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Abstract: The investigation has been carried out to analyse the convective flow through a porous medium with variable suction. The
finite element analysis has been used for computational results. The effect of different dimensionless numbers on the convective flow
has been done using Matlab. The effect of magnetic parameteron the flow has been analysed. The fluid behavior has been also observed
with the variation of the permeability parameter.
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1 Introduction

The problem of free convection flow through a porous
medium of variable permeability is one of the interesting
problems which has applications in the design of steam
displacement process in an oil recovery and various
geothermal systems. Chandrasekharet al. [1], Vedha
Nayagamet al. [2], Sreekanthet al.[3] have studied the
hydro magnetic free convective flow through a porous
medium with variable permeability. Chamkhaet al.[4]
studied computationally the influence of mass transfer
and radiation flux on natural convection flows.
Abd-El-Nabyet al. [5] studied the effects of radiation on
unsteady free convective flow past a semi-infinite vertical
plate with a variable surface temperature. Chamkhaet
al.[6] used the Rosseland diffusion flux model to analyze
the buoyancy-driven dissipative natural
convection-radiation boundary layer flow from a wedge in
a porous medium. They showed that an increase in
Boltzmann-Rosseland radiation-conduction number and
negative Eckert number enhances heat transfer gradients
at the wedge face considerably.
The MHD fluctuating free convective flow with radiation
embedded in porous medium having variable
permeability and heat source / sink has been studied by
Sharmaet al. [7]. Humera et al. [8] have studied the
hydromagnetic free convective Revlin-Ericksen flow
through a porous medium with variable permeability. Das
et al. [9] have studied the mass transfer effects on

unsteady hydro magnetic convective flow past a vertical
porous plate in a porous medium with heat source. Reddy
and Reddy [10] studied the mass transfer and heat
generation effects on MHD free convective flow past an
inclined vertical surface in a porous medium. Pullepu and
Chamkha [11] investigated the unsteady free convection
from a vertical cone with non-uniform surface heat flux.
The solutions are obtained numerically. The local as well
as average skin-friction and Nusselt number are also
presented and analyzed graphically. The present results
are compared with available results in literature and are
found to be in good agreement.

Hussaini et al. [12] has investigated a free convective
unsteady visco-elastic flow through porous medium of
variable permeability bounded by an infinite vertical
porous plate with variable suction, constant heat flux
under the influence of transverse uniform magnetic field.
Approximate solutions for mean velocity, transient
velocity, mean temperature and transient temperature of
non-Newtonian flow and skin friction are obtained. The
effects of various parameters such as Pr (Prandtl number),
Gr (Grashof number), M (Hartmann number),ω
(frequency parameter) and k0 (mean permeability
parameter) on the above are depicted, skin friction,
amplitude and phase are shown graphically. Our interest
in the present investigation is to study the memory
convective flow through porous medium with variable
suction using finite element analysis and simulating the
results.
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2 Formulation of the Problem

We consider the flow of convective memory fluid through
a porous medium bounded by an infinite vertical porous
plate with constant heat flux under the influence of
uniform transverse magnetic field. The x - axis is taken
along the plate in the upward direction and y - axis
normal to it. All the fluid properties are assumed to be
constant, except that influence of the density variations
with temperature is considered only in the body force
term. The magnetic field of small intensity H0 is induced
in the y - direction. Since the fluid is slightly conducting,
the magnetic Reynolds number is far lesser than unity
hence the induced magnetic field is neglected in
comparison with the applied magnetic field. The
equations of motion are:

υ ∂ 2u
∂y2 −

υu
k −β υ ∂ 3u

∂y3 −
σ µe2H2

0
ρ u+ gβ1(T −T∞)− v ∂u

∂y = 0,
(1)

k
ρCp

∂ 2T
∂y2 − v

∂T
∂y

= 0. (2)

The boundary conditions are:

y = 0;u = 0,
∂T
∂y

= −
q
k

(3)

y → ∞ ; u = 0, T = T∞ (4)

where u and v are velocity components along x and y -
directions,ω is the frequency parameter is the coefficient
of volume expansion, is kinematic visco-elasticity, is
electrical conductivity, is magnetic permeability, H0 is
magnetic intensity, is thermal conductivity, Cp specific
heat at constant pressure, q is heat flux and the
permeability of porous medium is k
Introducing the following non-dimensional quantities:

y′ = yv0
ϑ , ω ′ = 4ϑω

v2
0
,u′ = u

v0
,Gr = gβ1qϑ2

kv4
0

,Pr= µCp
k ,Rm =

β υ2
0

ϑ2

k
′

0 =
k0v2

0

ϑ 2 ,M =
σ µ2

e H2
0v0

qϑ
,θ =

(T −T∞)kv0

qϑ
(5)

Equations (1) and equation (2) in view of (6) and (7) are
transformed to the following equations:

∂u
∂y

+Grθ =
u
k0

+Mu−
∂ 2u
∂y2 −Rm

∂ 3u
∂y3 , (6)

∂θ
∂y

= −
1
Pr

∂ 2θ
∂y2 (7)

The corresponding boundary conditions are:

y = 0 : u = 0,
∂θ
∂y

=−1 (8)

y → ∞ : u = 0, θ = 0. (9)

3 Method of Solution

By applying Galerkin finite element method over the
element (e)

z j ≤ z ≤ zk

We have

∫ zk

z j

N(e)T

[

∂ 2u(e)

∂y3 + ∂ 2u(e)

∂y2 + ∂u(e)

∂y

−Au(e)+P

]

dy (10)

where A =
u
k0

+M, P = Grθ j
i

Integrating the first and second term by parts one obtains:

N(e)T
(

∂ 2u(e)

∂y2

)zk

z j
+N(e)T

(

∂u(e)

∂y

)zk

z j
−

∫ zk
z j

∂N(e)T

∂y
∂ 2u(e)

∂y2 dy+ ∂N(e)T

∂y
∂u(e)

∂y +

N(e)T
(

−
∂u(e)

∂y +Au(e)−P
)

dy = 0

(11)
Neglecting the first two terms one gets:

∫ zk
z j

∂N(e)T

∂y
∂ 2u(e)

∂y2 + ∂N(e)T

∂y
∂u(e)

∂y +N(e)T
(

− ∂u(e)

∂y +Au(e)−P
)

dy = 0

(12)
Let u(e) = N(e)φ (e)is the linear piecewise approximation
over the element (e) where
N(e) = [N j Nk], φ (e) = [u j uk]

T , N j =
zk−z
zk−z j

, Nk =
z−z j
zk−z j

are basis functions
The integrant of the first term will be zero. The equation
reduces to
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N
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z j

[
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][

u j
uk

]

dy

= P
∫ zk

z j

[

N j
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]

(13)

On simplification we get,
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(14)
Now put row corresponding to the node i to zero, from
equation (14) the deformation scheme with l(e) = h is

1
h2 [−ui−1+2ui+ ui+1]−

1
2h [−ui−1+ ui+1]+

A
6 [ui−1+4ui+ ui+1] = P

(15)
Applying the trapezoidal rule following system of
equations in Crank Nicolson method are obtained.

A1un+1
i−1 +A2un+1

i +A3un+1
i+1 = A4un

i−1+A5un
i +A6un

i+1+P∗
.

(16)
Where
A1= Ah+3h-6
A2 = 12+4Ah
A3 = Ah+6-3h
A4 = -Ah-3h+6
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Fig. 1: The variation of velocity with Gr for Pr = 0.5, Rm= 0.4

Fig. 2: The variation of velocity with Pr for Gr = 0.5, Rm = 0.4

A5 = 8- 4Ak- 12r
A6 = 2- Ah + 3rh +6r

P* = 12Ah+Grθ j
i

Here h is the mesh size along y- direction and index ‘i’
refers to space. In the equation (15) taking i = 1(1) n, and
using the boundary conditions (8) and (9) following
system of equations are obtained.

AiXi = Bi

whereAi′s are matrices of order n, Xi and Bi′sare column
matrices of order n.The solutions of above system of
equations are obtained by using Thomas algorithm for
primary velocity and secondary velocity. Also, numerical
solutions for these equations
are obtained by Matlab – programme. In order to prove
the convergence and stability of Galerkin finite element
method, the same Matlab – programme was run with
smaller values of h and no significant change was
observed in the values of u and v. Hence the Galerkin
finite element method is stable and convergent.

Fig. 3: The variation of velocity with M for Gr = 0.5, Pr = 0.4,
Rm= 0.4

Fig. 4: The variation of velocity with Rm for Gr = 0.5, Pr = 0.7

Fig. 5: The variation of mean temperature with Pr

4 Discussions and conclusions

The graphs has been plotted for variation of parameters
Gr, Pr and Rm. Different range of for set of parameters
have been considered to study the behavior of velocity.
The graphs are plotted by suitable programming in
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Fig. 6: The variation of velocity with ko for Gr = 0.5, Pr = 0.4,
Rm = 0.3

Fig. 7: The variation of mean temperature against ko with Pr for
Gr = 0.4, Rm = 0.6.

Matlab. The results can be viewed and compared through
different graphs.

The effect of Magnetic field has been studied by varying
the parameter M is the given form of governing equations.
In Fig.1 the variation in the velocity has been studied with
Grashof number and it is observed that for this analysis
the velocity increases with the increase Grashof number
while in fig. 2 the analysis has been carried out with
increasing Pr. The velocity profile has been obtained
which was different and it shows that the velocity
increases very slowly with the increase of Pr.In Fig. 3 the
velocity behavior has been observed with Magnetic field.
With the increase of magnetic field the graph goes
smoothly with the slight increase and as the distance
increases the change in the velocity is observable.
In Fig. 4 the effect of magnetic Reynolds number has
been shown on velocity. The velocity decreases with the
increase of Rm and this behavior is smooth for different
values of Rm.In Fig. 5 the variation of mean temperature
with Pr has been shown. For small values of distance it is
not significant. But of large values of y, it is observed that

the mean temperature increases sharply.Fig. 6 the
variation of velocity with permeability has been plotted to
show the effect of the presence of porous medium.Due to
the presence of porous medium the velocity increases
with distance sharply. The varation is quite smooth for
different values of ko.The variation of mean temperature
against ko has been plotted for different values of Pr, the
behavior is observed that with the increase of
permeability the Temperature profile decreases. The
results which are obtained may be useful for the scientific
purposes.
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