
[

1.2, −0.5
−0.2, 0.7

]
, A2 =

[
0.5, −0.7
0.3, 0.9

]
,

Qw =
[

6, 0
0, 8

]
, C1 =

[−0.1, −0.3
0.1, 0.5

]
,

B1 =
[

0.5, −0.3
0.1, −0.4

]
, R1 =

[−0.3, −0.1
0.2, −0.5

]
,

Qξ =
[

0.1, 0
0, 0.1

]
, Qv1 =

[
0.1, 0
0, 0.4

]
,

Qv2 =
[

0.2, 0
0, 0.6

]
, Qv3 =

[
0.15, 0
0, 0.35

]

In Figure 1-Figure 10, the straight lines denote the true
values, andM(k, r) denotes the(k, r)th element of the ma-
trix M . Applying Lemma 3, we can obtain the fused esti-
matesÂl(t)(l = 1, 2).The curves of the fused estimates
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Figure 1 The curves of the fused parameter estimateA1.
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Figure 2 The curves of the fused parameter estimateA2.

Â1(t) andÂ2(t) are shown in Figure 1 and Figure 2. Ap-
plying the correlation method and Gevers-Wouters algo-
rithm with the dead bandTd = 200, we can obtainĈ1(t)
and Q̂w(t). The curves of the fused estimatêQw(t) are
shown in Figure 3. The curves of the fused estimateĈ1(t)
are shown in Figure 4. The curves of the signals(t) and

measurementyi(t) =
[
yi1(t) yi2(t)

]T (i = 1, 2, 3) are
given in Figure 5 and Figure 7. From Figure 6 and Fig-
ure 8, we can see that the optimal fused filterŝ0(t|t) =[
ŝ01(t|t) ŝ02(t|t)

]T
and the self-tuning filter̂ss

0(t|t) =[
ŝs
01(t|t) ŝs

02(t|t)
]T

approximate to the true signals(t).
The error curves between the self-tuning and optimal fused
Kalman signal filters are presented in Figure 9 and Figure
10. We see the errors approximate to zero, which verify
the self-tuning fusion Kalman signal filter converges to the
optimal fusion Kalman signal filter .

7. Conclusion

For the multisensor multi-channel ARMA signal with white
measurement noises and an ARMA colored measurement
noise, when the model parameters and noise variances are
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Figure 3 The curves of the fused noise variance estimateQw.
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Figure 4 The curves of the fused parameter estimateC1.
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Figure 5 The curves of the signals1(t), the measurement
y11(t), the measurementy21(t) and the measurementy31(t).

partially unknown, a self-tuning information fusion Kalman
filter weighted by scalars has been presented by the classi-
cal Kalman filter method. In this paper, four main contribu-
tions are as follows: (i) The multi-stage information fusion
identification method has been presented for the multisen-
sor multi-channel ARMA signal with an ARMA colored
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Figure 6 The signals1(t), the optimal fused filter̂s01(t|t), and
the self-tuning fused filter̂ss

01(t|t).
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noise, which consists of the multidimensional RIV algo-
rithm, the correlation method, and the Gevers-Wouters al-
gorithm with a dead band. It solves the online identifica-
tion problem of the multi-channel ARMA signal system
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Figure 9 The error curvee1(t) = ŝs
01(t|t)− ŝ01(t|t).

0 1000 2000 3000 4000 5000 6000 7000 8000

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t/step

Figure 10 The error curvee2(t) = ŝs
02(t|t)− ŝ02(t|t).

with a colored measurement noise, which has not been
solved in the existing papers [19–21,23]. The classical sys-
tem identification method [26] has been developed to han-
dle the multi-sensor system with a colored noise. (ii) By
converting the ARMA signal model to the state space model,
the signal can be regarded as a component of the state.
Then using the classical Kalman filtering method, the in-
formation fusion Kalman signal filter is obtained. (iii) The
proposed self-tuning information fusion Kalman signal fil-
ter overcomes the limitation that the existing results are
only suitable for multisensor system with single-channel
white measurement noises. (iv) By the DESA method, it
has been proved strictly that the self-tuning fused Kalman
filter converges to the optimal fused Kalman filter in a re-
alization, so that it has the asymptotic optimality.
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